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1.1

CONTINUUM ELECTROMECHANICS Used as a Text

Much of Chap. 2 is a summary of relevant background material and
care should be taken not to become mired down in the preliminaries. The

discussion of electromagnetic quasistatics in the first part of Chap. 2

is a "dry" starting point and will mean more as later examples are worked

out. After a brief reading of Secs. 2.1-2.12, the subject can begin with

Chap. 3. Then, before taking on Secs. 3.7 and 3.8, Secs. 2.13 and 2.14
respectively should be studied. Similarly, before starting Chap. 4, it
is appropriate to take up Secs. 2.15-2.17, and when needed, Sec. 2.18.
The material of Chap. 2 is intended to be a reference in all of the

chapters that follow.

Chapters 4-6 evolve by first exploiting complex amplitude representa-

tions, then Fourier amplitudes, and by the end of Chap. 5, Fourier trans-

forms. The quasi-one-dimensional models of Chap. 4 and method of character-
istics of Chap. 5 also represent developing viewpoints for describing con-

tinuum systems. In the first semester, the author has found it possible

to provide a taste of the "full-blown" continuum electromechanics problems
p p

by covering just enough the fluid mechanies in Chap. 7 to make it possible

to cover interesting and practical examples from Chap. 8. This is done by

first covering Secs. 7.1-7.9 and then Secs. 8.1-8.4 and 8.9-8.13.

The second semester, is begun with a return to Chap. 7, now bringing
in the effects of fluid viscésity (and through the homework, of solid
elasticity). As with Chap. 2, Chap. 7 is designed to be materials
collected for reference in one chapter but best taught in conjunction
with chapters where the material is used. Thus, after Secs. 7.13-7.18

are covered, the electromechanics theme is continued with Secs. 8.6, 8.7

and 8.16.
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1.2

Coverage in the second semester has depended more on the interests
of the class. But, if the material in Sec. 9.5 on compressible flows is
covered, the relevant sections of Chap. 7 are then brought in. Similarly,
in Chap. 10, where low Reynolds number flows are considered, the material
from Sec. 7.20 is best brought in.

With the intent of making the material more likely to "stick", the
author has found it good pedagogy to provide a staged and multiple exposure
to new concepts. For example, the Fourier transform description of spatial
transients is first brought in at the end of Chap. 5 (in the first semester)
and then expanded to describe space~time dynamics in Chap. 11 (at the end of
the second semester). Similarly, the method of characteristics for "first-
order" systems is introduced in Chap. 5, and then expanded in Chap. 11 to
wave-like dynamics. The magnetic diffusion (linear) boundary layers of
Chap. 6 appear in the first semester and provide background for the viscous
diffusion (nonlinear) boundary layers of Chap. 9, taken up in the second
semester.

This Solutions Manual gives some hint of the vast variety of physical
situations that can be described by combinations of results summarized
throughout the text. Thus, it is that even though the author tends to
discourage a dependence on the text in lower level subjects (the first
step in establishing confidence in field theory often comes from memorizing
Maxwell's equations), here emphasis is placed on deriving results and making
them a ready reference. Quizzes, like the homework, should encourage reference

‘to the text.
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2.1

Prob. 2.3.1 a) In the free space region between the plates, 3V=§=ﬁ=0 and

Maxwell's equations, normalized in accordance with Egs. 2.3.4b are

xE =-24 | &) B
YXH = ?_E'. (2 m
- 03"' ()

v-H = o0 @ m

For fields of the form given, these reduce to just two eqguations.

o _ M I

= -9y (5)
d? );E
dHy _ _gdtx (6)
53 ==A5%

Here, the characteristic time is taken as 1/¢&> so that time dependences

exp jwt take the form

it
E = &E(%)C b @H(i)e D

For the time-rate expansion, the dependent variables are expanded in ﬁ “’/“ex ﬂ
o0

A a n ®

E=2 EwB 0 H, Q8,8 ®
X nz0 J b 3

so that Egs. 5 and 6 become

P—[X mﬁ “31” 1

Hy. B
31 nso neco 2 ] (2)

s_[z; Ay 8] = - liE“p] (10

-

Equating like powers of ﬁ results in a hierarchy of expressions .Jl“

Py .
t
P Mo \'\%" (11)
33 3 g
. (12)
l_in-” -— -3 Em.‘) —_
Boundary conditions on the upper and lower plates are satisfied identically. ﬂ
(No tangential E and no normal B at the surface of a perfect conductor.) At
2=0 where there is also a perfectly conducting plate, Ex=0. At z=—f , BAmpere's ﬁ

law requires that i/w=HY (boundary condition, 2.10.21). (Because w3 s, the

magnetic field intensity outside the region between the plates is negligible
compared to that inside.) With the characteristic magnetic field taken as Io/w,

where i(t) = 1i(t) Io' it follows that the normalized boundary conditions are

é,‘(O) =0 , C\Q("):‘-

(13)



2.2

Prob. 2.3.1 (cont)

The zero order Eqg. 12 requires that

)

ﬁt‘.’ =0 (13)

92
and reflects the nature of the magnetic field distribution in the static limit

/3 —& 0. The boundary condition on Hy' Eq. 13, evaluates the integration

constant.

a
The electric field induced through Faraday's law follows by using this result

in the zero order statement of Eq. 11. Because what is on the right is independent

of z, it can be integrated to give
A

Exo=-3% (15)
Here, the integration constant is zero because of the boundary condition on
Ex’ Eq. 13. These zero order fields are now used to find the first order fields
The n=1 version of Eq. 12 with the right hand side evaluated using Egqg. 15 can
be integrated. Because the zero order fields already satisfy the boundary
conditions, it is clear that all higher order terms must vanish at the appropriate
boundary, Exn at z=0 and Hyn at z=1. Thus, the integration constant is evaluated

and

a -
Hg, -2 (2°-1) (16)

This expression is inserted into Eq. 11 with n=1, integrated and the constant

evaluated to give

szl =32\3 Q7
If the process is repeated, it follows that
&
i | & % I'y
= = \7 - 2 4+ =
HH‘ a6 < © (18)
oS
. | s 3 19
E =-J'_(_.z R ) 9)
X &\ 30 3 (/3
so that, with the coefficients defined by Egs. 15-19, solutions to order are

A A

%'x:: E.o* a8 + E,, ﬁz; H'f l—\5,+ \2\3‘(3 +\1315’ (20)



2.3

Prob. 2.3.1(cont.)

Note that the surface charge on the lower electrode, as well as the surface
current density there, are related to the fields between the electrodes by
= ! - 21
o=E, K= Hy 2y
The respective quantities on the upper electrode are the negatives of these
quantities. (Gauss'law and Ampere's law). With Egqs. 7 used to recover the time

dependence, what have been found to second order in /3 are the normalized fields

_ 2 4 .
E,=2i-1(2 B +4(352 --'3-%2+-‘2)/32]m 2 =0 (22

$
- - L2t AN - (23)
W= [ -z-(i-l)ﬂ+4(62 ~2 e ) g et 2 i,
The dimensioned forms follow by identifying
E =4t le (24)
w
e) Now, consider the exact solutions. Egs. 7 substituted into Egs. 5 and 6
give Jz‘
a:.* (25)
a t
E. = 3—“‘1 (26)

Solutions that satisfy these expressions as well as Egs. 13 are

g = W(Fz)/mr (20)
€ < w3 oniB - o

These can be expanded to second order in B as follows.

;\35 l—-_{(si +;.(3» 2t (29)

—-Sﬂ {——i“ﬁz,‘,c..

(1- o+ f3 z )("‘ (’lz@*’iitﬁl)* (’iz/“{?‘.ﬁl)z)

H

i

2 3
(1-4a2 s HEM(+40+ S a- L+ 5,0%

1

{ 4 kS 2
~3(@-Ner (g -2+ %)a



2.4
Prob. 2.3.1(cont.)
) Y 5
- i(@é)'sl(wi)"?i(m*)“
-‘=0?|__LB+_L1 (30)
3 4-[‘3 - .

ERSr S NI YE L (3 4 (2.5 2]
3 L ?-(3 ‘)I6+4 36 32 +6)f$
These expressions thus prove to be the same expansions as found from the

time-rate expansion.



2.5
Prob. 2.3.2 Assume
%':‘i;\Ex(elt) 1"('0(? 6,,/%,0-—»0
H=¢ H, (2,9 i,
and Maxwell's equations reduce to
OBy - _ o, ; -2Hy _ DeE L)
- - ['] H —_—g = o—X =
Sz S < ot St
In normalized form (Eqs. 2.3.5a-2.3.10a) these are
OE, dH . -2Hy _ 3, 2
3 EY '3 g o2 ot ('-)

Let
Ex-: E)\o +ﬂE’(\ +ﬁzEXl+.- ()
3
H?=E3° +p Hb‘ '\'ﬂz H3Z+.‘..

Then, Eqs. 2 become

BE“ QE,u BH o aEXl DH =
S el o] elTeE e -0 “
QH )Exo oM +; X\ _é_l_.‘h_l )Exz =0
(32 S5 el

Zero order terms in A4 require

= |

oo 5 . = Ea ()= 2 = ®
P Hb" = _)Exo - A'VQ H ::.—__'_Sl_l} 2 (6)
>3 >t af a3 7 e GF ot

Boundary conditions have been introduced to insure E‘(—S?,i):l)/o\ and, because
K, (0t) =0, Hy(o,2) =0

Now consider first order terms.

B“x\__BHo_J__ l'} :_‘_Azu | 2,2

S T?c—_“i?ﬂ"-z# Ex &EE\?‘?—(E 4 (7
H 31) 2 g? - - 31} :
S_fl-_- -z\:—m =_£§4__*_3_% (*-4)> Hgn-g“l_é'f"x"z'(%_z



2.6

Prob. 2.3.2 (cont.)

The integration functions in these last two functions are determined
by the boundary conditions which, because the first terms satisfy the boundary
conditions, must satisfy homogeneous boundary conditions; Ex\('é: "I)=O’ H,a' (0)=0-

In normalized form, we have

o af A+
g v | (& ®
Ho= —L 8v -8 dV | (& _
¢ a Y ag .\3z<3 z>+
In unnormalized form
B(t e, dv | :
E)\ O\) ‘\'/“(; Tzz(i X’)—\—"'
(9)

|

a

3 3
H% €° él—}z—/”ogaél};_\_(%___zxt).\_.-.

Compare these series to the exact solutions, which by inspection are

E, = 2 (psut =¥ cosat] --—-(,3 S PR

® % cos %E,Q a

= 120 { %; ~ 3 z
Hy= e 2 (S8 st =B[22 4y ()02 4200 ]

Thus, the formal expansion gives the same result as a series expansion of the

exact solution. Note that what is being expanded is
2

z

JRLICS) >

(% [ o= eG

The quasi-static equations are Eqs. 5 and 6 in unnormalized form, which

respectively represent the one-dimensional forms of Y XE=O and conservation



2.7

Prob. 2.3.2 (cont.)

of charge ( H';—b Ki in lower electrode), give the zero order solutions.
Conservation of charge on electrode gives linearly increasing Kz which is the

same as Hy.



2.8

Prob. 2.3.3 In the volume of the Ohmic conductor, Egs. 2.2.1-2.2.5, with P=

M=%=0) become

UXE = - 20 (1)
RedT
VRH = ¢ 28 o€ (2)
2L
(3)
v.€,E &

(4)

AT

Fields are now assumed that are transverse to their spatial dependence, z, that

satisfy the boundary conditions on the electrodes at x=0 and x=a (no tangential

E or normal H) and that have the same temporal dependence as the excitation.

E=EGR@= Bﬂléx(i)ﬁzﬂp i“‘t] (5)
F\ = n(i,t) = 21 a*‘.ﬁg(i)nxyiatl (6)

It follows that ﬂ‘ =0 and that all components of Egs. 1 and 2 are iéantically
satisfied except the y component of Eq. 1 and the x component of Eg. 2, which

require that
o

dE, _ _;wowo W

.:}5- g @ro Ty (7)

-“Hl_: = (o *-;“‘—e)ﬁv. (8)
:

Transverse fields are solenoidal, so Egs. 3 and 4 are identically satisfied
with /ﬁ- =0. (See Sec. 5.10 for a discussion of why ﬁ=0 in the volume of a
uniform conductor. Note that the arguments given there can be applied to a
conductor at rest without requiring that the system be EQS.)

