Architectural Origami Architectural Form Design Systems based on Computational Origami Tomohiro Tachi Graduate School of Arts and Sciences, The University of Tokyo IST PRESTO

0

Introduction

Background 1: Origami

Background 2: Applied Origami

- Static:
 - Manufacturing
 - Forming a sheet
 - No Cut / No Stretch
 - No assembly
 - Structural Stiffness
- Dynamic:
 - Deployable structure
 - Mechanism
 - Packaging
 - Elastic Plastic Property
 - Textured Material
 - Energy Absorption
- Continuous surface

Potentially useful for

- Adaptive Environment
- Context Customized Design
- Personal Design
- Fabrication Oriented Design

Table (T. Tachi and D. Koschitz)

Photograph of origami dome removed due to copyright restrictions.

Photograph of solar panels removed due to copyright restrictions.

Architectural Origami

- Origami Architecture
 - Direct application of Origami for Design
 - Design is highly restricted by the symmetry of the original pattern
 - Freeform design results in losing important property (origami-inspired design)
- Architectural Origami
 Origami theory for Design
 - Extract characteristics of origami
 - Obtain solution space of forms from the required condition and design context

Outline

I. Origamizer

- tucking molecules
- layout algorithm

2. Freeform Origami

- constraints of origami
- perturbation based calculation
- mesh modification

3. Rigid Origami

- simulation
- design by triangular mesh
- design by quad mesh
- non-disk?

1

Origamizer

Related Papers:

- •Demaine, E. and Tachi, T. "Origamizer: A Practical Algorithm for Folding Any Polyhedron," work in progress.
- •Tachi, T., "Origamizing polyhedral surfaces," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 2, 2010.
- •Tachi, T., "Origamizing 3d surface by symmetry constraints," August 2007. ACM SIGGRAPH 2007 Posters.
- •Tachi, T., "3D Origami Design based on Tucking Molecule," in Origami4: A K Peters Ltd., pp. 259-272, 2009.

Existing Origami Design Method by Circle Packing

Diagram of circle river method removed due to copyright restrictions.

Photograph and crease pattern for Scutigera removed due to copyright restrictions.

1D vs. 3D

- Circle River Method / Tree Method
 - Works fine for tree-like objects
 - Does not fit to 3D objects

- Origamizer / Freeform Origami
 - 3D Polyhedron, surface approximation
 - What You See Is What You Fold

3D Origami

Human 2004

3D Origami

Roofs 2003

Everything seems to be possible!

Problem: realize arbitrary polyhedral surface with a developable surface

- Geometric Constraints
 - Developable Surf
 - Piecewise Linear
 - Forget about ContinuousFolding Motion
- Potential Application
 - Fabrication by folding and bending

Input:
Arbitrary
Polyhedron

Output: Crease Pattern

Fol ded Pol yhedron

Approach: Make "Tuck"

- Tuck develops into
 - a plane
- Tuck folds into
 - a flat state hidden behind polyhedral surface
- →Important Advantage:

We can make Negative Curvature Vertex

Basic Idea

Origamize Problem

Lay-outing Surface Polygons Properly

Tessellating Surface Polygons and "Tucking Molecules"

- Angle $\theta(i, j)$
- Distance W(i, j)

$$\theta(j, i) = -\theta(i, j)$$

$$w(j, i) = w(i, j) + 2\lambda(i, j) \sin(0.5\theta(i, j))$$

Geometric Constraints (Equations)

$$\sum_{n=0}^{N-1} \theta(i, j_n) = 2\pi - \sum_{n=0}^{N-1} \alpha(i, j_n) \qquad \cdots (1)$$

$$\sum_{n=0}^{N-1} w(i, j_n) \begin{bmatrix} \cos\left(\sum_{m=1}^{n} \Theta_m\right) \\ \sin\left(\sum_{m=1}^{n} \Theta_m\right) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \cdots (2)$$
where $\Theta_m = \frac{1}{2} \theta(i, j_{m-1}) + \alpha(i, j_m) + \frac{1}{2} \theta(i, j_m)$

