Architectural Origami

Architecturral Form Désign Systems based on Computational Origami

Tomohiro Tachi
Graduate School of Arts and Sciences, The University of Tokyo
JST PRESTO

Introduction

Background 1: Origami

Background 2: Applied Origami

- Static:
- Manufacturing
- Forming a sheet
- No Cut / No Stretch
- No assembly
- Structural Stiffness
- Dynamic:
- Deployable structure
- Mechanism

Table
(T. Tachi and D. Koschitz)

Photograph of origami dome removed due to copyright restrictions.

Photograph of solar panels removed due to copyright restrictions.

- Packaging
- Elastic Plastic Property
- Textured Material
- Energy Absorption
- Continuous surface

Potentially useful for

- Adaptive Environment
- Context Customized Design
- Personal Design
- Fabrication Oriented Design

Architectural Origami

- Origami Architecture

Direct application of Origami for Design

- Design is highly restricted by the symmetry of the original pattern
- Freeform design results in losing important property (origami-inspired design)
- Architectural Origami

Origami theory for Design

- Extract characteristics of origami
- Obtain solution space of forms from the required condition and design context

Outline

I. Origamizer

- tucking molecules
- layout algorithm

2. Freeform Origami

- constraints of origami
- perturbation based calculation
- mesh modification

3. Rigid Origami

- simulation
- design by triangular mesh
- design by quad mesh
- non-disk?

Origamizer

Related Papers:
-Demaine, E. and Tachi, T. "Origamizer: A Practical Algorithm for Folding Any Polyhedron," work in progress.
-Tachi, T.,"Origamizing polyhedral surfaces," IEEE Transactions on
Visualization and Computer Graphics, vol. 16, no. 2, 2010.
-Tachi, T., "Origamizing 3d surface by symmetry constraints," August 2007. ACM SIGGRAPH 2007 Posters.
-Tachi, T., "3D Origami Design based on Tucking Molecule," in Origami4: A K Peters Ltd., pp. 259-272, 2009.

Existing Origami Design Method by Circle Packing

1D vs. 3D

- Circle River Method / Tree Method
- Works fine for tree-like objects
- Does not fit to 3D objects

- Origamizer / Freeform Origami
- 3D Polyhedron, surface approximation
- What You See Is What You Fold

3D Origami

Lapt op PC 2003
by Tomohi ro Tachi
not compl et ed

3D Origami

Human 2004

3D Origami

Problem: realize arbitrary polyhedral surface with a developable surface

- Geometric Constraints
- Developable Surf
- Piecewise Linear
- Forget about Continuous Folding Motion
- Potential Application
- Fabrication by folding and bending

Approach: Make "Tuck"

- Tuck develops into
- a plane
- Tuck folds into
- a flat state hidden behind polyhedral surface
\rightarrow Important Advantage:
We can make Negative Curvature Vertex

Basic Idea

Origamize Problem \downarrow
Lay-outing Surface Polygons Properly \downarrow
Tessellating Surface Polygons and "Tucking Molecules"

Parameter everything by Tucking Molecule:

- Angle $\theta(i, j)$
- Distance $W(i, j)$

$$
\begin{aligned}
& \theta(j, i)=-\theta(i, j) \\
& W(j, i)=W(i, j)+2 \lambda(i, j) \sin (0.5 \theta(i, j))
\end{aligned}
$$

Geometric Constraints (Equations)

$\sum_{n=0}^{N-1} \theta\left(i, j_{n}\right)=2 \pi-\sum_{n=0}^{N-1} \alpha\left(i, j_{n}\right)$
$\sum_{n=0}^{N-1} w\left(i, j_{n}\right)\left[\begin{array}{c}\cos \left(\sum_{m=1}^{n} \Theta_{m}\right) \\ \sin \left(\sum_{m=1}^{n} \Theta_{m}\right)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
where $\quad \Theta_{m}=\frac{1}{2} \theta\left(i, j_{m-1}\right)+\alpha\left(i, j_{m}\right)+\frac{1}{2} \theta\left(i, j_{m}\right)$

