GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/

Lecture: "Biosafety and Laboratory Preparedness" by Rhonda O'Keefe. Given August 7, 2006 during GEM4 at MIT in Cambridge, MA.

Please use the following citation format:

O'Keefe, Rhonda. "Biosafety and Laboratory Preparedness." Lecture, GEM4 session at MIT, Cambridge, MA, August 7, 2006. <u>http://gem4.educommons.net/</u> (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

Biosafety and Laboratory Preparedness

GEM4 Summer School 2006

Rhonda O'Keefe, CSP Senior Officer, MIT EHS

Biosafety and Laboratory Preparedness

Risk assessment for biological research

Regulatory considerations for biosafety

Laboratory preparedness

Risk Assessment for Biological Research	Risk Assessment
 Factors in Risk Assessment: Agent-related factors Experiment-related factors 	
Host-related factors	

Agent-related factors

- Countries / organizations have developed agent risk classification systems
 - Summary at http://www.absa.org/resriskgroup.html
- Classification systems may take the following factors into consideration:
 - Pathogenicity of the organism / disease caused
 - Mode of transmission and host range
 - Availability of effective preventive measures
 - Availability of effective treatment
 - Other factors

NIH Risk Groups

Risk Group 1 (RG1)	Agents that are not associated with disease in healthy adult humans
Risk Group 2 (RG2)	Agents that are associated with human disease which is rarely serious and for which preventive or therapeutic interventions are <i>often</i> available
Risk Group 3 (RG3)	Agents that are associated with serious or lethal human disease for which preventive ortherapeutic interventions may be available (high individual risk but low community risk)
Risk Group 4 (RG4)	Agents that are likely to cause serious or lethal human disease for which preventive or therapeutic interventions are <i>not usually</i> available (high individual risk and high community risk)

Experiment-related factors

- Some factors that may affect the biosafety level chosen for a project:
 - Agent risk group
 - Sample characteristics
 - Planned procedures
 - Scale of culture growth
 - Animal use

Biosafety Levels

 (1) BIOSAFETY LEVEL 1 - for work involving well-characterized agents not known to cause disease in healthy adult humans, and of minimal potential hazard to laboratory personnel and the environment.
 (2) BIOSAFETY LEVEL 2 - for work involving agents of moderate potential hazard to personnel and the environment.
 (3) BIOSAFETY LEVEL 3 - for facilities in which work is done with indigenous or exotic agents which may cause serious or potentially lethal disease as a result of exposure by the inhalation route.
 (4) BIOSAFETY LEVEL 4 - required for work with dangerous and exotic agents which pose a high individual risk of aerosol-transmitted laboratory infections and life-threatening disease.

CDC/NIH Biosafety in Microbiological and Biomedical Laboratories (4th Edition 1999)

Host-related factors

- Occupational health / medical surveillance programs may need to consider:
 - Age
 - General health and nutritional status
 - Use of medications
 - Pregnancy
 - Immune status for specific agent
 - Other factors

"NIH Guidelines for Recombinant DNA Research"

- If institution receives NIH funding, it must follow these guidelines
- Require an Institutional Biosafety Committee to review rDNA research
- http://www4.od.nih.gov/oba/rac/guidelines_0 2/NIH_Guidelines_Apr_02.htm

"Biosafety in Microbiological and Biomedical Laboratories"

- Published by CDC/NIH
- Prescribes lab practices and techniques, equipment and facility design for biosafety level 1-4 and animal biosafety level 1-4
- Agent summary statements
- http://www.cdc.gov/OD/ohs/biosfty/bmbl4/b mbl4toc.htm

"US Regulatory Considerations "OSHA Bloodborne Pathogen Standard"

- US Occupational Safety and Health Administration
- Standard covers work with human blood or other potentially infectious materials
- Requires an Exposure Control Plan, training of employees, offer of hepatitis B vaccine
- 29 CFR 1910.1030 -- http://www.osha.gov /SLTC/bloodbornepathogens/standards.html
- State regulations supercede in some cases

Other Regulatory Considerations

- Other OSHA regulations (respiratory protection, injury and illness reporting, etc.)
- Import / export permits through CDC or USDA/APHIS
- Select agent regulations
- State and local regulations may govern waste disposal, require local research oversight

Awareness of Routes of Exposure

- Injection (sharps or non-intact skin)
- Ingestion
- Mucous membranes (eyes/nose/mouth)
- Inhalation (aerosols)

Laboratory Preparedness Attire in MIT labs Lab Attire Closed toed shoes Pants or long skirt Safety glasses Lab coats / gloves provided in labs as needed

Practices in MIT labs

 Wash hands after removing gloves and before exiting

Laboratory Preparedness

Lab Emergencies

- To report any emergency, dial 100 from any MIT phone
- In event of exposure to biological material, please wash well in sink, eyewash or shower
- Report injury or exposure to MIT personnel
- Seek medical attention

Laboratory Preparedness

Lab Evacuations

Follow instructions of MIT personnel

If evacuation alarm sounds, please exit building via stairs

Gather in a safe place for a headcount

Conclusion

Risk assessment for biological research

Regulatory considerations for biosafety

Laboratory preparedness

Have a safe experience!