Two-Step Linear Mapping

- 1. Mapping based on (1) (linear) $C_{\mathbf{w}}\mathbf{w} = \mathbf{b}$
- 2. Mapping based on (2) (linear) $\mathbf{w} = \mathbf{C}_{w}^{+}\mathbf{b} + \left(\mathbf{I}_{N_{edge}} \mathbf{C}_{w}^{+}\mathbf{C}_{w}\right)\mathbf{w}_{0} \quad \text{where } \mathbf{C}_{w}^{+} \text{ is the generalized inverse of } \mathbf{C}_{w}$ If the matrix is full-rank, $\mathbf{C}_{w}^{+} = \mathbf{C}_{w}^{\mathrm{T}}\left(\mathbf{C}_{w}\mathbf{C}_{w}^{\mathrm{T}}\right)^{-1}$

gives $(N_{\rm edge}$ - $2N_{\rm vert})$ dimensional solution space (within the space, we solve the inequalities)

Geometric Constraints (Inequalities)

- Convex Paper
- $\theta(i,o) \ge \pi$
- $w(i,o) \ge 0$

- Non-intersection
$$-\pi < \theta(i,j) < \pi$$

$$\min(w(i,j),w(j,i)) \ge 0$$

$$0 \le \Theta_m < \pi$$

Crease pattern non-intersection

$$\phi(i,j) \le \arctan \frac{2\ell(i,j)\cos\frac{1}{2}\theta(i,j)}{w(i,j)+w(j,i)} + 0.5\pi$$

3D Cond.

for tuck proxy angle $\tau'(\dot{a},\eta\dot{d})$ depth

Tuck angle condition

$$\phi(i,j) - \frac{1}{2}\theta(i,j) \le \pi - \tau'(i,j)$$

Tuck depth condition

$$w(i,j) \le 2\sin\left(\tau'(i,j) - \frac{1}{2}\alpha(i,j)\right)d'(i)$$

Convexity of paper

Non intersection (convexity of molecule)

展開図の妥当条件: 頂点襞分子/と稜線襞分子/jが共有す る辺を含むDelaunay三角形の頂点角 $\phi(i,j)$ を用いる。

d'(i)

Design System: Origamizer

Developed in the project "3D Origami Design Tool" of IPA ESPer Project

- Auto Generation of CreasePattern
- Interactive Editing (Search within the solution space)
 - Dragging Developed Facets

How to Fold Origami Bunny

0. Get a crease pattern using Origamizer

1. Fold Along the Crease Pattern

2. Done!

Proof?

Ongoing joint work with Erik Demaine

2

Freeform Origami

Related Papers:

Vol. 14, No. 2)

•Tomohiro Tachi, "Freeform Variations of Origami", in Proceedings of The 14th International Conference on Geometry and Graphics (ICGG 2010), Kyoto, Japan, pp. 273-274, August 5-9, 2010. (to appear in Journal for Geometry and Graphics

•Tomohiro Tachi: "Smooth Origami Animation by Crease Line Adjustment," ACM SIGGRAPH 2006 Posters, 2006.

Objective of the Study

I. freeform

- Controlled 3D form
- Fit function, design context,
 preference, ...

origami utilize the properties

- Developability
 - → Manufacturing from a sheet material based on Folding, Bending
- Flat-foldability
 - → Folding into a compact configuration or Deployment from 2D to 3D
- Rigid-foldability
 - → Transformable Structure
- Elastic Properties

...

Proposing Approach

- Initial State: existing
 origami models (e.g. Miura ori, Ron Resch Pattern, ...)
 + Perturbation consistent
 with the origami conditions.
- Straightforward user interface.

Model

- Triangular Mesh (triangulate quads)
- Vertex coordinates represent the configuration
 - $3N_v$ variables, where N_v is the # of vertices

The configuration is constrained by developability, flat-foldability, ...