Two-Step Li near Mapping

1. Mapping based on (1) (I i near)

$$
C_{w} \mathbf{w}=b
$$

2. Mapping based on (2) (I i near)

$$
\begin{aligned}
\mathbf{w}=\mathbf{C}_{w}^{+} \mathbf{b}+\left(\mathbf{I}_{N_{\text {edge }}}-\mathbf{C}_{w}^{+} \mathbf{C}_{w}\right) \mathbf{w}_{0} & \text { where } \mathbf{C}_{w}^{+} \text {is the generalized inverse of } \mathbf{C}_{w} \\
& \text { If the matrix is full-rank, } \mathbf{C}_{w}^{+}=\mathbf{C}_{w}^{\mathrm{T}}\left(\mathbf{C}_{w} \mathbf{C}_{w}^{\mathrm{T}}\right)^{-1}
\end{aligned}
$$

gi ves ($N_{\text {edge }}-2 N_{\text {vert }}$) di mensi onal sol uti on space
(within the space, we sol ve the inequal ities)

Geometric Co （Inequalities）

－2D Cond．
－Convex Paper

$$
\begin{aligned}
& \theta(i, o) \geq \pi \\
& w(i, o) \geq 0
\end{aligned}
$$

Convexity of paper

Non intersection （convexity of molecule）
－Non－intersection $\quad-\pi<\theta(i, j)<\pi$

$$
\begin{aligned}
& \min (w(i, j), w(j, i)) \geq 0 \\
& 0 \leq \Theta_{m}<\pi
\end{aligned}
$$

－Crease pattern non－intersection

$$
\phi(i, j) \leq \arctan \frac{2 \ell(i, j) \cos \frac{1}{2} \theta(i, j)}{w(i, j)+w(j, i)}+0.5 \pi
$$

展開図の妥当条件：頂点襞分子 $\dot{\text { 米稜線譬分子 } i j \text { が共有す }}$ $d^{\prime}(i)$
for tuck proxy angle τ^{\prime}（anjid depth
－Tuck angle condition

$$
\phi(i, j)-\frac{1}{2} \theta(i, j) \leq \pi-\tau^{\prime}(i, j)
$$

－Tuck depth condition

$$
w(i, j) \leq 2 \sin \left(\tau^{\prime}(i, j)-\frac{1}{2} \alpha(i, j)\right) d^{\prime}(i)
$$

Design System: Origamizer

- Auto Generation of Crease Pattern
- Interactive Editing (Search within the solution space)
- Dragging Developed Facets
- Edge

- Boundary Editing

Devel oped in the project
"3D Origami Desi gn Tool"
of I PA ESPer Proj ect

(b)Gaussian

(c)Mouse

(d)Mask

(e)Tetrapod

(f)Stanford Bunny

How to Fold Origami Bunny

0. Get a crease pattern using Origamizer

1. Fol d Al ong the Crease Pattern

2. Done!

Proof?

Ongoing joint work with Erik Demaine

(a)

(b)

(c1)

(c2)

(c3)

Freeform Origami

Related Papers:
-Tomohiro Tachi, "Fr eeform Vari ations of Ori gami", in Proceedings of The 14th International Conference on Geometry and Graphi cs (I CGG 2010), Kyot o, J apan, pp. 273-274, August 5-9, 2010.
(to appear in Journal for Geometry and Graphi cs Vol. 14, No. 2)
-Tomohi ro Tachi: "Smooth Ori gami Ani mati on by Crease Li ne Adj ust ment , " ACM SI GGRAPH 2006 Posters, 2006.

Objective of the Study

I. freeform

- Controlled 3D form

- Fit function, design context, preference, ...

