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Outline
 

• Meaning of the Central Limit Theorem
 

• Diffusion vs Langevin equation descriptions
 

(average vs individual)
 

• Diffusion coefficient and                
fluctuation-dissipation theorem 
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Central Limit Theorem 
 
Y = X1 + X2 + … + XN
 

X1, X2, …, XN are random variables
 

E[Y] = E[X1] + E[X2] + … + E[XN] 

If X1, X2, …, XN are independent random 
 
variables:
 

var[Y] = var[X1] + var[X2] + … + var[XN]
 

Note: var[X] = σ2 
X ≡ E[ (X-E[X])2 ] 
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If X1, X2, …, XN are independent random 
 
variables sampled from the same
 

distribution:
 
E[Y] = NE[X] 
 

var[Y] = N var[X1] = Nσ2 
X
 

Average of the sum: y ≡ Y/N
 
E[y] = E[X], var[y] = var[Y]/N2 = σ2 

X / N
 

Law of large numbers: as N gets large, the 
 
average of the sum becomes more and 
 

more deterministic, with variance σ2 
X / N.
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X1, X2, …, XN may be sampled from
 
Probability 
density 

-1 2 X 

X 

Probability 
density 

Probability 
density 
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We know the probability distribution of Y
 
is shifting (NE[X]), as well as getting fat 
 

(Nσ2 
X). But how about its shape ?
 

The central limit theorem says that 
 
irrespective of the shape of X,
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Why Gaussian ?
 

large N  (Y N [X ])  2 
ρ( )  →

1 − EY 
π σ2 N X 

2 
exp 


 2Nσ X 
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Gaussian is special 
 
(Maxwellian velocity distribution, etc).  
 

While proof is involved,
 
here we note that Gaussian is an invariant
 

shape (attractor in shape space) in the 
 
mathematical operation of convolution. 
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Diffusion Equation in 1D
 
��J


∂ tρ x ( D x ) ∂2 
xρ
= − ∂  −  ∂  ρ = D


Random walker view of diffusion: imagine
 
(a) We release the walker at x=0 at t=0,
 

(b) Walker makes a move of ±a, with equal 
probability, every ∆t=1/ν from then on. 

Mathematically, we say ρ(x,t=0)=δ(x).
 
t

N = =ν t independent random steps 
∆t�������� 

Then, ( ) x1 x2 ... xt / ∆tx t  = ∆ + ∆  +  + ∆ 
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When N=ν t >>1, 
 
the central limit theorem applies:
 

E[x(t)] = 0, var[x(t)] = ν t var[∆ x] = ν ta2
 

So we can directly write down ρ( x t( )) as 
1  x2 

ρG ( x t, ) = exp   2 22πν a t   2ν a t  

It is the probability of finding the walker at x
 
at time t, knowing he was at 0 at time 0.
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By plugging in, we can directly verify
 
ρG x t,  satisfies
( )  

ρ D 2ρ ( δ (x).  ∂ = ∂ , ρ x,0)  =t x 
2 

with macroscopic D  identified as va .

2 

1  x2 
ρ x t, =

π 
exp  G ( )
2 (2  Dt)  2(2 Dt) 

 is called Green's function solution 
 
to diffusion equation.
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Brownian Motion
 

Courtesy of Microscopy-UK. Used with permission. 

Fat droplets suspended in milk (from Dave Walker). 
The droplets range in size from about 0.5 to 3 µm. 11 



viscous oil 

v Stokes' law: 
F=-6πrηv=-λv 

mv� = F = −λv, v t ( = 0)  = v0 
λ

− t 
m→ v t( )  = v e  0 

Einstein's Explanation of Brownian Motion 
2mv k T Also, equi-partition theorem: = B 

2 2 

In addition to dissipative force, there must be 
 
another, stimulative force.
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mv� = Fdissipative + Fstimulative/fluctuation =  −λv + Ffluc ( )t
 

Ffluc ( )t = 0 

Ffluc ( )t F  fluc (  )  t′ = b t  t  ′)( − 

If b t  t  ) = Bδ (  −  t t  ′) :   white noise ( − ′ 

Exact Green's function solution of v t( ): 
t −

λ (t t− ′)
v t( )  = 

1 
∫−∞ 

′ t e  ′ mdt F  fluc (  )  
m 
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( )  ( )  
v t v t  �


� � �t −
λ

− ′) −
λ

− ′)1 m � � m= dt F ′ fluc ( )t e ′ 
(t t t

dt fluc t e 
(t t  

2 ∫−∞ ∫−∞ 
′F ( )′ 

m 
� � �  

= 2 ∫
t 

dt′e 
(t t ) 

∫
t 

dt′e 
(t t  )1 −

λ
− ′ −

λ 
− ′ 

m � m t F  Ffluc ( )′ fluc ( )t�′ 
m −∞ −∞
 

1 t −
λ (t t t −

λ (t t  − ′

= dt′e 

− ′) � 
dt′e 

� � )
 
δ ( ′ − t2 ∫−∞ 

m ∫−∞ 
� m B t �′) 

m 
t (t t (t t

m m= 
1 

2 ∫−∞ 
dt

−
λ

− ′) 
H t  t e  ′) 

−
λ �− ′) 

B′e (� − 
m ( ) is Heaviside step function: H x  

1  if  x > 0−�t tB −
λ 

( )  = = e m H x  
0  if  x ≤ 0 

2mλ 14 



BIn particular:  ( ) ( ) v t v t  = 
2mλ 

However, from equilibrium statistical mechanics:
 
equi-partition theorem:
 

m v t v t  ( )  ( )  = k T  
B 

B 
→ = k T

2λ B
 

The ratio between square of stimulative force 
 
and dissipative force is fixed, ∝ T
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t t�−k T  − λ 

( )  (  )  v t v t  � =	 B e m 

m 

Previously, from the Gaussian solution to
 
ρ D 2ρ , ρ(x,0)  = δ x) :  
∂ = ∂ 	 (t	 x 

1 	  x2 x t = exp  ρG ( ), 
2 (2  π Dt)  2(2 Dt)  

we know if the particle is released at x = 0 at t = 0 :
 
( )  ( )  x t x t  = 2Dt 

t

∫0 	
′ ′  � 
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x t( )  = +0 dt v t  (  ),  x t( )  = v t( )  




d �( )  ( )  = 2  ( )  ( )  = 2  ( )  ( )x t x t  x t x t  x t v t  
dt 

d 
= (2Dt) = 2D


dt 

t
D = ( )  ( )x t v t  = ′ ′( )  v t  ( )dt v t  (∫ )0 

t 
′
( ) ( )  = dt v t v t 
∫0 

′
t 

′
( )  (0)  = dt v t v ∫0 
′

Velocity auto-correlation function:  g t( ) ≡ v t v  ( ) (0) 
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Actually, the onset of macroscopic diffusion 

(∂ = ∂ρ D 2ρ ) is only valid only when 
t x 

t � intrinsic timescale of g t  ( ) ∝ m
 

λ 
(Same as central limit theorem in random walk) 

So the correct formula is 
∞ 

′D = ∫0 
dt  ′ v t  ( )  (0)  v 

The above is one of the 
 
fluctuation-dissipation theorems.
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Thermal conductivity: κ = 
1 

2 ∫0 

∞ 
Jq ( )  t Jq (0)  dt  

Ωk TB 

1 ∞
Electrical conductivity: σ = 

Ωk T  ∫0 
J (  )  (0)t J  dt  

B 

Shear viscosity: η =
Ω ∞

τ xy ( )  t τ xy (0)  dt  
k T ∫0 

B 

Fluctuation-dissipation theorem (Green-Kubo 
formula) is one of the most elegant and 

significant results of statistical mechanics. It 
relates transport properties (system behavior if 

linearly perturbed from equilibrium) to the 
time-correlation of equilibrium fluctuations. 19 



Coming back to diffusion (mass transport): 
−�t tk T  − λ 

( )  ( )  �v t v t  = B e m 

m 
∞ k T′d ′So D = ∫0 

t  v t v  ( ) (0) = B .
λ 

1  is actually the mobility of the particle, when

λ 

driven by external (non-thermal) force. 

D 
= k T    is calle d the Einstein relation, 

1/λ B 

first derived in 1905. 
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