Elimination of E between Egs. 8 and 7 shows that

Jtﬂ . 0% _ 2 .
_A_i—"i % H'& =0 5 % = C«D/“o€° -9 Q/uoc" (9)
and in terms of H Ay, E_ follows from Eg. 8.

é . AH (10)
% 43¢ €o. c\i
b) Solutions to Eq. 9 take the form
A H -a'&-.z .,;?ez
= e (11)
H'é L € 4 H_




2.9

Prob. 2.3.3(cont.)

In terms of these same coefficients, H+ and H_, it follows from Eqg. 10 that

e R -4R2 X

= - 3 *
Ex } H e _ H e% (12)
Crﬁ§3¢¢’€o + =

Because the electrodes are very long in the y direction compared to the spacing
a, and because fringing fields are ignored at z=0, the magnetic field outside
the region between the perfectly conducting electrodes is essentially zero. It
follows from the boundary condition.required by Ampere's law at the respective

ends (Eq. 21 of Table 2.10.1) that

H%(O.tB-:.O ) \:\‘(o\ o) (13)
a ° .
“‘g(ﬂqit) = ¥ anp gt P H.a(‘lﬂ = X (14)

Thus, the two coefficients in Eq. 11 are evaluated and the expressions of Egs.

11 and 12 become those given in the problem statement.

¢) Note that

. 2 2
®2 = J;t/‘oeo £ - a""/“‘c-x =ﬁw‘fe,.) 'é(“ ) (15)
so, \QR\ { { { provided that w‘f;,., {¢\ and w\f:‘((\ . To obtain the limiting

form of Ex' the exponentials are expanded to first order in kﬂ . In itself,

the approximation does not imply an ordexring of the characteristic times.

However, if the frequency dependence of Ex expressed by the limiting form is to

have any significance, then it is clear that the ordering must be “J° ¢ T ( ‘T‘e I
m em

as illustrated by Fig. 2.3.1 for the EQS approximation.
With the voltage and current defined as YV = [ (-jlt)q ( = !
LS >
Kc{ , it follows from the limiting form '
of Ex that R - - . ‘&ut
= X (16) w:.@u\/c R ___C.l
5
old_ .o (6‘. > *
[~ a = — ‘ot
This is of the same form as the relation . 4 a‘“
a L = “’. vt €
& X

Y = ‘Pl\‘ N a“dC (17)

found for the circuit shown. Thus, as expected, C= EOXJ/& and R= QA /U"XJ . '
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Prob. 2.3.3(cont.) 2.10

In the MQS approximation, where C..)T,_ is arbitrary, it is helpful to

write Eg. 15 in the form

13 =J -.i‘~9 T (,\ g "—“re? (18)

The second terms is negligible (the displacement current is small compared

to the conduction current) if w\fe(< 1 , in which case

Cr+d/s. 3 SaE ‘cho— e

°
Then, the magnetic field distribution assumes the limiting form

£ 2 s(wz+®) -2 j@t-%)
M= Ged — (ke Ui R g6
= vy X T -

4 e d5. 65— s et \C T C -ete
That is, Eddy currents induced in the conductor tend to shield out the magnetic

field, which tends to be confined to the neighborhood of the current source.
The skin depth , Sh’serves notice that the phenomena accounting for the
superimposed decaying waves represented by Eq. 20 is magnetic diffusion. With
the exclusion of the displacement current, the dynamics no longer have the attributes
of an electromagnetic wave.
It is easy to see that this MQS approximation is valid only if “Te <41,
but how does this imply that w‘f;_(( i-» Here, the implicite relation between
m‘fé and ’rehcomes into play. What is considered negligible in Eq. 18 by making

w‘f;((j is neglected in the same expression written in terms of ‘Izmand 1\,..‘

as Eq. 15 by making M 4‘.\1;. Thus, the ordering of characteristic times
[ ]

is T <L " ( T , as summarized by the MQS sketch of Fig. 2.3.1l.

d] The electroquasistatic equations, Egs. 2.3.23a-2.3. 25a} require that

DE: =0 (21)
o2

so that E is independent of z (uniform) and
dﬁ __(0-_‘306\& (22)

It follows that this last expression can be integqrated on z with the constant of
integration taken as zero because of boundary condition, Eg. 13. That HY also

satisfy Eq. 14 then results in
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Prob. 2.3.3(cont.)

a a

g = (R/e) /(1w gt 23
which is the same as the EQS limit of the exact solution, Eg. 16.

e) In the MQS limit, where Egs. 2.3.23a-2.3.25a apply, equations combine to

show that H satisfies the diffusion equation.

Yy S
_l—- DZH - __!:\_1 Az‘“‘ - - aT C\ (24)
ASSFEIT T OIEC /S M

Formal solution of this expression is the same as carried out in general, and

results in Eq. 20.

Why is it that in the EQS limit the electric field is uniform, but that in
the MQS limit the magnetic field is not? In the EQS limit, the fundamental
field source is /62 while for the magnetic field it is 3%. For this particular
problem, where the volume is filled by a uniformly conducting material, there is
no accumulation of free charge density, and hence no shielding of E from the
volume. By contrast, the volume currents.can shield the magnetic field from the

volume by "skin effect"....the result of having a continuum of inductances and

resistances. To have a case study exemplifying how the accumulation of /‘2

(at an interface) can shield out an electric field, consider this same configuratio

but with the region 0 x ¢ a half filled with conductor ( 0<¢ x {b) and half free

space ( b¢{x<a).

Prob. 2.3.4 The conduction constitutive law can be used to eliminate
E in the law of induction. Then, Eqs. 23b-26b determine ﬁ, M and hence

jf. That the curl of E is then specified is clear from the law of induc-
tion, Eq. 25b, because all quantities on the right are known from the MQS

solution. The divergence of E follows by solving the constitutive law for

E and taking its divergence.

7.8 =v.(%s_)_vx<vx,uo\4> -

All quantities on the right in this expression have also been found by
solving the MQS equations. Thus, both the curl and divergence of E are

known and E is uniquely specified. Given a constitutive law for f, Gauss

Law, Eq. 27b, can be used to evaluate P

=]
o G G5 TS G5 @ o8 &5 "R S



2.12

Prob. 2.4.1 For the given displacement vector in Lagrangian coordinates, the

velocity follows from Eq. 2.6.1 as

9% -
v = 33 = f‘ﬂm(ntw\c + Q1Y “-«—(.D.z‘:+9)¢' (1)
In turn, the acceleration follows from Eq. 2.6.2.
& =%Li =X nlm (D246)( +anvn(Qtr)i l 2
But, in view of Eq. 1, this can also be written in the more familiar form
G=-O0% (3)

Prob. 2.4.2 From Eg. 2.4.4, it follows that in Eulerian coordinates the

acceleration is

)ax ‘R‘ﬁ;})( "'(1’);243 ¥ _.1) .’=—D.x¢ -.Q.té_c (4)

Using coordinates defined in the problem, thlS is converted to cylindrical form.
Because Ce_s e 4 sw D =\ , it follows that

- 1 n

a=--0¢rY é, (6)

which is equivalent to Eq. 3 of Prob. 2.4.1.

Prob. 2.5.1 By definition, the convective derivative is ‘the time rate of

change for an observer moving with the velocity v, which in this case is U-i_x.

Hence, DQ_- A §
Dt St

and evaluation gives A

(c..) ﬁU)§

Because the amplltudes are known to be equal at the same position and time

it follows that W-kU =o', Here, ¢ is the doppler shifted frequency. The
special case where the frequency: in the moving frame is zero makes evident
why the shift in frequency. In that case ©= 0 and the moving observer sees
a static distribution of é that varies sinusoidally with position. The fixed
observer sees this distribution moving by with the velocity U =@ /k and hence

observes the frequency kU.
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Prob. 2.5.2 To take the derivative with respect to primed variables, say f;

observe in A(x,y,z,t), that each variable can in general depend on that variable

(say t').
' X x’
Y Y
A//é
\\iz\ 2’ W
t\._; 2’
Thus
SA | DADE U DA dx DA S
—_—t = ¢ ¢ &2 < Ac.'
3¢ Stst T Sx 5S¢ "—g‘-g%,*é—;g—:, (2)
From Eq. 1,
X =x"x Ut dt
/ >tl
p / ot’
2=2"3(0,t >4 .y (3)
3?! - 9
t =¢'
;lji = Cj}
- X
SO

oA: _ éﬁ (1)+

St’ 3¢t D Y

P_‘t_\iuﬂ%-_g_éiu\a x DA:

53 Le™

:)AC AT
S'E+M A (&)

Here, if A is a vector then Ai is one of its cartesian components. If A‘.'P([’,

the scalar form is obtained.

Prob. 2.6.1 For use in Eg. 2.6.4, take
as A the given one dimensional function
with the surface of integration that
shown in the figure. The edges at x=a
and x=b have the velocities in the x
direction indicated.

Thus, Eg. 2.6.4

becomes

Ag g;g Q(x,t)Ax =

Az

4
/ST = 7
/ 7/
/, nt ’
8y, M\
L7 ’ S
»4' Ry
1 { X
b(&) a ()
db_, da
A4 d4

o [Tbe+ St alicoy sode]

The second term on the right is zero because A has no divergence.

Thus, Ay can

be divided out to obtain the given one-dimensional form of Leibnitz' rule.
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Prob. 2.6.2 a) By Gauss' theorem,

gv-Hv = g)ﬁ-zhéa (1)
v _ s

where on Sl’ -in=?1, on SZ’ in=-ﬁ and on the sides -]:.n has the direction of
- XAQ/ . Also, -inda integrated between Sl and 82 is approximated by
-17'5‘\' Xég - Thus, it follows that if all integrals are taken at the same

instant in time,

SVV Ady= ggm.a da - gi\(a-v\ da - §7m‘mt xdd

b) At any location, Sa2 l _SS o
. 5 DA :
A(trot)= AR +Szot+ (3)

Thus, the integral over 52 when it actually has that location gives

SA(twt) Anda = XA(Q.MAMP Xé}\_bt.ﬁ day . @

Sa
Because 82 differs from Sl by terms of higher order than At , the second

integral can be evaluated to first order in At on S

jA(t+b-t) »da= SA({_) nda o Sgﬂbt‘“éa (5)

c¢) For the elemental volume pictured, the height is Atu h while the area of

the base is da » 80 to first order in At , the volume integral reduces to

{v'ﬂc{\/ = SV-'A ot v-nda (6)
v

S,

d) What is desired is
d SA adaz B L SR({%&-E&- ACo) - ndal D
d-\ At—+o At L
Substitution from Eq. 5 into this expression gzives :
= Lo L (A(ﬂ.aau g A (1) st.ida— A(t) n&\] (8)
ato S !
2 5| 5,

The first and last terms on the right can be replaced using Eq. 2
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Prob. 2.6.2(cont.)
e __,[ [V‘T\AV 4 &I\ D atxdd ¢+ Xé_. bt-nda %)
= steo 5E| | L \
Finally, given that A. Botx R =AxTat 48 , Eq. 6 is substituted into this
expression to obtain

% Andaz -\&L{V.R stB.adat g‘ésf‘“'“‘“ mﬁ,@,@l (10)

S S s C
] ]
With At divided out, this is the desired Leibnitz rule generalized to three

dimensions.