2. origami

utilize the properties

- Developability
\rightarrow Manufacturing from a sheet material based on Folding, Bending
- Flat-foldability
\rightarrow Folding into a compact configuration or Deployment from 2D to 3D
- Rigid-foldability

\rightarrow Transformable Structure
- Elastic Properties

Proposing Approach

- Initial State: existing origami models (e.g. Miuraori, Ron Resch Pattern, ...) + Perturbation consistent with the origami conditions.
- Straightforward user interface.

Model

- Triangular Mesh (triangulate quads)
- Vertex coordinates represent the configuration
- $3 N_{v}$ variables, where N_{v} is the \# of vertices
- The configuration is
 constrained by developability, flat-foldability, ...

Developability

Engineering Interpretation

\rightarrow Manufacturing from a sheet material based on Folding, Bending

- Global condition
- There exists an isometric map to a plane.
\Leftrightarrow (if topological disk)
- Local condition
- Every point satisfies
- Gauss curvature $=0$

Developable Surface

- Smooth Developable Surface
- G^{2} surface (curvature continuous)
- "Developable Surface" (in a narrow sense)
- Plane, Cylinder, Cone, Tangent surface
- G'Surface (smooth, tangent continuous)
- "Uncreased flat surface"
- piecewise Plane, Cylinder, Cone, Tangent surface
- Origami
- G^{0} Surface

pl ane

cyl inder

cone

tangent
- piecewise G' Developable G ${ }^{0}$ Surface

Developability condition to be used

－Constraints
－For every interior vertex v （ k_{v}－degree），gauss area equals 0 ．
$G C<0$
$G C=0$
$G C>0$
$\mathbf{G}_{v}=2 \pi-\sum_{i=0}^{k v} \theta_{i}=0$

$\sum 0=2 \pi$
ガウス面積 $=0$

ガウス面樻

Flat-foldability

Engineering Interpretation

\rightarrow Folding into a compact configuration or Deployment from 2D to 3D

- Isometry condition
- isometric mapping with mirror reflection
- Layering condition
- valid overlapping ordering
- globally : NP Complete [Bern and Hayes 1996]

Flat-foldability condition to be used

- Isometry
\Leftrightarrow Alternating sum of angles is 0 [Kawasaki 1989]

$$
\mathbf{F}_{v}=\sum_{i=0}^{k v} \operatorname{sgn}(i) \theta_{i}=0
$$

- Layering

\Rightarrow [kawasaki 1989]
- If θ_{i} is between foldlines assigned with MM or VV, $\theta_{i} \geqq \min \left(\theta_{i-1}, \theta_{i+1}\right)$
+ empirical condition [tachi 2007]
- If θ_{i} and θ_{i+1} are composed byfoldlines assigned with MMV or VVM then, $\theta_{i} \geqq$ θ_{i+1}

Other Conditions

- Conditions for fold angles
- Fold angles ρ
- V fold: $0<\rho<\pi$
- M fold: $-\pi<\rho<0$
- crease: $-\alpha \pi<\rho<\alpha \pi$ ($\alpha=0$:planar polygon)
- Optional Conditions
- Fixed Boundary
- Folded from a specific shape of paper
- Rigid bars
- Pinning

Settings

- Initial Figure:
- Symmetric Pattern
- Freeform Deformation
- Variables $\left(3 \mathrm{~N}_{\mathrm{v}}\right)$
- Coordinates \mathbf{X}
- Constraints $\left(2 \mathrm{~N}_{\mathrm{v}_{-} \text {in }}+\mathrm{N}_{\mathrm{c}}\right)$
- Developability
- Flat-foldability