Developability

Engineering Interpretation

→ Manufacturing from a sheet material based on Folding, Bending

- Global condition
 - There exists an isometric map to a plane.
- ⇔(if topological disk)
- Local condition
 - Every point satisfies
 - Gauss curvature = 0

Developable Surface

Smooth Developable Surface

- G² surface (curvature continuous)
 - "Developable Surface" (in a narrow sense)
 - Plane, Cylinder, Cone, Tangent surface
- G¹ Surface (smooth, tangent continuous)
 - "Uncreased flat surface"
 - piecewise Plane, Cylinder, Cone, Tangent surface

Origami

- G⁰ Surface
- piecewise G¹ Developable G⁰
 Surface

Developability condition to be used

Constraints

- For every interior vertex v (k_v -degree), gauss area equals 0.

$$\mathbf{G}_{v} = 2\pi - \sum_{i=0}^{kv} \theta_{i} = 0$$

Flat-foldability

Engineering Interpretation

- → Folding into a compact configuration or Deployment from 2D to 3D
- Isometry condition
 - · isometric mapping with mirror reflection
- Layering condition
 - · valid overlapping ordering
 - globally: NP Complete [Bern and Hayes 1996]

Flat-foldability condition to be used

Isometry

⇔ Alternating sum of angles is 0 [Kawasaki 1989]

$$\mathbf{F}_{v} = \sum_{i=0}^{kv} \operatorname{sgn}(i)\theta_{i} = 0$$

- Layering

- ⇒ [kawasaki 1989]
 - If θ_i is between foldlines assigned with MM or VV, ℓ_{in}

$$\theta_i \geq \min(\theta_{i-1}, \theta_{i+1})$$

- + empirical condition [tachi 2007]
 - If θ_i and θ_{i+1} are composed by foldlines assigned with MMV or VVM then, $\theta_i \ge \theta_{i+1}$

bad

Other Conditions

- Conditions for fold angles
 - Fold angles ρ
 - V fold: $0 < \rho < \pi$
 - M fold: $-\pi < \rho < 0$
 - crease: $-\alpha\pi < \rho < \alpha\pi$ (α =0:planar polygon)
- Optional Conditions
 - Fixed Boundary
 - Folded from a specific shape of paper
 - Rigid bars
 - Pinning

Settings

- Initial Figure:
 - Symmetric Pattern
- Freeform Deformation
 - Variables (3N_v)
 - Coordinates X
 - Constraints $(2N_{v in} + N_{c})$
 - Developability
 - Flat-foldability
 - Other Constraints

35

Under-determined System

Solve Non-linear Equation

The infinitesimal motion satisfies:

$$\mathbf{C}\dot{\mathbf{X}} = \begin{bmatrix} \frac{\partial \mathbf{G}}{\partial \mathbf{X}} \\ \frac{\partial \mathbf{F}}{\partial \mathbf{X}} \\ \frac{\partial \mathbf{F}}{\partial \mathbf{H}} \\ \frac{\partial \mathbf{H}}{\partial \mathbf{X}} \end{bmatrix} \dot{\mathbf{X}} = \begin{bmatrix} \frac{\partial \mathbf{G}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{G}}{\partial \boldsymbol{\rho}} \\ \frac{\partial \mathbf{F}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{F}}{\partial \boldsymbol{\rho}} \\ \frac{\partial \mathbf{H}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{H}}{\partial \boldsymbol{\rho}} \end{bmatrix} \dot{\mathbf{X}} = \mathbf{0}$$