Prob. 2.6.3 Given the geometry of contours

a(t+at) b (2+o1)

Cl and C2’ if A is evaluated at one time,

t, Stoke's theorem applies

vaﬂ hdea = &K&i L

S

Here, S is the surface swept out by the _° '
’ a(t) %
dX

open contour during the interval A% and C

C,

is composed of Cl’ C2 and the side segments

represented to first order in Al by 1}5(‘5&), f)bt and ';65 (E(t),t)ét . Note

that for At small, i = Ag’ X195At with 'lﬂs evaluated at time t. Thus, to

linear terms in A¢ , Eq. 1 becomes

5(2) b
gva’ dgxd| ot = jﬁl
Ct Gt ¢ L(é),t
a(t) _ a C(t+ot) (2)
- Sf\\-d&-?\@s at
¢
a(trot) a(t)t
Note that, again to linear terms in A1,
b (2+at) b (t+ot) E(z+ot)
SNHM)'JL =\ A« \Bleesd o
t
t
e (t+ot) a(t+ot) & (t+01)

~ — .- .
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Prob. 2.6.3 (cont.)

The first term on the right in this expression is substituted for the third one

on the right in Eq. 2, which then becomes

6 (t) E&)
VxA).d} x{‘s\‘At = -A\ .d3 +A-Tﬂ,\ot
A Gt ae) Ot bt (4)

o) g(td
=\ A(t+ro) 4% +g %AT at-df _[\.\’,csl At
o(t+ot) 3~(t+bf():"t alt)t

The first and third terms on the right comprise what is required to evaluate

the derivative. Note that because the integrand of the fourth term is already

first order in At , the end points can be evaluated when t=t.

B(t) B(¢)
4 g- =0 LN (3R
. = — Oh At df
o)A at—o Ot >t °
a(e) alt)
O ()
+‘A.53, at -AY,|at + gvﬂbm&xc\& At
OX et 9 :
! a(t)

The sign of the last term has been reversed because the order of the cross
product is reversed. The At cancels out on the right-hand side and the
expression is the desired generalized Leibnitz rule for a time-varying

contour integration.

Prob. 2.8.1 a)In the steady state and in the absence of a conduction current, Sf,

Ampere's law requires that
IxH =9x (P xV¥) : (1)

so one solution follows by setting the arguments equal.

- — — a . -
=Pxrv =- (.{o__-" ) o (__“"‘ (2)

H P ALl v o /2 ’
Because the boundary conditions, Hz( x=%a)=0 are also satisfied, this is the

required solution. For different boundary conditions, a "homogeneous" solution

would have to be added.
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Prob. 2.8.2 (cont.)

b) The polarization current density follows by direct evaluation. -

'SP=vx(§x{;)=/q,Um(ﬂx/a)Z& (3)

Thus, Ampere's law reads

W< OHe7 = T
VKW = -2, =% U coe (Wx/a) iy (4)

where it has been assumed that )( )/;g and 9C )/D2=0. 1Integration then

|
|
R
5
gives the same result as in Eq. 2. l
c) The polarization charge is
:—V-ﬁ:-?_‘_.j". :-../a° Uﬂ-(‘ﬂx/a) (5) l
/o P PR - 5
and it can be seen that in this case, Jp=U/°r La . This is a special case '
because in general the polarization current is
Vx(ﬁxi)g'ﬁv.{r— T}‘v-ﬁ+3-vﬁ~§°v‘\." (6) .
In this example, the first and last terms vanish because the motion is rigid body,
while (because there is no y variation), the next to last term 17'-V§ :U;6/33= 0, '
The remaining term is simply fP:\-’ '
Prob. 2.9.1 a) With M the only source of El it is reasonable to presume that
i
!
i
i
i
|
1
$
|

H only depends on x and it follows from Gauss' law for H that

v.H = ~9.-M q%‘:x =/32;m (ﬂx/u)# l-\le.%._? Aam (‘_\'&’_‘) (1)

b) A solution to Faraday's law that also satisfies the boundary conditions
follows by simply setting the arguments of the curls equal.
E =-7a°M$'\} = é?—e-‘vlw(u)( (2)
-6 43
c) The current is zero because E'=0. To see this, use the results of Egs. 1

and 2 to evaluate

- 4

E = B 4Vruii= Z;_‘. 1‘_?:3(7%('%)- ,&f‘vﬁ,;.(u)]:om
ﬂ -3
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Prob. 2.11.1 With regions to the left, above and below the movable electrode
denoted by (a), (b) and (c) respectively, the electric fields there (with up
defined as positive) are

Ea= (0,-¥)/b ; Ey=-%/(b-%) ; B = W /5, )
On the upper electrode, the total charge is the area d(a-f‘) times the charge
per unit area on the left section of the electrode, - eoEa’ Plus the areadg|
times the charge per unit area on the right section, - CoEb. The charge on the

lower electrode follows similarly so that the capacitance matrix is

- - o a-?, + ?.? _(Q_gi)q r.'}‘-
?' = de, ® ot b (2)

Prob. 2.12.1 Define regions (a) and (b) as between the two coils and inside

the inner one respectively and it follows that the magnetic fields are uniform

in each region and given by
! ]

) 1
H“z%.’“b:““-\-%:%*% (1)
These fields are defined as positive into the paper. Note that they satisfy
Ampere's law and the divergence condition in the volume and the jump and boundary
conditions at the boundaries. For the contours as defined, the normal to the
surface defining Th‘is into the paper. The fields are uniform, so the surface
integral is carried out by multiplying the flux density, /a;H, by the
appropriate area. For example, :h‘ is found as
’ . ' 2
)l:/‘{o_‘_dl_TT(Q.z’ﬁt) +/u,(‘2\-+fj-)-n? (2)

Thus, the flux linkages are

L
F ] Pa“,TTQ} AT -('-
2, _ d d ' (3)
= 2 ‘
L 2 z‘(o'ﬂ's /‘o“‘% "l
- - d 4 JL .
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Prob. 2.13.1 It is a line integration in the state-space (Vl,Vé,'il, ?2) thaf
is called for. The system has already been assembled mechanically, so the
displacements ( il' ?2) are fixed. The remaining path of inteqration in the
space (vl,vz) is carried out by raising vy to its final valﬁe with v_ =0 and

2
then raising v, with vy fixed (so that>$vi=0)at its final value. Thus,

1] vz
[_ - ¢ 4 4 (l)
W = S%lﬁ"l +%1$1,2. - gj'(dl pong')?t)s-g\*'l.?z(ol )7}‘- ,?”i‘)sl’t
and with the introduction of the capacitance matrix, o
o\ t \ 2
w2z Gl 4 QY v L, (2)
Note that C21=C12:

Prob. 2.13.2 Even with the nonlinear dielectric, the electric field between

the electrodes is simply v/b. Thus, the surface charge on the lower electrode,

where there is free space, is D= €%E= €;V/b, while that adjacent to the

dielectric is

D= e_‘_obl’ 4 't)‘/t,dl ,Iq:_\, (%Y (1)

It follows that the net charge is

1= dag,u + 212 @

so that 5 b d'\jd:t}z 4_]}2‘
w' = W= € d 2 2 L:._ (3)
S‘j —5—;-(0)1" +é€l§,\'(d:b +v%) -ol,_bl

Prob. 2.14.1 a)To find the energy, it is first necessary to invert the

terminal relations found in'Prob. 2.14.1. Cramer's rule yields

d -d
¢, Mo (0°-5) L (c2-5%) s
' = -J d 2 (1)
¢ — 2 t&\ 7‘2
Mo (at-TY) o (at-§9)(s

Integration of Eg. 2.14.11 in (’hi,jgz) space can be carried out along any path.

But, in particular, integrate on "A, with )z=0. Then, with :h'at its final

value, integrate on ) with 33. =0.
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Prob. 2.14.1 (cont.)

)l , )7_ ,
[ o0 + [ ¢ (aua0)and

\ d 2 av]_z
=—.[/I,Tr(q ?l)]) ].7:1?%;‘75 A2, + ‘.—%??—).( )]?

b) The coenergy is found from Eq. 2.14.12 where the flux linkages as given in

the solution to Prob. 2.12.1 can be used directly. Now, the integration is
in (il’iz) space, and is carried out as in part (a), but with the i's playing

the role of thez's.

‘-. "z
[} ' N e 4 tl
W= I?ﬁ,(c")o)c“‘,-l-f?‘z(c”ct)Ac.‘ 3
o o
2

Prob. 2.15. 1 Follow1ng the outlined procedure,

@(t.t) e‘g“‘:z = r% ® ie-Ee o

c dz
€ 7:-00

Each term in the series is integrated to give C )
+ ~ 3“ b1y n-n
z wn)d 3
= E g"c‘ ¢ /"‘T("‘ "‘) (2)

Thus, for m # n, all terms vanlsh. The term m=n is evaluated by either taking

the limit m—en of Eq. 2 or returning to Eq. 1 to see that the right hand side
) ~
is simply §n2 . Thus, solution for §”‘ gives Eg. 8.

Prob. 2.15.2 One period of the distribution is sketched as a function of z

as shown. Note that the function starts just before z=- f/4

b dC,t
and terminates just before z=3f/4. } Q( ! )
e . R M|, g8 3
The coefficients follow directly '
from Eq. 8. Especially for i 43_@ V’(+)
ramp functions, it is often convenient Tj
to make use of the fact that < 1 9
~ R _ - Qa(i- —)v
2% .. a‘ﬁmﬁm (1) 2 ao(z*?)vo A

22
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Prob. 2.15.2 (cont.)

and find the coefficients of the derivative of §({ t), as shown in the
sketch. Thus, 9/4 g % Q k 9
L\ 28 3 - 2\/ o
-aﬁl ?i ::?E' -_—-' 2 C: - (2)

and it follows that the coeff1c1ents are as glven Note that m=0 must give § 4

because there is no space average to the potential. That the other even componentsl

vanish is implicite to Eq. 2.

TYERD

Prob. 2.15.3 The dependence on z of§ and its
, N Vo(4)
spatial derivative are as sketched. Because the 1 3/ .
. =Xz 3 El
transform of b§/§z<—> &i the integration D.i
az ‘(,VO(‘”
over the two impulse functlons gives simply t\ Id

i

N~ Foe a -esz S 4
‘dgﬁ"'gz e Ai :N( ) “Ve(t) $(1)

Solution of this expression for Q results in the given transform. More direct,

but less convenient, is the direct evaluation of Eq. 2.15.10.

Prob. 2.15.4 Evaluation of the required space average is carried out by fixing

attention on one value of n in the infinite series on n and considering the

terms of the infinite series on m. Thus,
L +0

2+ s
Chey, =) ) KB, gm (4R @

==-00 mz-®
-no

SN I\n‘“‘?.::s“"""é‘“""

NS~00 mg~-C>
Thus, all terms are zero except the one having n=-m. That term is best evaluated

using the original expression to carry out the integration. Thus,
+00

<asd =) AB, @

; T . o~ ~ 3
Because the Fourier series is required to be real, E_n = Bn and hence the

given expression of Eq. 2.15.17 follows.
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Prob. 2.16.1 To be formal about deriving transfer relations of Table 2.16.1,

start with Eq. 2.16.14

d = $ sinh ¥x + @, cosh ¥x . (1)
) ~ ~ ~
and require that §(x=b‘)§§ ) $(x=0)= QA . Thus,
’ 1T =7 [od]
sinh¥a cosh Y& %, [
(2)
~) NA
o 1 ¢,
L Jd L § L d
Inversion gives (by Cramer's rule)
~ ~d
é' snlah 1 —coth ¥6 4
= (3)
A ~6
o A
e, 2
Because Sﬁ =<c Dﬁ/é X , it follows for Eq. 1 that
D, = -€% <§| cosh¥x + & s‘mkb’x) (4)
Evaluation at the respective boundaries gives
6: cosh ¥a sinh¥o '& ,
--cX (5)
D% t o ®,
- - e o = -

Finally, substitution of Eq. 3 for the column matrix on the right in Eq. 5

gives
~aol ~ - TN A
5 cosh Y& simh¥a | [ =i —cotbun|[ &
=-c¥
NG Yo d
D;& | 0o L o | §3
i \ ~ o (6)
A —
coth ¥ Sinh ¥O 33—
= -€Y¥
' shyol | &
sinh ¥8 -c ¥o

which is Eq. (a) of Table 2.16.1.
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Prob. 2.16.1 (cont.)