- Other Constraints

Under - det er mi ned System

Solve Non-linear Equation

The infinitesimal motion satisfies:
$\mathbf{C} \dot{\mathbf{X}}=\left[\begin{array}{c}\frac{\partial \mathbf{G}}{\partial \mathbf{X}} \\ \frac{\partial \mathbf{F}}{\partial \mathbf{X}} \\ \frac{\partial \mathbf{H}}{\partial \mathbf{X}}\end{array}\right] \dot{\mathbf{X}}=\left[\begin{array}{cc}\frac{\partial \mathbf{G}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{G}}{\partial \boldsymbol{p}} \\ \frac{\partial \mathbf{F}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{F}}{\partial \boldsymbol{p}} \\ \frac{\partial \mathbf{H}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{H}}{\partial \boldsymbol{\rho}}\end{array}\right]\left[\begin{array}{l}\frac{\partial \boldsymbol{\theta}}{\partial \mathbf{X}} \\ \frac{\partial \mathbf{p}}{\partial \mathbf{X}}\end{array}\right] \dot{\mathbf{X}}=\mathbf{0}$
For an arbitrarily given (through GUI) Infinitesimal Deformation $\Delta \mathrm{X}_{0}$

$$
\begin{array}{ll}
\mathbf{G}_{v}=2 \pi-\sum_{i=0}^{k v} \theta_{i}=0 & \frac{\partial \theta_{i j k}}{\partial \mathbf{x}_{i}}=-\frac{1}{\ell_{i j}} \mathbf{b}_{i j}^{\mathrm{T}} \\
\mathbf{F}_{v}=\sum_{i=0}^{k v} \operatorname{sgn}(i) \theta_{i}=0 & \frac{\partial \theta_{i j k}}{\partial \mathbf{x}_{j}}=\frac{1}{\ell_{i j}} \mathbf{b}_{i j}^{\mathrm{T}}+\frac{1}{\ell_{j k}} \mathbf{b}_{j k}^{\mathrm{T}} \\
& \frac{\partial \theta_{i j k}}{\partial \mathbf{x}_{k}}=-\frac{1}{\ell_{j k}} \mathbf{b}_{j k}^{\mathrm{T}}
\end{array}
$$

$$
\Delta \mathbf{X}=-\mathbf{C}^{+} \mathbf{r}+\left(\mathbf{I}_{3 N_{V}}-\mathbf{C}^{+} \mathbf{C}\right) \Delta \mathbf{X}_{0}
$$

Freeform Origami

Get A Valid Value

- Iterative method to calculate the conditions
- Form finding through User Interface
Implementation
- Lang
- C++, STL
- Library
- BLAS (intel MKL)
- Interface
- wxWidgets, OpenGL

To be available on web
3D

Fl at-fol ded

Mesh Modification Edge Collapse

- Edge Collapse [Hoppe etal 1993]
- Maekawa's Theorem [1983] for flat foldable pattern

$$
M-V= \pm 2
$$

Mesh Modification

Miura-Ori

- Original
- [Miura 1970]

- Application
- bidirectionally expansible (oneDOF)
- compact packaging
- sandwich panel
- Conditions
- Developable
- Flat-foldable
- op: (Planar quads) $(\rightarrow$ Rigid Foldable)

Miura-ori Generalized

- Freeform Miura-ori

Miura-ori Generalized

Ori gami Met anor phose Tonohi ro Tachi 2010

Ron Resch Pattern

- Original
- Resch [1970]
- Characteristics
- Flexible (multiDOF)
- Forms a smooth flat surface + scaffold
- Conditions
- Developable
- 3-vertex coincide

Ron Resch Pattern

Generalized

OORizami Space Desiener

er:0.000591456

Generalized

Ron Resch Pattern

Crumpled Paper

- Origami

= crumpled paper
 = buckled sheet

- Conditions
- Developable
- Fixed Perimeter

crumpled paper example

Waterbomb Pattern

- "Namako" (by Shuzo

Fujimoto)

- Characteristics
- Flat-foldable
- Flexible(multi DOF)
- Complicated motion
- Application
- packaging
- textured material
- cloth folding...