For an arbitrarily given (through GUI) Infinitesimal Deformation ΔX_{\odot}

$$b_{jk}$$
 i
 g_{ijk}
 i
 g

$$\mathbf{C}\dot{\mathbf{X}} = \begin{bmatrix} \frac{\partial \mathbf{G}}{\partial \mathbf{X}} \\ \frac{\partial \mathbf{F}}{\partial \mathbf{X}} \\ \frac{\partial \mathbf{F}}{\partial \mathbf{A}} \end{bmatrix} \dot{\mathbf{X}} = \begin{bmatrix} \frac{\partial \mathbf{G}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{G}}{\partial \boldsymbol{\rho}} \\ \frac{\partial \mathbf{F}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{F}}{\partial \boldsymbol{\rho}} \\ \frac{\partial \mathbf{H}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{H}}{\partial \boldsymbol{\rho}} \end{bmatrix} \dot{\mathbf{X}} = \mathbf{0} \qquad \mathbf{G}_{v} = 2\pi - \sum_{i=0}^{kv} \theta_{i} = 0 \qquad \frac{\partial \theta_{ijk}}{\partial \mathbf{x}_{i}} = -\frac{1}{\ell_{ij}} \mathbf{b}_{ij}^{\mathrm{T}} \\ \mathbf{F}_{v} = \sum_{i=0}^{kv} \mathrm{sgn}(i)\theta_{i} = 0 \qquad \frac{\partial \theta_{ijk}}{\partial \mathbf{x}_{j}} = \frac{1}{\ell_{ij}} \mathbf{b}_{ij}^{\mathrm{T}} + \frac{1}{\ell_{jk}} \mathbf{b}_{jk}^{\mathrm{T}} \\ \frac{\partial \theta_{ijk}}{\partial \mathbf{x}_{k}} = -\frac{1}{\ell_{jk}} \mathbf{b}_{jk}^{\mathrm{T}} \end{bmatrix}$$
For an arbitrarily given (through GUI)

 $\Delta \mathbf{X} = -\mathbf{C}^{+}\mathbf{r} + \left(\mathbf{I}_{3N_{y}} - \mathbf{C}^{+}\mathbf{C}\right)\Delta \mathbf{X}_{0}$

Freeform Origami

Get A Valid Value

- Iterative method to calculate the conditions
- Form finding through User Interface

Implementation

- Lang
 - C++, STL
- Library
 - BLAS (intel MKL)
- Interface
 - wxWidgets, OpenGL

To be available on web

Mesh Modification Edge Collapse

- Edge Collapse [Hoppe etal 1993]
- Maekawa's Theorem
 [1983] for flat foldable
 pattern

$$M - V = \pm 2$$

Mesh Modification

Miura-Ori

- Original
 - [Miura 1970]
- Application
 - bidirectionally expansible (one-DOF)
 - compact packaging
 - sandwich panel
- Conditions
 - Developable
 - Flat-foldable
 - op: (Planar quads)(→RigidFoldable)

Photograph of solar panels removed due to copyright restrictions.

Miura-ori Generalized

Freeform Miura-ori

Miura-ori Generalized

Ron Resch Pattern

- Original
 - Resch [1970]
- Characteristics
 - Flexible (multiDOF)
 - Forms a smooth flat surface+ scaffold
- Conditions
 - Developable
 - 3-vertex coincide

Photograph of origami model removed due to copyright restrictions.

Ron Resch Pattern Generalized

Generalized Ron Resch Pattern

Crumpled Paper

- Origami
 - = crumpled paper
 - = buckled sheet

- Developable
- Fixed Perimeter

crumpled paper example

Waterbomb Pattern

- "Namako" (by Shuzo Fujimoto)
- Characteristics
 - Flat-foldable
 - Flexible(multi DOF)
 - Complicated motion
- Application
 - packaging
 - textured material
 - cloth folding...

Screenshot from video removed due to copyright restrictions.

To view video: https://www.youtube.com/watch?v=SvDSNDR0oXo.

Photograph of metal origami heart stent removed due to copyright restrictions.

Waterbomb Pattern Generalized

3

Rigid Origami

- •Tachi T.: "Rigid-Foldable Thick Origami", in Origami5, to appear.
- •Tachi T.: "Freeform Rigid-Foldable Structure using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh", Advances in Architectural Geometry 2010, pp. 87--102, 2010.
- •Miura K. and Tachi T.: "Synthesis of Rigid-Foldable Cylindrical Polyhedra," Journal of ISIS-Symmetry, Special Issues for the Festival-Congress Gmuend, Austria, August 23-28, pp. 204-213, 2010.
- •Tachi T.: "One-DOF Cylindrical Deployable Structures with Rigid Quadrilateral Panels," in Proceedings of the IASS Symposium 2009, pp. 2295-2306, Valencia, Spain, September 28- October 2, 2009.
- •Tachi T.: "Generalization of Rigid-Foldable Quadrilateral-Mesh Origami," Journal of the International Association for Shell and Spatial Structures (IASS), 50(3), pp. 173–179, December 2009.
- •Tachi T.: "Simulation of Rigid Origami," in Origami4, pp. 175-187, 2009.