The second form, Eq. (b), is obtained by applying Cramer's rule to

the inversion of Eq. 8. Note that' the determinant of the coefficients is

2
Det = -co+ksz + I — | — cosh ¥b _

Sinh' ¥ S'th\'\z XA, = - | (7
SO
EXl [ -coth Y& I 1T ~d
® ' Sinh Yo x (8)
~a €Y o ~a
§ . coth ¥o D,
i 3 L sihh ¥b 11l )

Prob. 2.16.2 For the limit m=0,k=0, solutions are combined to satisfy the

potential constraints by Eq. 2.16.20, and it follows that the electric dis-

placement is ~ l |
" Py 4 (<) <s (3)
D =-€—= = -¢ E?._————— A+ € di _~7

- ST { (%%) 2. (i%) (1)

This is evaluated at the respective boundaries to give Eg. (a) of Table 2.16.2

with fm and 9, as defined for k=0,m=0.

For k=0,m# 0, the correct combination of potentials is given by Eq. 2.16.21.

It follows that
m+l ]

N 3 (%) +(>;-)m"1_ § (5 (2" (2)
Breemls ey | - | <%>'"-<%>"1

Evaluation of this expression at the respective boundaries gives Eags. (a) of

Table 2.16.2 with entries fm and 9, as defined for the case k=0,m=0.

For X #0.m# 0, the potential is given by Eg. 2.16.25. Thus, the electric

displacement is

{IH,QP%)I.’.Q&) - T (RN, (180)]

B, = -8
T N R0 T () TR B 2]

(3)
4+ 8% 13- GRD - Gler) - W (R 3. (80T
[ Ho GRR) 3 ()~ Tm (j) Ho (58]

and evaluation at the respective boundaries gives Egs. (a) of the table with

fm and I as defined in terms of Hm and Jm' To obtain I in the form agiven,
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Prob. 2.16.2 (cont.)

use the identity in the footnote to the table. These entries can be written
in terms of the modified functions, K.m and Im by using Egs. 2.16.22.

In taking the limit where the inside boundary goes to zero, it is necessary

to evaluate
d

~ ~d ~@
O = €[ £.(0,d) B + q.(d,0) &°] (a)
Because K.m and Hm approach infinity as their arguments go to zero, gm(d,o)—*'o.

Also, in the expression for fm in terms of the functions Hm and Jm, the first

term in the numerator dominates the second while the second term in the

denominator dominates the first. Thus, fm becomes

5. (0,0)— ik Ha(58) 3, (k) )
- . (5RO H, (18R)

and with the use of Egs. 2.16.22, this expression becomes the one given in

the table.
In the opposite extreme, where the outside boundary goes to infinity, the
desired relation is
~ ~
D = ¢ [ (8,098 + §.. (@,)8"] ()
Here note that Im and Jm (and hence I& and Jé) go to infinity as their
arguments become large. Thus, gm( ﬂ,m)-"o and in the expressions for fm, the
second term in the numerator and first term in the denominator dominate to aive
§ (@,a)— —a’gé 3..(?'\%x3\-\.:(é&6> . _a{é M. (3\@6)
.Gl (5ee) Ho (584) (7)

R W (Be)
4 (RR)

To invert these results and determine relations in the form of Egs. (b) of the

table, note that the first case, k=0,m=0 involves solutions that are not

independent. This reflects the physical fact that it is only the potential
~ o) Nﬂ

difference that matters in this limit and that ( Q_, Q:) are not really

independent variables. Mathematically, the inversion process leads to an

infinite determinant.

In general, Cramer's rule gives the inversion of Egs. (a) as
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Prob. 2.16.2 (cont.)
Fa(Bd)=€5,.(d4,8)/Det ; F(d,8) =€, (B8,«)
GCm(Bd)=-€Gm(pd)/Det ) Gm(d @)= - €9,..(,Q)

where Det = e{ §..(8,4)5.(4,8) —g-.(ﬂ,d)g;(d.(s)

Prob. 2.16.3 The outline for solving this problem is the same as for Prob.
2.16.2. The starting point is Eq. 2.16.36 rather than the three potential
distributions representing limiting cases and the general case in Prob. 2.16.2.

Prob. 2.16.4 a) With the z-t dependence exp j(w t-kz), Maxwell's equations

become
v-E=0 » & . RE, | )
X
4 a (2)
v.R=o 2 LW,
X A A (3)
§REG = =34 B
- - N ~ A (4)
IR =’?A‘Lt_'-? -%&Ex“b_gl:—iw/lo\'\%
9 ;€éﬁ o G; (5)
Ik YRR
3& \% = éweEx ©
= T )af oM ek (7)
X\ :)6, $ -3% HK‘D)—H"&A: %w€\:_%
t A %—;‘Q:éNCEQ (8)

A A
The components E,, E‘ ' H,. iy

2
Equations 3 and 7 combine to (‘{

~ A
4 can be written in terms of Ez and Hz as follows.

R - (w/e) )

1]

H = :g_%. SHs (9)
X ¥t 3%
and Egs. 4 and 6 give
A .
t, = 4—% b_g_%. ~ (10)
¥t ox
As a result, Egs. 6 and 3 give
A
A ‘e € A . > (11)
Hy=32% 98+ & - -jum DN,
¥* 3% 4 ¥* ox (12)
Combining Ampere's and Faraday's laws gives
- z -
c"VI(‘I‘):Q— B) (13)
E I\ E

Thus, it follows that

2 Ri 2 l:‘!i - (14)
L(s) () .

ol e T e-a &5 S D 59 N ow vy M G S R @ N = e
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Prob. 2.16.4(cont.)

b) Solutions to Egs. 14 satisfying the boundary conditions are

g - \_\ Ml“x Hﬁwx(x A) (15)

At Ea R X \%‘3 ETS (16)

E%. 2 1
c) Use is now made of Egs. 9 and 10 to obtain

%*: %\—‘-{E wﬂ.‘GX Eﬂc,nax(x A.} (17)
. B u-wﬂb’x (3 -a (18)
Also, from E,:‘qs 3xan{d 6 b
E, = - -‘%fi' \'\ (19)
ﬂ = w& § (20)
) fe X

Evaluation of these expressions at the respective boundaries gives the
transfer relations summarized in the problem.
d) In the quasistatic limit, times of interest, 1/¢J , are much longer than
the propagation time of an electromagnetic wave in the system. For propagation
across the guide, this time is A/c. = AFo €, .  Thus,

~ Q .Y (21)
Note that QA must be larger than _/']‘ but too large a value of kA means
no interaction between the two boundaries. Now, with Y—' Q_ El JEE

and H-l - 3 %‘# . the relations break into the quasi-static transfer relations.

[ '\oﬂ ' | 7 r‘\-lj
GE -wdal; PRV '§
el | (22)
L e,E;d L—,M;:Mo el Ra ] _5“

Ad ] [
- cotdRo S N
,MHx ﬂ@ Meb qj (23)

LM'gx@ ) - L E— thRa || Q@-
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Prob. 2.16.4(cont)

e) Transverse electric(TE) and transverse magnetic{TM) modes between

perfectly conducting plates satisfy the boundary conditions
d

A
- 6 -
() (W,=0) By =0 (24)
(a
- = 25
(re) (E,-0) WP =0 (25)
where the latter condition is expressed in terms of Hz by using Egs. 12 and 7.
Because the modes separate, it is possible to examine them separately. The
electric relations are already in the appropriate form for considering the
TM modes. The magnetic ones are inverted to obtain p
Ad . »
- Yo
/IOHZ _ M C,O‘d a 'm}'b Hx
A =~= A
o e 8
i e e T A L

With the boundary conditions of Eg. 24 in the electric relations and with those

(26)

. of Eq. 25 in these last relations, it is evident that there can be no response
unless the determinant of the coefficients vanishes. In each case this
requires that

|
_eiYs ¥ /o T =0

(27)

This has two solutions.

el vozo 5 cndys =21

In either case,
ntl
¥ = %— (29)
It follows from the definition of'X’ that each mode designated by n must
satisfy the dispersion equation
(A LA
kA nir
(.‘i) = & +(——— (30)
c o
For propagation of waves through this parallel plate waveguide, k must be real.

Thus, all waves attenuate below the cutoff frequency

- "
- - 31
o 52 (31)

because then all have an imagineary wavenumber, k.

‘-—.—-\‘..\-H—_—---U-‘ﬁﬂl-'
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Prob. 2.16.5 Gauss' law and E=-V® requires that if th.ere is no free charge

EVD yve -V =0 (1)

For the given exponential dependence of the permittivity, the x dependence of

the coefficients in this expression factors out and it again reduces to a

constant coefficient expression

¥3 VB L8 7>§_O
'D;( :>%‘ }iiz DR

In terms of the complex amplltude forms from Table 2.16.1, Eg. 2 requires that
4_} + 27 8 = (3)

Thus, solutlons have the form exp px where p——-7+7i A= \‘S ﬁ‘+7

(2)

A~ ~d
The linear combination of these that satisfies the conditions that § be §

and Q(S on the upper and lower surfaces respectively is as given in the

problem. The displacement vector is then evaluated as

B=- %{ﬁdcﬂxﬂ))} 7,«Jm+) crhax] (a)
PR PN
. 9l a(x-a) 42 wﬂa(x-o)]

A4

Evaluation of this expression at the respective surfaces then gives the

transfer relations summarized in the problem.
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Prob. 2.16.6 The fields are governed by

E=z-vd (1)

= 2
vD=0 (2)
Substitution of Eg. 1 and the constitutive law into Eq. 2 gives a generalization

of Laplace's equation for the potential.

D o) -0 (3)
‘3 OX. }xa
Substitution of

T = Rs 8.Cx)
results in .

&8 048 o5 -o

d x?

6:3.(%'4(3 + Q,?)

(4)

(5)

where

=R (__:;_z_e €40 | R, (G gie_ﬂ B \Ve e”d%B(e i+€Q+Q:e&]

This constant coeff1c1ent equation has solutions exp p, where substitution

shows that
- +)' ::A 2= B—_A:
P=47%2 .75 r (6)
Thus, solutions take the form

d= A 7 e x A, & ™

~ ‘\'d

~ N 8
The coefficients Al and Az are determined by requiring that @: Q and & = E

at x= A and x=0 respectively. Thus, in terms of the surface potentials, the
potential distribution is given by
~ ~d é?(x—a) ~g 47K (
- a,;g ; 8)
b=9% ¢ '—-_12' + 8 ¢ el nca-x)
b A Pt/ YN

The normal electric dlsplacement follows from the x component of the constitutive

law, .
3EJ ==-C é—% -\-§<€x185‘\' exigt)§ (9)

Evaluation using Eg. 8 then gives
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P;ob. 2.16.6(cont.)

7(:( -8) 8) Y Yo
{ “lﬁc ﬂ:z mhx] 3(€ 3 &)cﬁg:]lzm)

e AMQ G mﬂh(o-") %+ a-x
{ {%7 ey e Py Y ]4a(e Sbe Mﬁ(mo%

The required transfer relations follow by evaluating this expression at the

respective boundaries.

C 71T 54 1T wd]
i/ %"
D: -€, [17*‘7""’4""’3(“&5*‘ ﬁ) €A C (1)
R 2o
o - he 87° 5
% X % - e"“h? -2 wd)h]-l-é(C g‘+€ Qi) @
I O N R |
Prob. 2.17.1 In cartesian coordinates, a'l= a‘3 ,» so that Eq. 2.17.1 requires

that B12=B21. Comparison of terms in the canonical and particular transfer

relations then shows that

B,= 7‘A/ﬂ"’.“'ﬁ‘ 28 = =B

Prob. 2.17.2 Using d,An:ﬂ A21 » Table 2.16.2 gives

ﬁ‘&a[ M GBI (GR &) - T (RN (5R)

= -é@ﬂ[Hm(é%(s)Ih:(éPe@)—'S,“(éPe/s’)H..' (384

These can only be equal for arbitrary o 2 (3 if
/
¢ : = .
Rx [Ho (BX)S (R) - Tm(GRO N GRX)] = comst @
Limit relations, Eqs. 2.16.22 and 2.16.23, are used to evaluate the constant.