Waterbomb Pattern Generalized

Rigid Origami

-Tachi T.: "Rigid-Foldable Thick Origami", in Origami5, to appear.
-Tachi T.: "Freeform Rigid-Foldable Structure using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh", Advances in Architectural Geometry 2010, pp. 87--102, 2010.
-Miura K. and Tachi T.: "Synthesis of Rigid-Foldable Cylindrical Polyhedra," Journal of ISISSymmetry, Special Issues for the Festival-Congress Gmuend, Austria, August 23-28, pp. 204-2 13, 2010.

- Tachi T.: "One-DOF Cylindrical Deployable Structures with Rigid Quadrilateral Panels," in Proceedings of the IASS Symposium 2009, pp. 2295-2306, Valencia, Spain, September 28- October 2, 2009.
-Tachi T.: "Generalization of Rigid-Foldable Quadrilateral-Mesh Origami," Journal of the International Association for Shell and Spatial Structures (IASS), 50(3), pp. I73-I79, December 2009.
-Tachi T.: "Simulation of Rigid Origami ," in Origami4, pp. 175-187, 2009.

Rigid Origami?

- Rigid Origami is
- Plates and Hinges model for origami
- Characteristics
- Panels do not deform
- Do not use Elasticity
- synchronized motion
- Especially nice if One-DOF
- watertight cover for a space
- Applicable for
- self deployable micro mechanism
- large scale objects under gravity using thick panels

Study Objectives

I. Generalize rigid foldable structures to freeform
I. Generic triangular-mesh based design

- multi-DOF
- statically determinate

2. Singular quadrilateral-mesh based design

- one-DOF
- redundant contraints

2. Generalize rigid foldable structures to cylinders and more

Examples of
Rigid Origami

Basics of Rigid Origami

Angular Representation

- Constraints
- [Kawasaki 87] [belcastro and Hull 02]

$$
\chi_{1} \cdots \chi_{n-1} \chi_{n}=\mathbf{I}
$$

- 3 equations per interior vertex
- $\mathrm{V}_{\text {in }}$ interior vert +
$\mathrm{E}_{\text {in }}$ foldline model:
- constraints:

$$
\left[\begin{array}{c}
{[\mathrm{C}}
\end{array} \quad \dot{\boldsymbol{\rho}}=\mathbf{0}\right.
$$

$3 V_{\text {in }} \times E_{\text {in }}$ matrix

Generic case:

$$
\text { DOF }=E_{i n}-3 V_{i n}
$$

$\dot{\boldsymbol{\rho}}=\left[\mathbf{I}_{N}-\mathbf{C}^{+} \mathbf{C}\right] \dot{\boldsymbol{\rho}}_{0}$
$\binom{$ where \mathbf{C}^{+}is the }{pseudo-inverse of $\mathbf{C}}$

DOF in Generic Triangular Mesh

Euler's: $\left(\mathrm{V}_{\text {in }}+\mathrm{E}_{\text {out }}\right)-\left(\mathrm{E}_{\text {out }}+\mathrm{E}_{\text {in }}\right)+\mathrm{F}=\mathrm{I}$
Triangle : $\quad 3 \mathrm{~F}=2 \mathrm{E}_{\text {out }}+\mathrm{E}_{\text {in }}$
Mechanism: $\quad D O F=E_{i n}-3 V_{\text {in }}$

Disk with $\mathrm{E}_{\text {out }}$ outer edges

$$
D O F=E_{\text {out }}-3
$$

with H generic holes
DOF $=\mathrm{E}_{\text {out }}-3-3 \mathrm{H}$

$$
\begin{aligned}
& \left(V_{\text {in }}+E_{\text {out }}\right)-\left(E_{\text {out }}+E_{\text {in }}\right)+F=I-H \\
& D O F=E_{\text {in }}-3 V_{\text {in }}-6 H
\end{aligned}
$$

Hexagonal Tripod Shell

Hexagonal boundary:

$E_{\text {out }}=6$
\therefore DOF $=6-3=3$

+ rigid DOF $=6$

3 pin joints (x, y, z):
$\therefore 3 \times 3=9$ constraints

Generalize Rigid-Foldable Planar Quad-Mesh

- One-DOF
- Every vertex transforms in the same way
- Controllable with single actuator
- Redundant
- Rigid Origami in General
- DOF $=\mathrm{N}-3 \mathrm{M}$
- N : num of foldlines
- M: num of inner verts
- nxn array $N=2 n(n-I), M=(n-I) 2$
$->$ DOF=-(n-2)2+1
$->n>2$, then overconstrained if not singular
- Rank of Constraint Matrix is N -I
- Singular Constraints
- Robust structure
- Improved Designability

Idea: Generalize Regular pattern

- Original
- Miura-ori
- Eggbox pattern
- Generalization

To:

Non Symmetric forms
(Do not break rigid
 foldability)

Flat-Foldable Quadrivalent Origami MiuraOri Vertex

- one-DOF structure
$-x, y$ in the same directina
- Miura-ori

- Variation of Miura-ori

Flat-Foldable Quadrivalent Origami MiuraOri Vertex

- Intrinsic Measure:

$$
\begin{aligned}
& \theta_{0}=\pi-\theta_{2} \\
& \theta_{1}=\pi-\theta_{3}
\end{aligned}
$$

- Folding Motion

- Opposite fold angles are equal
- Two pairs of folding motions $\rho_{1}=-\rho_{3}$ are linearly related.

$$
\begin{aligned}
& \rho_{0}=\rho_{2} \\
& \tan \frac{\rho_{0}}{2}=\sqrt{\frac{1+\cos \left(\theta_{0}-\theta_{1}\right)}{1+\cos \left(\theta_{0}+\theta_{1}\right)}} \tan \frac{\rho_{1}}{2}
\end{aligned}
$$

Flat-Foldable Quadrivalent Origami MiuraOri Vertex

$$
\left[\begin{array}{c}
\tan \frac{\rho_{1}(t)}{2} \\
\tan \frac{\rho_{2}(t)}{2} \\
\vdots \\
\tan \frac{\rho_{N}(t)}{2}
\end{array}\right]=\lambda(t)\left[\begin{array}{cl}
\tan \frac{\rho_{1}\left(t_{0}\right)}{2} \\
\tan \frac{\rho_{2}\left(t_{0}\right)}{2} \\
\vdots \\
\tan \frac{\rho_{N}\left(t_{0}\right)}{2}
\end{array}\right] \begin{aligned}
& \rho_{1}=-\rho_{3} \\
& \rho_{0}=\rho_{2} \\
& \tan \frac{\rho_{0}}{2}=\sqrt{\frac{1+\cos \left(\theta_{0}-\theta_{1}\right)}{1+\cos \left(\theta_{0}+\theta_{1}\right)}} \tan \frac{\rho_{1}}{2}
\end{aligned}
$$

Get One State and Get Continuous

Transformation

Finite Foldability: Existence of
Folding Motion \Leftrightarrow

There is one static state with

- Developability
- Flat-foldability
- Planarity of Panels
$\left[\begin{array}{c}\tan \frac{\rho_{1}(t)}{2} \\ \tan \frac{\rho_{2}(t)}{2} \\ \vdots \\ \tan \frac{\rho_{N}(t)}{2}\end{array}\right]=\lambda(t)\left[\begin{array}{c}\tan \frac{\rho_{1}\left(t_{0}\right)}{2} \\ \tan \frac{\rho_{2}\left(t_{0}\right)}{2} \\ \vdots \\ \tan \frac{\rho_{N}\left(t_{0}\right)}{2}\end{array}\right]$

Built Design

- Material
- 10 mm Structural Cardboa (double wall)
- Cloth
- Size
$-2.5 m \times 2.5 m$
- exhibited at NTT ICC

Rigid Foldable Curved Folding

- Curved folding is rationalized by Planar Quad Mesh
- Rigid Foldable Curved Folding