Rigid Origami?

- Rigid Origami is
 - Plates and Hinges model for origami
- Characteristics
 - Panels do not deform
 - Do not use Elasticity
 - synchronized motion
 - Especially nice if One-DOF
 - watertight cover for a space
- Applicable for
 - self deployable micro mechanism
 - large scale objects under gravity using thick panels

Study Objectives

- 1. Generalize rigid foldable structures to freeform
 - I. Generic triangular-mesh based design
 - multi-DOF
 - statically determinate
 - 2. Singular quadrilateral-mesh based design
 - one-DOF
 - redundant contraints
- 2. Generalize rigid foldable structures to cylinders and more

Examples of Rigid Origami

Basics of Rigid Origami Angular Representation

- Constraints
 - [Kawasaki 87] [belcastro and Hull 02]

$$\chi_1 \cdots \chi_{n-1} \chi_n = \mathbf{I}$$

- 3 equations per interior vertex
- V_{in} interior vert + E_{in} foldline model:
 - constraints:

$$\begin{bmatrix} \mathbf{C} \end{bmatrix} \quad \dot{\mathbf{p}} = \mathbf{0}$$

$$3V_{in} \times E_{in} \text{ matrix}$$

Generic case: $DOF = E_{in} - 3V_{in}$

$$\dot{\boldsymbol{\rho}} = \left[\mathbf{I}_N - \mathbf{C}^+ \mathbf{C} \right] \dot{\boldsymbol{\rho}}_0$$

where C⁺ is the pseudo - inverse of C

DOF in Generic Triangular Mesh

Euler's: $(V_{in}+E_{out})-(E_{out}+E_{in})+F=I$

Triangle: $3F=2E_{out} + E_{in}$

Mechanism: $DOF = E_{in} - 3V_{in}$

Disk with E_{out} outer edges

$$DOF = E_{out} - 3$$

with H generic holes

$$DOF = E_{out} - 3 - 3H$$

$$(V_{in}+E_{out})-(E_{out}+E_{in})+F=I-H$$

DOF = E_{in} -3 V_{in} -6H

Hexagonal Tripod Shell

Hexagonal boundary:

$$E_{out} = 6$$

$$\therefore$$
 DOF = 6 - 3 = 3

+ rigid DOF = 6

3 pin joints (x,y,z):

 $\therefore 3 \times 3 = 9$ constraints

Generalize Rigid-Foldable Planar Quad-Mesh

One-DOF

- Every vertex transforms in the same way
- Controllable with single actuator
- Redundant
 - Rigid Origami in General
 - DOF = N 3M
 - N: num of foldlines
 - M: num of inner verts
 - nxn array N=2n(n-1), M=(n-1)2
 - -> DOF=-(n-2)2+1
 - -> n>2, then overconstrained if not singular
 - Rank of Constraint Matrix is N-I
 - Singular Constraints
 - Robust structure
 - Improved Designability

Idea: Generalize Regular pattern

- Original
 - Miura-ori
 - Eggbox pattern
- Generalization

To:

Non Symmetric forms

(Do not break rigid foldability)

Flat-Foldable Quadrivalent Origami MiuraOri Vertex

one-DOF structure

· Variation of Miura-ori

Flat-Foldable Quadrivalent Origami MiuraOri Vertex

• Intrinsic Measure:

$$\theta_0 = \pi - \theta_2$$

$$\theta_1 = \pi - \theta_3$$

- Opposite fold angles are equal
- Two pairs of folding motions ρ_1 are linearly related. ρ_0

$$\tan\frac{\rho_0}{2} = \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)}} \tan\frac{\rho_1}{2}$$