-afe® “u -u
Ru [('%‘)EL: e (—"'—- (1-2‘:8)+ \l_';'l;i’ e (;‘:_)Er_;‘e (‘"i‘)]= co(r;r;i-.

inn

Thus, as ¢-woo it is clear that ¢ = -2/
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Prob. 2.17.3 With the assumption that w is a state function, it

follows that

DW ~d ~sdl ~g a
BW:STd%D-\r'\"é—‘%d%DU\;' +§_-\-’:60" -\-)—chﬁ,;
Dar PLreMy 30, bﬁ"i
Because the D's are independent variables, the coefficients must agree
with those of the expression for SWin the problem statement. Thus, the

relations for the ¢'s follow. The reciprocity relations follow from taking

cross—-derivatives of these energy relations

~ ~o aAd o~
438, A8, adES
- Qﬁd == 5‘6‘4 (1) - S—,-r_-, =& — (4)

(5)

= O — (2)

~ -y =& ‘—_’-\'_d
S8 587 > 88 9O,
- Oii ) -iv - G\.(—z 3-&0 (3) a@ QE\- — &ﬂ’ v (6)
pYv 3B > pRe

The transfer relation written so as to separate the real and imaginary

parts, is equivalent to

éeﬂ - - Am. A\\é A\zv ’Alz‘; 1 6‘:‘-1

A

ol

@' - A\\l: - Anv A\‘LC A 1r ﬁ:‘

<

I

2 p
Qr - AZ\" AZ\L Az‘lf -Azzi D‘-

5(: —'A“( _Au\’ Azzi A""’" 6(3
L)L i

The reciprocity relations (1) and (6) respectively show that these transfer

relations require that A, .=-A and A

11i 11i 991~"Ayo4» SO that the imaginary
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Prob. 2.17.3 (cont.)

. o _
parts of All and A22 are zero. The other relations show that a Aer‘
B

Q _.B o, _ B, x
a Aer and a AIZi——a AZli so, a A12 a A21' Of course, A12 and

hence, A21 are actually real.

Prob. 2.17.4 From Problem 2.17.1, for

~a ,
Dn -B“ B‘l @d
~p | = . (1)

Dn "Bz\ -Btt Qﬁ

it is shown that

30 - of 3OS (2)
= =,
N i“ >R
which reciuires that
Bla T By (3)
74, .
For this system Biy =By = e //OMQ?A
Prob. 2.18.1 Observe that in cylindrical coordinates (Appendix A) with A AO 0
= = A 7 LD ;
= vxA=-228/ +.L2 (vA;)¢ (1)
Thus, substitution of AO = A(V‘ )Y gives

v

~A A L LJA ] (2)
T 32 ‘e ¥ ¥ S¥ e

BR=

as in Table 2.18.1.

Prob. 2.18.2 In spherical coordinates with A = AQ’ ('¢ (Appendix A),

B = YRR s— 2 (A, s.ne)c -L2 (rA L), N

‘ Y'sin g ; e
Thus, substitution of A¢ = A (f" 0) (Y‘ Sin QY gives

LD AY 7o 1 (L7 DA (2)
‘(‘S\heée(-:(_ ‘e ~ Y DY<5 n @ 9—(s;h9(ra

as in Table 2.18.1.

12
€ o°r

—

v

Prob. 2.19.1 The transfer relations are obtained by following the instructions

given with Eqs. 2.19.7 through 2.19.12.
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Electromagnetic Forces, Force

Densities and Stress Tensors
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RO




3.1

Prob. 3.3.1 With inertia included but I_I=0, Eqs. 3 become

(1)

With an imposed E = Qe exp a'wt , the response to these linear
equations takes the form 1}; = Re 1"_4_. exp 6'0 t . Substitution into Eqs. 1
gives

1:;* _ % | | | )
- my (Y, +3%)

Thus, for the effect of inertia to be ignorable

Vi D> e 3

In terms of the mobility \D...E 'Z.,/m+\}+ » EQ. 3 requires that

(4)
7:/1’1"‘“t>> w = 2§
For copper, evaluation gives

(:76x0") /(2 M) (3%16%) = 934X 10" H, >> § (5)

At this frequency the wavelength of an electromagnetic wave is

|
= c/; =3x108/9,34 XD ? , which is approaching the optical range{32_« m),

Prob. 3.5.1 (a) The cross-derivative of Eq. 9 gives the reciprocity

condition .
% = D hd - B—j—z (D
3 DV, Y, PR

from which it follows that ClZ = C21.

(b) The coenergy found in Prob. 2.13.1 can be used

with Eq. 3.5.9 to find the two forces.
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3.2

Prob. 3.5.1 (cont.)

—;5_..“”—_\- ZQQ‘.‘. -.)DC,, 1 t 3 Cea

17 3%, T 4 % 3% M t—__ll*—;“'d" 2% (2)
..?_\_“_. | ;_(_.’__“ _\g.\} DCLI _\__\_ ,d")cr.'& (3)
;z".;?z—-s ' % t % At %2

The specific dependences of these capacitances on the displacements are

determined in Prob. 2.11.1. Thus, Eqs. 2 and 3 become

f = de, l_;-ﬂ;f(:‘-_-é- -—\';\)m.:t Sz -]

2

-

f=de |Sur & _1ard ®
: Gy T3h )

Prob. 3.5.2 (a) The system is electrically linear, so w' =% Cvz, where
C is the charge per unit voltage on the positive electrode. Note that

throughout the region between the electrodes, E=v/d. Hence,

,__:_‘2_ YWGQ +$ (¢ 6031 (1)

(b) The force due to polarization tending to pull the

slab into the region between the electrodes is then

&:%ﬁ‘é: wd (6-%)(%) (2)

The quantity multiplying the cross-sectional area of the slab, wd, can
al ternatively be thought of as a pressure associated with the Kelvin
force density on dipoles induced in the fringing field acting over the
cross-section (Sec. 3.6) or as the result of the Korteweg-Helmholtz
force density (Sec. 3.7). fhe latter is confined to a surface force
density acting over the cross-section dw, at the dielectric-free space

interface. Either viewpoint gives the same net force.

Prob. 3.5.3 From Eq. 9 and the coenergy determined in Prob. 2.13.2,

¢ = ;w;(;},i) _ 4 ._[(a b vt o b] D



3.3

Prob. 3.5.4 (a) Using the coenergy function found in Prob. 2.14.1,

the radial surface force density follows as

S W hd o :
TSR TAE v >

(b) A similar calculation using the A's as the

independent variables first requires that w(ll, XZ’ ¥ ) be found, and this
requires the inversion of the inductance matrix terminal relations, as
illustrated in Prob. 2.14.1. Then, because the 1fdependence of W is

more complicated than of w', the resulting expression is more cumbersome
to evaluate.

Tzl M. - ¢ X2 oG5 -od) 5
sn%d 3% 21‘!7'/4(0? (o.z_,iz)z (Q‘.{‘)" +(q?-_€z)'-§3 t (2)

However, if it is one of the A's that is contrained, this approach

is perhaps worthwhile.

(¢) Evaluation of Eq. 2 with Xz = 0 gives the surface

force density if the inner ring completely excludes the flux.
v

o
awt o (o -€*Y

Note that according to either Eq. 1 or 3, the inmer coil is compressed,

(3)

as wduld be expected by simply evaluating J. x u, H. To see this from

f
Eq. 1, note that if A2=0, then i,=-1,.
Prob. 3.6.1 Force equilibrium for each element of the static fluid
is

VP = F:=v X_‘\i(G—‘Eo)E"l (1)

where the force density due to gravity could be included, but would not
contribute to the discussion. Integration of Eq. (1) from the outside
interface (a) to the lower edge of the slab (b)(which is presumed well

within the electrodes)can be carried out without regard for the details
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3.4

Prob. 3.6.1 (cont.)
of the field by using Eq. 2.6.1.

b b .~ | z 2
fvP.Asz = Jv[%(e-e,)e_]-éﬁ::) &-P&=3<€-€.ﬂ‘5u-551 )

a (N
Thus, the pressure acting upward on the lower extremity of the slab is

= Ngo
R, =% (e-€)E (3
which gives a force in agreement with the result of Prob. 3.5.2, found

using the lumped parameter energy method.
i 2
.‘:: WAPb :WA'Z(G’GQ)E @

Prob. 3.6.2 With the charges comprising the dipole reséectively at ;:_+ and ;_,
the torque is -

’-Y- = ?‘,'X '?_-é (i\.;.) - %" A %E(?') (1)
Expanding about the position of the negative charge, ;_ ’

T2 (LadixgB@) gl vE - Rxq ) @)

To first order in d this becomes the desired expression.

The torque on a magnetic dipole could be found by using an energy argument

for a discrete system, as in Sec. 3.5. Forces and displacements would be
replaced by torques and angles. However, because of the complete analogy
summarized by Egs. 8-10, \:\ «»© and S—D f—bﬂoM This means that 9 <+®4 M

and so the desired expression follows directly from Eq. 2.

Prob. 3.7.1 Demonstrate that for a constitutive law implying no inter-

action the Korteweg-Helmholtz force density

F=f € +PVE+Y ($eBE4W-ED -2 %\'f’;;de) (1)

becomes the Kelvin force density. That is, ( ):.0. Let )('C = c/—")

@&, =2 and evaluate ( )

— - 2 - -
w:SE-SD: D - E.D (2)

Thus,

(3)



3.5

Prob. 3.7.1 (cont.)

so that

o Efi

z

|

|

™~

"
e
m

and

():(E5+€ot_tb+xe€oE>

e

2
= -€,% . B2 €o 2
__92___(\+)C<)+_€i\: 3 Re2E

Prob. 3.9.1 In the expression for the torque, Eq. 3.9.16,

T %Xl 49l 30

so that it becomes

(4)

(5)

(1)

= g[l'} (4F-2F) 46 (2F -xB) 4 (, (x F, -9 )&V @

v
Fo= dN/3x

Because

JF - :;T; %___j .D‘S' ﬁ.( )\ ‘/
S[C (‘a b )+L ax xéx\s).“' ‘)X )P
v
_ \[C (24T = 29 _d&Tn; . d=
- SI.“(‘BXS - ‘30‘)X D)‘J \‘0 axo) (3)
v T2 Tas
T3y 22 _ X Ty — dx
+ ‘3(3 i T'a X % "+ ‘363?5-)
_r T|3 -T$|
T 2%y 1 3x _ D4l D ‘
+ (s dX; - la 3% - 'S-) +_rl0 S%;)lt&v
Ty Tz
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3.6

Prob. 3.9.1 (cont.)

Because —r"b :‘[‘é; (symmetry)

e Ssé;s[“‘(ﬂ’é'ﬂ‘é 4 (FT5- Xy “Te("—fzr“a'ﬁsﬂ‘(\/ @
Y

From the tensor form of Gauss' theorem, Eq. 3.8.4, this volume integral

becomes the surface integral

% (4T -3 + <, (zT.a 3+ e (KT T sda

(5)
= §, T x(F 7)) da
s
Prob. 3.10.1 Using the product rule,
?=%€V(E-E)=V(%€E'E -1lE.Eve (1)

The first term takes the form VT while the second agrees with Eq. 3.7.22 if

&:O,

In index notation,

-\
T =3¢ %.(EkEﬁ) @
where € is a spatially varying function.
F:: =c E&DE& (3)
DXL

Because VXE 0,

€. _>
F= €Tt --S-,-(-&(GEQE@ _v,2€E )

DXe

Because fs :Vo€§_= O , the last term is absent. The first term takes the

required form é_\—iﬁ /;Xpe .
Prob. 3.10.2 From Eqs. 2.13.11 and 3.7.19,

W =I’6-s€ =B +d, E)5E =L o£% dop* T3 =F ED-3 W @
Thus, the force density is (JE; /)X = JF; /AX,, , 90, /;xé O)

F = ;;r ixD >_w._.