=
Curved folding without ruling sliding

Discrete Voss Surface Eggbox－Vertex

－one－DOF structure
－Bidirectionally Flat－Foldable

ட̌̌ソUスーI aLLEII
－Variation of Eggbox Pattern

Discrete Nos Surface

Eggbox-Vertex

- Intrinsic Measure:

$$
\begin{aligned}
& \theta_{0}=\theta_{2} \\
& \theta_{1}=\theta_{3}
\end{aligned}
$$

- Folding Motion
- Opposite fold angles are equal
- Two pairs of folding motions are linearly related.
[SCHIEF et.al. 2007]

Compl ament ar Fol ding Angle

$$
\begin{aligned}
& \begin{array}{l}
\rho_{1}=\rho_{3} \\
\rho_{0}=\rho_{2} \\
\tan \frac{\rho_{0}}{2}
\end{array}=\sqrt{\frac{1+\cos \left(\theta_{0}-\theta_{1}\right)}{1+\cos \left(\theta_{0}+\theta_{1}\right)}} \cot \frac{\rho_{1}}{2} \\
& \\
& =\sqrt{\frac{1+\cos \left(\theta_{0}-\theta_{1}\right)}{1+\cos \left(\theta_{0}+\theta_{1}\right)}} \tan \frac{\rho_{1}^{\prime}}{2}
\end{aligned}
$$

Eggbox: Discrete Voss Surface

- Use Complementary Folding Angle for "Complementary Foldline"

Compl ementary Fol ding Angle

$$
\begin{aligned}
& \begin{array}{l}
\rho_{1}=\rho_{3} \\
\rho_{0}=\rho_{2} \\
\tan \frac{\rho_{0}}{2}
\end{array}=\sqrt{\frac{1+\cos \left(\theta_{0}-\theta_{1}\right)}{1+\cos \left(\theta_{0}+\theta_{1}\right)}} \cot \frac{\rho_{1}}{2} \\
& \\
& =\sqrt{\frac{1+\cos \left(\theta_{0}-\theta_{1}\right)}{1+\cos \left(\theta_{0}+\theta_{1}\right)}} \tan \frac{\rho_{1}^{\prime}}{2}
\end{aligned}
$$

Hybrid Surface:

- use 4 types of foldlines
- mountaln føाd
$\cdot 0^{\circ}>-180^{\circ}$
- valley fold
- complemertary
$0^{\circ}$$\rightarrow 80^{\circ}$

Devel oped
"devel oped" flat-fol ded
 state state

Fl at - fol ded ${ }_{74}$

Developability and Flat-Foldability

- Developed State:
- Every edge has fold angle complementary fold angle be 0°
- Flat-folded State:

$$
\left\{\begin{array}{llll}
\sum_{i=0}^{3} \sigma^{\operatorname{dev}}(i) \theta_{i}=0 & \cdots 4 C F & \text { or } & 2 F+2 C F \\
2 \pi-\sum_{i=0}^{3} \theta_{i}=0 & \cdots
\end{array}\right.
$$

- Every edge has fold angle complementary fold angle to be $\pm 180^{\circ}$

$$
\left\{\begin{array}{llll}
\sum_{i=0}^{3} \sigma^{f f}(i) \theta_{i}=0 & \cdots 4 F & \text { or } & 2 F+2 C F \\
2 \pi-\sum_{i=0}^{3} \theta_{i}=0 & \cdots & 4 C F
\end{array}\right.
$$

Hybrid Surface: BiDirectionally Flat-Foldable PQ Mesh

$3 b$

Cylindrical Structure

Topologically Extend Rigid Origami

- Generalize to the cylindrical, or higher genus rigidfoldable polyhedron.
- But it is not trivial!