Flat-Foldable Quadrivalent Origami MiuraOri Vertex

$$\begin{bmatrix} \tan \frac{\rho_{1}(t)}{2} \\ \tan \frac{\rho_{2}(t)}{2} \\ \vdots \\ \tan \frac{\rho_{N}(t)}{2} \end{bmatrix} = \lambda(t) \begin{bmatrix} \tan \frac{\rho_{1}(t_{0})}{2} \\ \tan \frac{\rho_{2}(t_{0})}{2} \\ \tan \frac{\rho_{N}(t_{0})}{2} \end{bmatrix} \qquad \rho_{1} = -\rho_{3}$$

$$\rho_{0} = \rho_{2}$$

$$\vdots$$

$$\tan \frac{\rho_{N}(t_{0})}{2} = \sqrt{\frac{1 + \cos(\theta_{0} - \theta_{1})}{1 + \cos(\theta_{0} + \theta_{1})}} \tan \frac{\rho_{1}}{2}$$

Get One State and Get Continuous

Transformation

Finite Foldability: Existence of Folding Motion ⇔

- Developability
- Flat-foldability
- Planarity of Panels

$$\tan \frac{\rho_1(t)}{2} \tan \frac{\rho_2(t)}{2} = \lambda(t) \begin{bmatrix} \tan \frac{\rho_1(t_0)}{2} \\ \tan \frac{\rho_2(t_0)}{2} \\ \vdots \\ \tan \frac{\rho_N(t)}{2} \end{bmatrix}$$

$$\tan \frac{\rho_1(t_0)}{2} \tan \frac{\rho_2(t_0)}{2} = \lambda(t) \begin{bmatrix} \tan \frac{\rho_1(t_0)}{2} \\ \tan \frac{\rho_2(t_0)}{2} \\ \vdots \\ \tan \frac{\rho_N(t_0)}{2} \end{bmatrix}$$

Built Design

- Material
 - 10mm Structural Cardboa (double wall)
 - Cloth
- Size
 - $-2.5m \times 2.5m$

exhibited at NTT ICC

Rigid Foldable Curved Folding

- Curved folding is rationalized by Planar Quad Mesh
- Rigid Foldable Curved Folding

=

Curved folding without ruling sliding

Discrete Voss Surface Eggbox-Vertex

- one-DOF structure
 - Bidirectionally Flat-Foldable

- Eggoox-Fattern
- Variation of Eggbox
 Pattern

Discrete Voss Surface

Eggbox-Vertex

Intrinsic Measure:

$$\theta_0 = \theta_2$$
$$\theta_1 = \theta_3$$

- Folding Motion
 - Opposite fold angles are equal
 - Two pairs of folding motions are linearly related.
 [SCHIEF et.al. 2007]

Complementary Folding Angle

$$\rho_{1} = \rho_{3} = \pi - \rho'_{1} = \pi - \rho'_{3}$$

$$\rho_{0} = \rho_{2}$$

$$\tan \frac{\rho_{0}}{2} = \sqrt{\frac{1 + \cos(\theta_{0} - \theta_{1})}{1 + \cos(\theta_{0} + \theta_{1})}} \cot \frac{\rho_{1}}{2}$$

$$= \sqrt{\frac{1 + \cos(\theta_{0} - \theta_{1})}{1 + \cos(\theta_{0} + \theta_{1})}} \tan \frac{\rho'_{1}}{2}$$

Eggbox: Discrete Voss Surface

 Use Complementary Folding Angle for "Complementary Foldline"

$$\begin{bmatrix} \tan \frac{\rho_0(t)}{2} \\ \tan \frac{\rho_1(t)}{2} \\ \vdots \\ \tan \frac{\rho_N(t)}{2} \end{bmatrix} = \lambda(t) \begin{bmatrix} \tan \frac{\rho_0(t_0)}{2} \\ \tan \frac{\rho_1(t_0)}{2} \\ \vdots \\ \tan \frac{\rho_N(t_0)}{2} \end{bmatrix}$$