Zrl

__EED;‘_L _._(g_ &) 3;5:. (2)

The Kelvin stress tensor, Eq. 3. 6 5 differs from Eq 1b only by the term in 3,

so the force densities can only differ by the gradient of a pressure.



3.7

Prob. 3.10.3

(a) The magnetic field is "trapped" in the region between tubes. For an

infinitely long pair of coaxial conductors, the field in the annulus is

: |
uniform. Hence, because the total flux Ta Bo must be constant over the
length of the system, in the lower region '

LN -
z a2 _ b2
(b) The distribution of surface current is as sketched below. It is '
determined by the condition that the magnetic flux at the extremities be
as found in (a) and by the condition that the normal flux density on any l
of the perfectly conducting surfaces vanish. /(1)

(¢) Using the surface force density K x <§>, it is
reasonable to expect the net magnetic force in the

z direction to be downward.

(d) One way to find the net force is to enclose the

[}

"blob" by the control volume shown in the figure and

integrate the stress tensor over the enclosing surface. / S 1,/ | L l
r § |
] ) i
f = T .n.da | !
z zj j 4 { H i
S L4 /'
/ : b1 ,r(Q .
Contributions to this integration over surfaces (4) and ’ i , ‘ : \ l
. 7 A ﬁl / l ;
(2) (the walls of the inner and outer tubes which are o} : 7 ol
’ VA o] | e
perfectly conducting) vanish because there is no shear / Yula A4 "'3)"/""
stress on a perfectly conducting surface. Surface (5) cuts under the "blob" =

and hence sustains no magnetic stress. Hence, only surfaces (1) and (3) make

contributions, and on them the magnetic flux density is given and uniform.

)

Hence, the net force is 2 4
2 * 2. k3
f :no,"(_?_’L)-ﬂ(of~b)—E&z&—ﬁ =-Ta B, b (2)
2 2o aM, (of - b%) Ao (oF 1)

Note that, as expected, this force is negative. l

)
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3.8

Prob. 3.10.4 The electric field is sketched in the Mr-—--——c-—-—-- [l

figure. The force on the cap should be upward. To
find this force use the surface S shown to enclose
the cap. On S1 the field is zero. Omn 82 and S3 the

electric shear stress is zero because it is an equi-

potential and hence can support no tangential E. On

S4 the field is zero. Finally, on S5 the field is | —— —-—’—:
that of infinite coaxial conductors. : : S’ : |
(
=_ = V. | : A '
E= ¢ -, — (1) ' || |
NG T I S
( | . S |
1 | i 3 |
Thus, the normal electric stress is : : : :
e\ .
- z | | ! |
M= =2B =-g 22— _ (2 ) i' |
? r 2 |
2 L.E(2) ¥ ! | ! [
R L b, S
-;4——--;—’__ e o 4
and the integral for the total force reduces to +-riih="z
a Vz 2
-‘— = . h.Ao\=- 1. 2wdy = __o_g_“,‘_‘_“ a =TV, &(3)
2 2 y! €2 2 th_a_ b 2 (3)
Prob. 3.10.5 S b > .
- = )eoE )E (1)
E‘(Fy“'ﬂg)Ec"S‘;{é ¢ = (G-EE\ GE
, a
Because SF: - QEA , the last term becomes
A%y 3K
€., 3B L e g = L€, Ep®
Thus ' b ’ \
k= gé(G,E;Eé—j 3:35.5&5&) (3)

where the quantity in brackets is Tij' Because Tij is the same as any
of the Tij's in Table 3.10.1 when evaluated in free space, use of a surface
S surrounding the object to evaluate Eq. 3.9.4 will give a total force in

agreement with that predicted by the correct force densities.




3.9

Prob. 3.10.6

Showing that the identity holds is a matter of simply writing out
the components in cartesian coordinates. The i'th component of the force

density is then written using the identity to write JxB where J = Vxi.

BPLTR oW 2de _ (
k= éxéB 5% ‘3’3 L 3dp3%:  o%, Zdam) e

In the first term, Bj is moved 1nside the derivative and the condition
bBé/Axé =V-% =0 exploited. The third term is replaced by the

magnetic analogue of Eq. 3.7.26.

i Dd&
The second and third terms cancel, so that this expression can be rewrltten

[HB s‘a<W+z £3a, )1 W=zRf-W (3

and the stress tensor identified as the quantity in brackets.

Problem 3.10.7 The i'th component of the force density is written

using the identity of Prob. 2.10. 5 to express Jf X H H = (vxfl) x M, H

H.
¥ "/‘°(> “a) /“ /«Mai‘ié (1

This expression becomes

FF%(,%HAQ-H‘-;_ ,%""“43 -2 G AT (M Mil)- H‘)x(u
where the first two terms result from the first term in F 5 the thlrd
term results from taking the Hj inside the derivative and the last two
terms are an expansion of the last term in Fi' The second and last term
combine to give Vidto (H+MA)zV8 = © . Thus, with B =u,(H+@), the

expression takes the proper form for identifying the stress tensor.

= S5 e (M) M- 35 S Waha ®

“ -

S Gy = aEE e



3.10

Prob. 3.10.8 The integration of the force density over the volume of

the dielectric is broken into two parts, one over the part that is well
between the plates and therefore subject to a uniform field v/b, and the
other enclosing what remains to the left. Observe that throughout this
latter volume, the force density acting in the g direction is zero. That
is, the force density is confined to the interfaces, where it is singular
and constitutes a surface force density acting normal to the interfaces.
The only region where the force density acts in the § direction is on the
interface at the right. This is covered by the first integral, and the
volume integration can be replaced by an integration of the stress over

the enclosing surface. Thus,
DN ® Nt
= ad ["‘360(3) +J5€('§31

in agreement with the result of Prob. 2.13.2 found using the energy

method.

Prob. 3.11.1 With the substitution \J =’:6\1 (suppress the subscript

E), Eq. 1 becomes

&;Tmu&a S\-F\Yv-ﬁ-ﬁ(ﬁﬂb’)-\.?\.(XV\V)]AQ

(1)

(1)

where the first two terms on the right come from expand1ngVQ%=W7A&AWV Thus,

the first two terms in the integrand of Eq. 4 are accounted for. To see that

the last term in the integrand on the right in Eq. 1 accounts for remaining

term in Eq. (4) of the problem, this term is written out in Cartesian

coordinates.

- (v ¥n,
A (YA V) = cthD Y n ;;cx on gwsnﬂ

oY >4 2%
N n
N (%\ L msn, +“v9—§-;‘ N “9—;% *-l

(2)



3.11

Prob. 3.11.1 (cont.)
Further expansion gives
n({'nV)..

RS QIO ¢ C My Ny )n
"‘L“S’* 9. ¥ nx]”“[n"x 3% +n‘6 IR l (3)

[ Wy sy 31
MR TALS R “%;%-i*% P A ““7‘ .:1

7 [ D) SRR dhy n on
+ %[ 214 +n:)i-§hi 1 + N Iﬂ:& 3 .‘.ngY%_ia .\_Y\i\d -3_;]
2 . 2

Note that ni + ny + "z = 1. Thus, the first third and fifth terms become V\J .

The second term can be written as

4
The fourth and sixth terms are 31m11arly zero. Thus, these three terms

vanish and Eq. 3 is simply V& . Thus, Eq. 1 becomes

-§7ﬁx¢(§ = g{-ﬁ?!v-ﬁ + [vx -V\(R-VX))}A“ (5)
(ol S

With the given alternative ways to write these terms, it follows that

Eq. 5 is consistent with the last two terms of Eq. 3.11.8.

Prob. 3.11.2 Use can be made of Eq. 4 from Prob. 3.11.1 to convert the integral

over the surface to one over a contour C enclosing the surface.

?— = - S‘GEF\ x4l )
c

If the surface, S, is closed, then the contour,C,must vanish and it is clear
that the net contribution of the integration is zero. The double-layer can

not produce a net force on a closed surface.

W o a e am e @G 99 -

s O

e W W .
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Electromechanical Kinematics:
Energy-Conversion Models and

Processes




4.1
Prob. 4.3.1 With the positions as shown in (ay
T
the sketch, the required force is te) = — ==
L % As * A\
= A b b_{i¢ (1) ¢
L= A& 8 A, -0

~b
With the objective of finding st , first observe that the boundary conditions

are.
C.

. ol
M= iy 4 S = <8, =80 - i =] @

and the transfer relations of Table 2.16.1 applied to the respective regions

require that

~g ~C,
8] [et R [R) et wva])
» Si A ’ 0
b ='“ ?:\b ) 4 =,a°& ~3 <
~ 0 ~ - |
-1 3 = —  cothBd]|-K
B Sinh fd coth@d 3P B sinhd © Y

Here, Eqs. 2a and 2d have already been used, as has also the relation f:\{=a’&l¥

In view of Eq. 2c¢, Egqs. 3 are used to write

~ g ~ S
~b -K coﬂﬁi - Hecoth8l _ KK°
Bx 2/(,& apt PN ] g4 + I Ex ”ﬁ{ afz a& sinh QJ] (4)

and it is concluded that

N e

L\ = "\%{ ‘ )

This relation could be argued from the symmetry. In view of Eq. 2b, it follows

that ~b \2"
2 z (6)
so that the required normal flux on the rotor surface follows from Eq. 2b as
S Ar
~b - K
B =/U°%[ } ~ coth g4 _\_é__l
® sinh Bd 32 3R (7)

Finally, evaluation of Eq. 1 gives

=-A A ~LQA) =HoA ___3»____,@_‘.__5 @)

$\r\\’\ g‘(

This result is identical to Eq. 4.3.4a, so the results for parts (b) and (c)

will be the same as Eqs. 4.3.9a.



4.2

Prob. 4.3.2 Boundary conditions on the stator and rotor surfaces are

~ ~ A 1
H: =K (L
B, =& (2)
where ces bt
”ﬁ.-_ Y. ac"
K=-3Ko e (3)
R =8B, e %)
From Eq. (a) of Table 2.16.1, the air gap fields are therefore related by
- A s
~nl {
B —eth & o %
- ]
= Mo R (5)
v all shed|| W,
B"_‘ Sinh &J ce ;f

In terms of these complex amplitudes, the required force is

< \“

-Y-i = _é_ de gx Fli (6)

From Eq. 5b,
T hed (B, RS
= ‘% “.. “ = 4 2 (7
Hy =3 T kT TR sk &D

Introduced into Eq. 6, this expression gives

_ ¥
£ = A L Re A2 R (8)
A cosh Rd P

For the particular distributions of Eqs. 3 and 4,

) ~lwt ﬁ
L, T v (Ut+8)
%1 N _é- co\sl—: 64@2 <3 Ko e )<B° e? ) (9)
=—% \\nﬁ&\/(:'B: s'.ns_(&(j-co)t 1R§]
cos .
Under synchronous conditions, this becomes
§ = - AKIBI oinRS
z & cosh Rd



4.3

Prob. 4.3.3 With positions as designated

in the sketch, the total force per unit ‘E‘
3

area is

¢ 4.4
Gy = Cofe-oiE A e

éﬁ

1l

Lge(BEES-S €MD

2

With the understanding that the surface charge on the sheet is a given

field at the three surfaces and that Gauss' law be satisfied through the sheet

are ~cC Ni ~Me NA ~
O gvan | T ogivan, B 28 V-0 =Ty givan (2)-(4)

Bulk relations are given by Table 2.16.1. In the upper region

= -

ﬁ: —- el Rd ] Picﬂ

|
= ej% A Rd

fS: ' we (5)
Rl L"Mga MEJ- e

and in the ];_oxzer _ A ( a4 T wdn
& - oURd —57 17§

quantity, boundary conditions reflecting the continuity of tangential electric '

- b
O, STy c-2dRl ] (6)
In view of Eq. 4, Egq. 1 becomes ‘
G =4al-rEGE]A o

. c
so what is now required is the amplitude § . The surface charge, given by Eg. 4,

Ar

~e
as the difference'E%‘ - D, , follows in terms of the potentials from taking

the difference of Egs. 5b and 6a. The resulting expression is solved for

g = e wotd Rd ¥ T3 codd Rd ()

e
Substituted into Eq. 7 (where the self terms in éF 013 are imaginary and can

s

therefore be dropped) the force is expressed in terms of the given excitations.

