GEM4 Summer School OpenCourseWare
http://gem4.educommons.net/
http://www.gem4.org/
Lecture: "Microrheology of a Complex Fluid" by Dr. Peter So.
Given August 10, 2006 during the GEM4 session at MIT in Cambridge, MA.
Please use the following citation format:
So, Peter. "Microrheology of a Complex Fluid." Lecture, GEM4 session at MIT, Cambridge, MA, August 10, 2006. http://gem4.educommons.net/ (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

Microrheology of Complex Fluid

\square Rheology: Science of the deformation \& flow of matter
\square Microrheology

- Microscopic scale samples
- Micrometer lengths

Complex shear modulus $\mathrm{G}^{*}(\omega)$

$$
\sigma=G^{*} \varepsilon
$$

- $G^{*}(\omega)=G^{\prime}(\omega)+j G^{\prime \prime}(\omega)$
- Solid vs. fluid
- Resistance to deformation

High Frequency Microrheology Measurement

Active Method:
Magnetic microrheometer - Baush, BJ 1998 Huang, BJ 2002

Passive Method:
Single particle tracking - Mason, PRL 1995 Yamada, BJ 2000
Multiple particle tracking - Crocker, PRL 2000

Magnetic Microrheology

Figures by MIT OCW.
Magnetic Microrheology

Basic Physics of Magnetic Microrheometer

Ferromagnetic particle

$$
\mathbf{F}=\frac{1}{2} \mu_{0} \nabla(\mathbf{m} \cdot \mathbf{H})
$$

Particles cluster together! Doesn't work!

Paramagnetic particle - no permanent magnetic moment
χ is suceptibility

$$
\mathbf{F}=\mu_{0} \chi V \nabla(\mathbf{H} \cdot \mathbf{H})
$$

V is volume

Note: (1) force depends on volume of particle
(5 micron bead provide 125x more force)
(2) force depends on magnetic field GRADIENT

Magnetic manipulation in 3D

ST
*Lower Force nN level
*3D
*Uniform gradien

Amblad, RSI 1996 Huang, BJ 2002

Magnetic manipulation in 1D

*High force $>10 \mathrm{nN}$
*Field non-uniform Needs careful alignment of tip to within microns
*1D

Figure by MIT OCW. After Bausch et al., 1998.

The bandwidth of ALL magnetic microrheometer is limited by the inductance of the eletromagnet to about kiloHertz

Magnetic Rheometer Requires Calibration

Figure by MIT OCW. After Bausch, 1998.

Mag Rheometer Experimental Results

Figure by MIT OCW. After Bausch, 1998.
Transient responses allow fitting to micro-mechanical model

Image removed due to copyright restrictions.
See Fig. 5 in Bausch et al. "Local Measurements of Viscoelastic
Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry." Biophys J 75 (1998): 2038-2049.

Problem - Magnetic bead rolling
Solution - Injection, Endocytosis Modeling (Karcher BJ 2003)

Model Strain Field Distribution

Image removed due to copyright reasons.
See Fig. 9 in Bausch et al. "Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry." Biophys J 75 (1998): 2038-2049.

Single Particle Tracking

Consider the thermal driven motion of a sphere in a complex fluid

Langevin Equation

$$
m \dot{v}(t)=f(t)+\int_{0}^{t} \xi\left(t-t^{\prime}\right) v\left(t^{\prime}\right) d t^{\prime}
$$

Inertial
force

Random thermal force

Memory functionMaterial viscosity
Particle shape

Langevin Equation in Frequency Domain

Laplace transform of Langevin Equation

$$
\widetilde{v}(s)=\frac{\widetilde{f}(s)+m v(0)}{\widetilde{\xi}(s)+m s}
$$

Random force

$$
<\widetilde{f}(s) v(0)>=0
$$

Equipartition of energy

$$
m<v(0) v(0)\rangle=k T
$$

Multiple by $\mathrm{v}(0)$, taking a time average, lgnoring inertial term

$$
\widetilde{G}(s)=\frac{k T}{\pi a s<\Delta \widetilde{r}^{2}(s)>}
$$

Definition and Laplace transform of mean square displacement

$$
<v(0) \widetilde{v}(s)>=s^{2}<\Delta \widetilde{r}^{2}(s)>/ 6
$$

(2) Fluorescence Laser Tracking Microrheometer

IUIT

- Approach: Monitoring the Brownian dynamics of particles embedded in a viscoelastic material to probe its frequencydependent rheology

Image removed due to copyright restrictions.

shear modulus

$$
G *(i \omega)=\frac{2 k_{B} T}{3 \pi \cdot a \cdot i \omega \cdot\left\langle\Delta \widetilde{R}^{2}(i \omega)\right\rangle}
$$

(2) Nanometer Resolution for the Bead's Trajectory

- Collecting enough light from a fluorescent bead is critical

Photons detected per measurement	10^{3}	10^{4}	10^{5}	10^{6}
Uncertainty on $\frac{N_{A}}{N_{E}}$	0.033	0.010	0.003	0.001
Uncertainty on $x_{c}(\mathrm{~nm})$	12	4	1.2	0.4

Nanometer resolution $\leftrightarrow 10^{4}$ photons per measurement

(2) Calibrating the FLTM

$\underset{x}{ }$| y | Ch3 | Ch2 |
| :---: | :---: | :---: |
| | Ch1 | Ch0 |

- 5-nm stepping at 5 or 50 kHz

- Curve fitting matches theory

Figure by MIT OCW.

Characterizing the FLTM

- Using polyacrylamide gels (w/v 2\% to 5\%) of known properties \checkmark Good agreement with previously published data

Single Particle Tracking Data

Image removed due to copyright restrictions.] [See Fig. 4(a) and 7 in Yamada, Soichiro, Denis Wirtz, and Scot C. Kuo. "Mechanics of Living Cells Measured by Laser Tracking Microrheology." Biophys J 78 (2000): 1736-1747.

Two- and Multiple Particle Tracking

SPT responses can be influence by local processes (adhesion, active, etc) and not represents global cytoskeleton behavior

Solution: Look at the correlated motion of two particles under thermal force

$$
\begin{aligned}
& D_{r r}(r, \tau)=<\Delta r_{r}^{i}(t, \tau) \Delta r_{r}^{j}(t, \tau) \delta\left(r-R^{i j}(t)\right)>_{i \neq j, t} \\
& D_{r r}(r, s)=\frac{k T}{2 \pi r s \widetilde{G}(s)}
\end{aligned}
$$

The major difference is that the correlation signal is a function of "r" the separation of the particles but not their size

Instead of using fast quadrant detectors, multiple particle tracking uses a wide field camera which is slower

SPT vs MPT

叫

Figure by MIT OCW. After Crocker, 2000.

Triangle: SPT
Circle: MPT

SPT and MPT results can be quite different specially in cells

A Comparison of Microrheometry Methods

	Magnetic	SPT	MPT
Bandwidth	kHz	MHz	kHz
Signal Amplitude	$\mu \mathrm{m}$	nm	nm
Local Effects Nonlinear regime	Yes	Yes	No
Yes	No	No	
Instrument	Intermediate	Intermediate	Simple