Complementary Folding Angle

$$\rho_{1} = \rho_{3} = \pi - \rho'_{1} = \pi - \rho'_{3}$$

$$\rho_{0} = \rho_{2}$$

$$\tan \frac{\rho_{0}}{2} = \sqrt{\frac{1 + \cos(\theta_{0} - \theta_{1})}{1 + \cos(\theta_{0} + \theta_{1})}} \cot \frac{\rho_{1}}{2}$$

$$= \sqrt{\frac{1 + \cos(\theta_{0} - \theta_{1})}{1 + \cos(\theta_{0} + \theta_{1})}} \tan \frac{\rho'_{1}}{2}$$

Hybrid Surface: BiDirectionally Flat-Foldable PQ Mesh

use 4 types of foldlines

Flat-folded 74

Developability and Flat-Foldability

Developed State:

Every edge has fold angle complementary fold angle be 0°

Every edge has fold angle complementary fold angle to be ±180°

 $\begin{cases} \sum_{i=0}^{3} \sigma^{dev}(i)\theta_{i} = 0 & \cdots 4CF & or \quad 2F + 2CF \\ 2\pi - \sum_{i=0}^{3} \theta_{i} = 0 & \cdots & 4F \end{cases}$ $\begin{cases} \sum_{i=0}^{3} \sigma^{ff}(i)\theta_{i} = 0 & \cdots 4F & or \quad 2F + 2CF \\ 2\pi - \sum_{i=0}^{3} \theta_{i} = 0 & \cdots & 4CF \end{cases}$

75

Hybrid Surface: BiDirectionally Flat-Foldable PQ Mesh

Topologically Extend Rigid Origami

 Generalize to the cylindrical, or higher genus rigidfoldable polyhedron.

But it is not trivial!

Rigid-Foldable Tube Basics

Miura-Ori Reflection

(Partial Structure of Thoki Yenn's "Flip Flop")

Symmetric Structure Variations

Parametric design of cylinders and composite structures

Cylinder -> Cellular Structure [Miura & Tachi 2010]

Isotropic Rigid Foldable Tube Generalization

 Rigid Foldable Tube based on symmetry

- Based on
 - "Fold"
 - "Elbow"

= special case of BDFFPQ Mesh

Generalized Rigid Folding Constraints

 For any closed loop in Mesh

$$T_{0,1}\cdots T_{k-2,k-1}T_{k-1,0}=\mathbf{I}$$

where $T_{i,j}$ is a 4x4 transformation matrix to translate facets coordination ito j

 When it is around a vertex: T is a rotation matrix.

Generalized Rigid Folding Constraints

- If the loop surrounds no hole:
 - constraints around each vertex
- If there is a hole,
 - constraints around each vertex

Loop Condition

: Sufficient Condition

loop condition for finite rigid foldability

→ Sufficient Condition
 : start from symmetric
 cylinder and fix I loop

Manufactured From Two Sheets of Paper

Thickening

- Rigid origami is ideal surface (no thickness)
- Reality:
 - There is thickness
 - To make "rigid"
 panels, thickness must
 be solved
 geometrically
- Modified Model:
 - Thick plates
 - Rotating hinges at the edges

Hinge Shift Approach

Main Problem

non-concurrent edges →6
 constraints (overconstrained)

Symmetric Vertex:

- [Hoberman 88]
- use two levels of thickness
- works only if the vertex is symmetric (a = b, c=d= π -a)

Slidable Hinges

- [Trautz and Kunstler 09]
- Add extra freedom by allowing "slide"
- Problem: global accumulation of slide (not locally designable)

Our Approach

Non-concurrent edges

Trimming Volume

offsetting edges by

Variations $t \cot(\delta/2)$ Use constant thickness panels - if both layers overlap sufficiently use angle limitation

Example

- Constant Thickness Model
 - the shape is locally defined
 - cf: Slidable Hinge \rightarrow

Example: Construct a foldable structure that temporarily connects existing buildings

- Space: Flexible
 - Connects when opened
 - Openings: different position and orientation
 - Connected gallery space
 - Compactly folded
 - · to fit the facade
- Structure: Rigid
 - Rigid panels and hinges

Panel Layout

MIT OpenCourseWare http://ocw.mit.edu

6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.