Rigid-Foldable Tube

 BasicsMiura-Ori Reflection
(Partial Structure of
Thoki Yenn's "Flip Flop")

Symmetric Structure Variations

Parametric design of cylinders and composite structures

Cylinder -> Cellular Structure [Miura \& Tachi 2010]

Isotropic Rigid Foldable Tube Generalization

- Rigid Foldable Tube based on symmetry
- Based on
- "Fold"
- "Elbow"

$=$ special case of BDFFPQ Mesh

A

Generalized Rigid Folding Constraints

- For any closed loop in Mesh

$$
T_{0,1} \cdots T_{k-2, k-1} T_{k-1,0}=\mathbf{I}
$$

where $T_{\mathrm{i}, \mathrm{j}}$ is a 4×4
transformation matrix to translate facets coordina i to j

- When it is around a vertex: T is a rotation matrix.

Generalized Rigid Folding Constraints

- If the loop surrounds no hole:
- constraints around each vertex
- If there is a hole,
- constraints around each vertex
+ I Loop Condition

Loop Condition

: Sufficient Condition

loop condition for finite rigid foldability
\rightarrow Sufficient Condition
: start from symmetric cylinder and fix I loop

$$
4
$$

3

Manufactured From Two Sheets of Paper

Thickening

- Rigid origami is ideal surface (no thickness)
- Reality:
- There is thickness
- To make "rigid"
panels, thickness must be solved geometrically
- Modified Model:

- Thick plates
- Rotating hinges at the edges

Hinge Shift Approach

- Main Problem
- non-concurrent edges $\rightarrow 6$ constraints (overconstrained)
- Symmetric Vertex:
- [Hoberman 88]
- use two levels of thickness
- works only if the vertex is symmetric ($a=b, c=d=\pi-a$)
- Slidable Hinges
- [Trautz and Kunstler 09]
- Add extra freedom by allowing „slide"
- Problem: global accumulation of slide (not locally designable)

Our Approach

Hinge Shift

Non- concurrent edges

Volume Trim

Concurrent edges

Trimming Volume

$$
\pi-\delta
$$

- folds up to
- offsetting edges by
$t \cot \left(\frac{\delta}{2}\right)$
\rightarrow Different speed for each edge: Weighed Straight Skeleton

Variations

- Use constant thickness panels
- if both layers overlap sufficiently
- use angle limitation
- useful for defining the "deployed 3D state"

Example

- Constant Thickness Model
- the shape is locally defined
- cf: Slidable Hinge \rightarrow

 Perspective

（D）Autosave complete（ 28 seconds aso）
ScriptEditor

$\pi *$

private void RunScript（OnMesh mesh＿in，OnMesh mesh＿folded，OnMesh mesh＿unfold，double thic
int num＿face $=$ mesh in．m F．Count（）
int num＿vert $=$ mesh＿in．m＿v．Count（）；
OnBrep［］breplist $=$ new OnBrep［num face＊
List＜int＞［］vert2face $=$ new List＜int＞［num vert］；
On3dVector［］normface $=$ new On3dVector［num face］；
On3dVector［］normface＿folded $=$ new On3dVector［num＿face］；
On3dVector［］normface＿unfold $=$ new On3dVector［num＿face］；
for（int $v=0$ ；v \＆num＿vert；＋＋v）
for（int $\mathrm{f}=0$ ； f ＜num＿face；＋＋f） nheshrace face mesh＿in．m．F（1）， nt num－re＿face face．1equad） 4 ： 3 ， nsavectorll p＝new onsdvector（num＿vert＿face）； n3dvectorll p＿f＝new On3dvector［num＿vert＿face］； ondvectorll p＿u＝new On3dvector［num＿vert＿face］；
for（int $v=0 ; \mathrm{v}$＜num＿vert＿face；＋＋v）（
$\mathrm{vert2face}[\mathrm{face}$ ．get＿vi（v）］．Add（f）：

Example: Construct a foldable structure that temporarily connects existing buildinoce

- Space: Flexible
- Connects when opened
- Openings: different position and orientation
- Connected gallery space
- Compactly folded
- to fit the facade
- Structure: Rigid
- Rigid panels and hinges

Panel Layout

MIT OpenCourseWare
http://ocw.mit.edu

6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