~c 0 & + &



4.4

Prob. 4.3.3(cont.)2

NPTy
80, = SR G 87«8 Tq

p) mﬁeé
b) Translation of the given excitations into complex amplitudes gives

= - G e e

0} reot
8% = V, e

. e b
Thus, with the even excitation, where §A= i

<§>, = ~RY.GA - Ry
R 2 cediRd T

and with the odd excitation,({izro.
c) This is a specific case from part (b) with & =0 and '3= /4 .
<¥E> = - %-Vo G:Q

2 —_— .

) cosh gd

The sign is consistent with the

sketch of charge distribution on the

(9)

(10)

(11)

sheet and electric field due to the

potentials on the walls sketched.




4.5

Prob. 4.4.1 a) In the rotor, the magnetization, M, is specified. Also, it

is uniform, and hence has no curl. Thus, within the rotor,

Vx® = vr[u (A+M)]= Vxuti= 0 (1)
Also, of course, B is solenoidal.

vB=o > B - vxh @

So, the derivation of transfer relations between B and A is the same as in Sec.
2.19 so long as /4ﬁ-is identified - with B.

b} The condition on the jump in normal flux density is as usual. However, with
M given, Ampere's law requires that N x{ Fl] = Rs and this can be
rewritten using the definition of B, B= 4, (§ +AA) . Thus, the boundary
condition becomes

ARl Bl = K, +pmoh x1 A1 3

where the jump in tangential B is related to the given surface current and given
jump in magnetization.

c) With these background statements, the representation of the fields, solution
for the torque and determination of the e;ectrical terminal relation follows the
usﬁal pattern. First, represent the boundary conditions in terms of the given
form of excitation. The magnetization can be written in complex notation, perhaps
most efficiently, with the following reasoning. Use x as a cartesian coordinate
rotated to the rotor axis angle, as shown
in the figure. Then, if the gradient is
pictured for the moment in cartesian

coordinates, it can be seen that the

uniform vector field Moix is represented

by
/V\ - -ViH ) o = - AA°7(
(4)
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4.6

Prob. 4.4.1(cont.)

Observe that x = r cos(8 ~ 9‘_) and it follows from Eq. 4 that M is

written in the desired Fourier notation as ( -9,) ( 5-6,)
1 v
M= TIM,T e (g-6y)= v%‘_[ + c3 1& (5)
9 e 1O _ 6
= AQ { [C: e +-G? 133 l-+ 4 L}iﬂa 3 e ]
Next, the stator currents are represented in complex notation. The distribution
of surface current is as shown in the figure and l‘i(“=1K;)
represented in terms of a Fourier series. - 0 "!‘i +9‘ Nc'(t)
+ 00 N M9 .i.' A A I . >
H, e?d (6) 7 \ }* 1%
m = -0 (j.___| -] / \ o
The coefficients are given by (Eq 2.15.8) Nit) . GL %%'*eﬁ
3
”~
(t) = K(e + = iNe (2D . (7

Thus, because superposition can be used throughout, it is possible to determine
the fields by considering the boundary conditions as applying to the comple#
Fourier amplitudes.

Boundary conditions reflecting Eq. 2 at each
of the interfaces (designated as shown in the
sketch) are,'

~ NJ
As = An (8)

Xe _ A" (9)
while those representing Eq. 3 at each interface are

PR’
“Bon T Mo M (10)
e £ 2 59 ‘59" M (11)
Bon = Bon” HAMon =-p € 36 Sm Tobe

(4 -in 2

That H=0 in the infinitely permeable stator is reflected in Eq. 10. Thust, Eq. 8

is not required to determine the fields in the gap and in the rotor.
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Prob. 4.4.1(cont.)

In the gap and within the rotor, the transfer relations (Egs. (c) of

Table 2.19.1) apply

~

~d
By Y.(8: 8 9. (Re,R) || A,

B,.. 3 (Rz,B,) §un (AL, Ao 2

gi,‘ = 'Y',,(O,R.)g\i (13)

Before solving these relations for the Fourier amplitudes, it is well to
look ahead and see just which ones are required. To determine the torque, the
rotor can be enclosed by any surface within the air-gap, but the one just inside
the stator has the advantage that the tangential field is specified in terms of
the driving current, Eq. 10. For that surface (using Egq. 3.9.17 and the

orthogonality relation for space averaging the product of Fourier series, Eq.

2.15.17),
r

i

R(awﬂ&)("“e,) rd ( \-\ 4
= amh AE‘-— Hﬂm ~:: '

~ o = -w NA iy
Because Bem is known, it is \.\ that is required where Hrm =-5MAM//",R° .

(14)

Subtract Eq. 13 from Eq. 12b and use the result to evaluate Eq. ll. Then,

in view of Eq. 9 the first of the following two relations follow.

qm(R: Ro) £ (R R)-5.. (o,\'&)T -KJ 1 A

(15)

;M<R“- ,Re) R (= %) At A OR*':]

3 J o o

The second relation comes from Eqs. 12a and 10. From these two equations in
two unknoyns the required amplitude follows

.- Mom 3m (Re,R:) =ato¥s, 1S (R, R -5, (0, R)]

- ~ (16)
m

? 3 (R; B03u (Ro R -5, (m, RIS, (R, R) - .. (6,RD)]

where D)
™
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Prob. 4.4.1(cont.)
~d

Evaluation of the torque, Eq. 14, follows by substitution of H,m as determined

[a g .
by Eq. 16 and BG\M as given by Eg. 10.

+< 'm ( ~ ~§
q;_-_—_ .l'ﬂﬂ:A {- iﬁj:.__o"‘"ﬂﬁM,mK“ an

”m s -C0 m

-2y Yo Bl 15, R - £ 0,30}
° Q.

The second term involves products of the stator excitation amplitudes and it
must therefore be expected that this term vanishes. To see that this is so,

& ~% I 4 1 .
observe that V\%h Kiv is positive and real and that fm and g, are even in m.
Because of the m appearing in the series it then follows that the m term cancels
with the -m term in the series. The first term is evaluated by using the

~ ~ 3B

eXpressions for Moo- and Hi"- given by Egs. 10 and 11. Because there are only

two Fourier amplitudes for the magnetization, the torque reduces to simply

.=~ & pR A M 0n 6, K s CIECY | (18)

where

[& - %‘ (ﬂo ,v‘i)/{gl(ﬂ‘, ;ﬂ °)3|(ﬁ° .Ri) - $|'<?’£ .R Jl;l <1‘°;R«') - S:l (o,ﬂﬁ]‘&

C s . 2
From the definitions of I and fm, it can be shown that K=Ri/RO, so that the

final answer is simply
3 . . .
/T;-: **/“oﬂLJ_MOM”QoMeYN L(") (19)
Note that this is what is obtained if a dipole moment is defined as the product

of the uniform volume magnetization multiplied over the rotor volume and
directed at the angle 9,. .

\wmi= Wﬂfé M, (20)
in a uniform magnetic field associated with the m=1 and m=-1 modes,

H| = ﬁl\i‘c'(f)ﬂ,; 6, (21)

with the torque evaluated as simply ".r .-./u,,in XT-\, (Eq. 2, Prob. 3.6.2)
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Prob. 4.4.1(cont.)
The flux linked by turns at the position B having the span Rode is

= [NR o[ K(6)- A (g4m]d @

Thus, the total flux is +6L 400

"
1'-69 7 -an mg
2= (° QAG-géNﬂZA (1- ”e_ 46 (23),

? .._é% | ”nsz-C0
The exponentlal is 1ntegrated‘to give
+ 00 ‘M‘T
. T . 24
2= 4dNR, E A -3-2 A T)MMQ, (24)

”m 2 =-00
where the required amplitude, }\i‘, is given by Eq. 16. Substitution shows

that

> =Lk} + A,/“° M, cn 6, (25)
where 40 . 2

L= ENuRdY (22 [S.(0,n)-5. &, ®)]
and Coddy [§m (R:,Ra)/R:]

A, = anR d e,
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Prob. 4.6.1 With locations as indicated by the sketch,

the boundary conditions are written in terms of complex

amplitudes as

Because of the axial symmetry, the analysis is simplified by recognizing that
~Q

3'=% , B --B7 (2)
This makes it possible to write the required force as
a_a ¢ ¢ ava . YiS (3)
4% = A <Ei O« 'E‘D,Z = A @_q (—-aﬁi D‘>:Aa&éa&vopx)
The transfer relations for the béam are given by Eq. 4.5.18, which becomes

a‘ - ('.oﬂ'\ &L — o) )

sinh Bb | [Y ~ (-l]':
=L +E _/‘oz—, %)
NJ 50% 60(17‘--\'?:) \

~d
-] .
T sm MBS

These also apply to the air-gap, but instead use the inverse form from Table 2.16.1.

~ Q. - c°+l\ '&J ———‘—-

O, sinh Rd s‘

N I ulls (5)
|>) =t

. sinh Rd "‘°*_|'

From the given distribution of it follows that only one Fourier mode is required
g

(because of the boundary conditions chosen for the modes).

TY. :{ l c=0 = (3(.' -"{(g" ¢=o

. VY, =0 (6)
¢t o c £ 0 [») c#0

With the boundary and symmetry conditions incorporated, Eqs. 4 and 5 become

| ~
6‘ - coth Rd sinh B4 V
% °
¢ (7)
S I T | P
® sin hid N §



Prob. 4.6.1 (cont) \ )
§° ~cothb sinh 8b |[D,

'y o~
=i£ L + ®
€ -~ -
§L = cotheh ) € 0 (8)
-~ Ao
These represent four equations in the three unknowns Y}:} t)‘_' Ei . They

are redundent because of the implied symmetry. The first three equations

can be written in the matrix form E?)
[ - O GD& ] Fﬁ@: reogtﬂ.“iﬁé Vo _
-sinh fd ®
~b % Y
Q =1 eog co'“\ Rd D,‘ = €9 d
Sinh ﬁA
\ éb ~
L. - —eo
i v ‘609‘- co+\f\p¢\>+ s‘mh&b) | J I 5,?@1 J

In using Cramer's rule for finding 6: (required to evaluate Eq. 3) note that
~

terms proportional to V, will make no contribu. on when inserted into Eq. 3

(all coefficients in Eq. 9 are real), so there is no need to write these terms

out. Thus,

~

A A R G

and Eq. 3 becomes

~3
= ACG{-3Vs 3, |
** d {0 (11)
b) In the particular cas? where 3 (wt +Q g}

~ Ut ~

Vo= NV, e® j fo=-pe o
the force given by Eq. 11 reduces to

§,=-AGY,e s BY  a

The sketch of the wall potential and the beam

charge when t=0 suggests that indeed the force

should be zero if S and be nzgv\*‘.it.ﬁ if OCRSCT™
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Prob. 4.6.1 (cont.)
:Jfl
¢) With the entire region represented by the relations N
P M « [
of Eq. 4, the charge distribution to be represented by x=d
B> (£)
L p i N S

the modes is that of the sketch. With A= b +2{

and -“4'. =Cos {_-'T;[x , Eq. 4.5.17 gives the mode amplitudes.

de b

) | n (14)
/o': == g F cos cﬂx X = _ﬁ-[sm (-“(A.‘,L) 5‘“,_“41 =P \
¢ .
d 4#0 t=o
So, with the transfer relations of Eq. 4.5.18 applied to the entire region,
) F-ceﬂ\ gb ! 6“
V° sinh Ra

‘ = =] - (-l)
~|Fen + 2_&1__1 (15)
v, ° _?':l'ﬁa cothRa 6;' (= oe"[(%q te 1 |

[ ss

fd
Symmetry requires that D, =-D, , which is consistent with both of Egs.
15 reducing to the same thing. That is, the modal amplitudes are zero for i odd.
From either equation it follows that

w ~
V. = d coth Ra - S P: (16)
'"\‘G'b £ e [ (R +R7]

The terms multiplying Vo are not written out because they make no contribution to

the force. €0
( Bvo -‘- €,% S;h\ﬂ gb lfy‘: (17)
(coshka +1) g {em\* g2
c=0 (°3 1
(J.VJ-\)

Thus, the force is evaluated using as surfaces of integration surfaces at

(a) and (f).

