20.GEM GEM4 Summer School: Cell and Molecular Biomechanics in Medicine: Cancer Summer 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

A few basics of mechanics in light of cell biology

Taher Saif Mechanical Science and Engineering

Outline

- Mechanics matters (observations)
- A few basics of mechanics
- Link between mechanics and cell behavior

Force

Notions of mechanics

Motion

Energy

Deformation

Notions of mechanics

Force

Courtesy of NASA.

Courtesy of USGS.

Courtesy of Oak Ridge National Lab.

Courtesy of USGS.

Deformation

Energy

Recent discoveries on cell behavior

Sensing topography

Melanocyte cell on micron structured surface R. Kemkemer and S. Jungbauer Max Planck Institute, Germany

Stem cell and mechanics

Image removed due to copyright restriction.

Outline of a human body; "stem cells differentiate in soft environments mimicked with polymer gels."

Stem Cells' differentiation is influenced by substrate stiffness

Neuron Myoblast Osteoblast

in *CELL* Aug.24, 2006 Engler, Sen, Sweeney, & Dennis Discher

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Actin remodeling (cell signaling) due to mechanical probing

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

Yang and Saif, Acta Biomaterialia, Vol 3,(1), p77-87, 2007.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Yang and Saif, Acta Biomaterialia, Vol 3,(1), p77-87, 2007.

Actin aggregation during ischemic attack

Image removed due to copyright restrictions.

Please see figure 5(C) in Ashworth, Sharon et al. "ADF/cofilin Mediates Actin Cytoskeletal Alterations in LLC-PK Cells during ATP Depletion." *Am J Physiol Renal Physiol* 284 (2003): F852.

Porcine kidney cells

Ashworth et al. Am J. Physiol Renal Physiol 284: F852, 2003.

Memory and mechanics Akira Chiba and Taher Saif Mechanical tension in axon is essential for neurotransmission and hence learning and memory

2D illustration of a synapse.

Courtesy NASA.

Courtesy NIH.

Drosophila embryo

Mechanical Tension is Required for Normal Synaptic Function

Hypothesis:

Axons must be under tension for neuro transmission.

1-component micro force sensor

SEM of Micro force sensor

sensor beams: 2 mm x 1 μm x 10 μm, Spring constant: k ~ 4 nN/μm, force resolution: 0.5 nN

2:28

3:15

4:07

Phase Contrast

Rest tension in axon

40 µm

Tension

Conservation of mass

Conservation of energy

Courtesy of Aerospaceweb.org.

http://www.aerospaceweb.org/question/astronomy/q0247.shtml

Courtesy of Aerospaceweb.org.

Cell force measured from pillar bending (concept of force balance)

Fibroblast cell on top of pillar array W.Roos and Spatz, Heidelberg, Germany

Stress

Problem statement: (a) stress distribution,(b) how do the body deform after forcing

Strain

Shear strain = $\Delta L/L$

Stress - strain relation

Strain Independent of dimension

Depends on: material, dimension, boundary conditions

Which one is stiffer?

Depends on: material, dimension, boundary conditions

Which one is stiffer?

We cannot tell just by inspection (needs analysis)

What we know:

- Each material point is in equilibrium
- Material stress-strain behavior

• How it is held together (Boundary conditions) Each point of the body should move just that much such that the overall energy is minimum

What we want to know:

• Where will they move (by energy minimization)

Finite element analysis

Cells apply force on the substrate

Images removed due to copyright restrictions.

Flowing fluids

Moving plate

Shear stress ~ vel gradient x viscosity

Flowing fluids

Moving plate

Stationary

Fluid

Viscous force + pressure force + body force = mass x accl.

Shear stress on endothelial cells in blood vessels

Section of an artery

Image removed due to copyright restrictions. Please see: http://en.wikipedia.org/wiki/Image:Anatomy_artery.png

Images removed due to copyright restrictions.

Please see figures 3 A and E (respectively) in Sho, E. et al. "Blood Flow Decrease Induces Apoptosis of Endothelial Cells in Previously Dilated Arteries Resulting From Chronic High Blood Flow." *Arteriosclerosis, Thrombosis, and Vascular Biology* 21 (2001): 1139.

Increased blood flow rate

➡ higher density of endothelial cells

Reduced blood flow rate

Endothelial cell apoptosis

E. Sho et al, Arteriosclerosis, Thrombosis, and Vascular Biology. 2001;21:1139

Mechanics link to cell functionality

Deformation ichange of conformation (change of functionality)

Unveiling cryptic sites by mechanical tension (e.g., fibronectin unfolding by cytoskeletal contraction)

Bb Tethering to filamentous networks

Opening of ion channel by membrane tension

Concave curvature: Convex curvature: Rac release ion channel opening Rac Intracellular lon channel closed Ion channel open Nanopost or nanofibre Nanogroove or nanopit BAR domain attaches to

Convex curvature opens mechanosensitive Ion channels (K⁺)

Courtesy of Michael Sheetz.

Viola and Sheetz. Nature Reviews Molecular Cell Biology 7, 265-275, 2006

Integrin activation

increased traction force

convex membrane

Rac release

Sensing topography

Melanocyte cell on micron structured surface R. Kemkemer and S. Jungbauer Max Planck Institute, Germany

Focal adhesion complex - a gateway to the cellular forces

Image removed due to copyright restrictions.

Please see Horwitz, A. F. "Integrins and Health." Scientific American 276 (1997): 68-75.

FAC

Horwitz, *Scientific American*, 276, 68-75, 1997.

Actin

Actin: a predominant contractile component

- Conserved during eucaryotic evolution
- Its amino acid sequence is 90% identical in different species

Courtesy of Jim Swan. Used with permission.

Courtesy of Michael Sheetz.

Viola and Sheetz. Nature Reviews Molecular Cell Biology 7, 265-275, 2006

Notions of mechanics

Surface energy

Force

Flow

Conservation principles

Deformation

Viscoelasticity