LAG(RETE LR ETEN - ARA(IE) T s

= _ARE, sinh Ba &Z
Cosh & + 1| E{("")&Pl

.RV.&V\
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Prob. 4.6.1 (cont)

In terms of the z-~t dependence given by Eq. 12, this force is

2
f,=-AR€EsinhRe) b za[s.nmcan,) sin (1]
coshRa+)\ Jeh® ecn[(%r) +&'~

V/ sinRY (19)

=2
AVaNn

Prob. 4.8.1 a)The relations of Egq. 9 are applicable in the case of the
planar layer provided the coefficients Fm and Gm are identified by comparing
Eq. 8 to Eq. (b) of Table 2.19.1.

ol @)z p--whhe ¢ (0. -C.(ad)~ gigaa
Thus, the transfer relations are as given in.the problem.

b) The given forms of Ap and Jz are substituted into Eg. 4.8.3a to show that

A' :
V‘-_ -W =0 (2)

(4

where ~

1

A -—Pc : (3) I
.

Solutions to Eq. that have zero derivatives on the boundaries (and hence

make Hyp=0 on the d and A surfaces) are

-‘Téz MV‘-_X',V‘-_=$%T)C‘=O,1,Q,... (4)

From Eq. 3 it then follows that
AT, = s e
(R + (45

Substitution into the general transfer relation found in part (a) then gives

(5)

the required transfer relation from part (b).

In view of the Fourier modes selected to represent the x dependence, Eg. 4,
the Fourier coefficients are
. . A oy ~ \ s, 4
t ‘ -\
3, = SJ (x) cse -EX)AX ¢ 36 = Angz(x) X (6)

) [
c#0 [}
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Prob. 4.9.1 Because of the step function dependence of the current density on
y., it is generally neceesary to use a Fourier series representation (rather
than complex amplitudes). The positions just below the stator current sheet
and just above the infinitely permeable "rotor"™ material are designated by (a)
and (b) respectively. Then, in terms of the Fourier amplitudes, the force

per unit y-z area is

+0 "’s* ~a
T,=Ey =Y A=) GRCRE =

ms=-0o m=-
The stator exc1tatlon 1s represented as a Fourier series by writing it as

E |'1 a.,,‘i
K= \4 9, \’\ & 21 LR 4R ) @

m=-00
The "rotor" current density is written so as to be consistent with the adaptation

of the transfer relatlons of Prob. 4.8.1 to the Fourier representation.

3= 2 iIS,P()uo?xe 384 3)

m:'wp [V .
Here, the expansion on p accounting for the x dependence reduces to just the

p=0 term, so Eq. 3 becomes

J= Z-Y Le she (4)

mz -co Y
The coefficients Jﬂo are determined by %’
‘ Vt-§ —
the y dependence, sketched in the figqure.
T n ¢(#)
First, expand in terms of the series
o, _-g ' y=o pni@
I ? "“a —-—— |
j: ™o (5) §Jq/ __-& ﬂ 1
me -0 L 9 ‘i Z

where y'=y-(Ut- $). This gives the coeff1c1ents

j‘:, _ an(t) (M'ﬂ' (6) .

Thus, the coefficients in the y dependent Fourier series, Eq.4, become
~ L g (UL“'S)
- arcle . m
3“" - a (&) mT 61 (7)

T z ~b
Boundary conditions at the (a) and (b) surfaces reaquire that H%” =0 and

~,S
H'é"' = "'Km . Thus, the first equation in the transfer relation found

in Problem 4.8.1 becomes

asV¥
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Prob. 4.9.1(cont.) "
Na
ﬂ o wehRod W+ MoSme : (8)
k..
Thus, Eq.,1 can be evaluated Note that the "self" terms drop out because

the coefficient of KM \(... is 0odd in m (the m'th term is cancelled by the

-m'th term) Q (U‘t S)
z 11& S + K3 ]AM.( )c (9)
mm &, :
mz= -0
This expression reduces to ‘25 & (Uf S) \ j%‘((){-s)
T -2 o"‘"(‘)“ ¢ - ( ¢ ] (10)
y = 23
If the stator current is the pure traveling wave ’
3 ~ A Lot
IK? = K, e (wt - g,g) > 1K°= K, e? (11)
and Eq. (10) reduces to
(12)

T. = ni@) M8 K oo (aTy
4 — °M‘</Q)
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Prob. 4.10.1 The distributions of surface current on the stator (field) and

K#
rotor (armature) are shown in +
the sketches. These are represented ,.,.n{ "{U,(&):
>
Fouri ies having th - 2
as Fourier series having e AKQ l/ "h_[‘{, u, (G-X)
standard form +o0 R 2 ¢
K K..\ c (1) ,
1 Maca
with coefflclents glven by A 2 P
& T
KL 5 e
It follows that the Fourler amplitudes are
e
~ .c ! 6
— L
Ke = N (1 - ) 3)
- 8
and
. . T
~ A . A 3“
.. '-"a_{_\/f__&(l—f- ) (4)

Boundary conditions at the stator (£) and rotor (a) surfaces are (\.\ -Vq’)

H& = \‘(f > (/m )‘< /1 (5)
H _—K > ‘Ww "'K"‘/l (6)

Fields in the alr-gap are represented by the flux-potential transfer

relations (Table 2.16.1)

8. (=) R

- o) T ||
= My T A 3
~ o x . ~a (7)

B - | b
L 3. mT o
L . w5 C,JJ( ) . %

- /Aﬁnﬂ (-ﬂ ) } J L e
The force is found by evaluating the Maxwell stress over a surface that encloses
the rotor with the air-gap part of the surface adjacent to the rotor (where fields
are denoted by (a)).

{’% = add <B \-\ > —-3,Q<:(<B K >—-;],(ZB <\‘( ys)

nz-00
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In view of the transfer relations, Eqs. 7, this expression becomes

§,=-28d po i_ (ju. )\4 (9)
S ()

In turn, the surface currents are glven in terms of the terminal currents by

Prob. 4.10.1(cont.)

Egs. 3 and 4. Note that the self-field term makes no contribution because the

sum is over terms that are odd in m. That is, for the self-field contribution,

the m'th term in the series is cancelled by the -m'th term.

f,= 4 4N ‘a”mz (l‘m :_(ﬂlg:r: ) (10)

e @
This expression reduces to the standard form

Qi =~ G.‘. 5«"5 (11)

where L) |
G :./“oClA/“”fZ "?f' m,q,;.ﬂ(::lf_f) (12)
m'edd A

To find the armature terminal relation, Faraday's integral law is written
for a contour that is fixed in space and passes through the brushes and

instantaneously contiguous conductors.

<§(E xmha) 4Y = - S-S:E"“(“ (13)

In the conductors, M=0 and Ohm's law requlres that

_ 3 _ -
= = o . : (14)
E = — VXM
The armature winding is wound as in Fig. 4.10.3a *
with the axes and position of the origin as
sketched to the right. Thus, Eg. 13 becomes X G $
3.43 (42 _d ’ : (15)
2.3 - (U B (- dA_ d
- ¥ S"' Wy Sh =5 B da
wirh iR
S

Each of the solid conductors in Fig. 4.10.3 carries half of the current. Thus,

the second term in Eqg. 15 becomes

Lh-ASLL Ll inainek
A0 2 CAa a9 Aa

wirtl
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Prob. 4.10.1(cont.)

The third "speed-voltage™ term in Eg. 15 becomes

- - A -3
SUB,‘C‘;-AR = d SUB‘NQJ - d UKK/\/“Jz (17)

wwl o
and this becomes

gUBxdb-JI = dun, &.ed - | Z B e
wirg 0 ~%
X2 é"\
= —43'JUNuL_ —E’iﬁ (18)
?::L)

From the bulk transfer relations, Eq. 7b, this becomes

(19)

ﬂ'
gUB L') Ag = qéJUNz}’oMW _5—{(‘ (M‘I’L>N “ o im )1

mz - /(5.5 '%,‘ 3 T
wirs (’A&) /“‘"R( 1 )‘b "

The second term makes no contribution because it is odd in m. Thus, the speed-

voltage term reduces to

I‘UB‘LT.,-Q =G, U&:‘ (20)
wivs

where Gm is the same as defined by Eq. 12.

To evaluate the right hand side of Eq. 15, observe that the flux linked by
turns in the range z +dz' to 2' is
(A g v, Ai—)/\/ da’ (21)

so that altogether the flux 11nked is

IB da = [{J By Aa]/\/ dz’ (22)

Expressed 1n terms of the Fourler serles, this becomes

SB do = - 4./\/ 0k 2. (23)

A
G Ta)
The normal flux at the armature is expressed in terms of the terminal currents

by using Egs. 15b and 3 and 4

SB da=-44, ‘(}Zgz

S

X h‘ UJ(“L)N ba
——(- é")
M(";") a@‘“ (24)

(o4d)
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Prob. 4.10.1l(cont.)

The first term in this expression is odd in m and makes no contribution.

Thus, it reduces to simply
( R, da = L.t (25)
where 3 2 2 4 mTh
- /(.N.,_Jﬂ,a.z wotd (=)

L - .3 (26)
o WA
> (o d&)
So, the armature terminal relation is in the classic form
Y, =T, e + L..‘%i_? - G.U ¢ (27)

where Ra'La and Gm are defined by Egs. 16, 26 and 12.

The use of Faraday's law for the field winding is similar but easier because
it is not in motion. Equation 13 written for a path through the field winding

becomes

ev's +R¥

(28)

( = —C( SBiJo;

The term on the right is written in terms of the Fourier series and the integral

carried out to obtain Q ) - ,B 2
JE da = JV\’rJ B de =dny gé & o5 (29)

6
[
Substitution of Egs. 3 and 4 gives

-' -n ‘- _ -a'rn!' .
KB da=dn ,(02 e iy (i-e )u*h(..mh) Nata (i - 2“ (30)
. iR, 2L 27T (R s.nh (=
The last term vanishes because it is Odd:lﬁ m. Thus,

SB da = L,‘ g5 Ly® Z‘_-’__LA" Z C"""'““"m (31)

and the field terminal relatlon, Eq. 28 becomes

‘U:R(:"-LA“I (32)
¢ $ %4 -f-—g'f'
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Prob. 4.12.1 The divergence and curl relations for E require that

?‘.—%}(T‘E,) +%__E% =0 (1)
OB, |, OE, _
53 + S5¥ =0 (2)

Because Er=0 on the z axis, the first term in Eq. 2, the condition that the

curl be zero, is small in the neighborhood of the z axis. Thus,

OE; .

and Eq. 1 requires that
) _ -dE (4)
viR(vE)= - oo

dz

Integration of this expression on r can be carried out because the right-
hand side is only a function of z. Because Er=0 at r=0, it follows that

E,= -+¥ 4E/da (s)
Now, if it is recognized that Ez = —Aﬁ/di without approximation, it follows

that Eq. 5 is the required expression for Er'
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Prob. 4.13.1 Using the same definitions of surface variables and potential

A " A -ﬂs
s . ro
difference as used in the text, <§ = ?o’? = %a ea )

A ek A A . ut-ﬂﬂ
V= GLAA e% ; is = (ﬂi?s¢3iﬂt%;€;::CRg€{ Gp(z

(1)

At each of the electrode surfaces, the constant potential boundary condition

requires that Ef?
nxE=o » B, = —Exjg (2)
For example, at the rotor surface,
€, e s v’ LD (¥
S0 =—E — E = ——-—< ?5 (3)
Eu(x=o) + S X ,S; el 33\ Cx
where the irrotational nature of E is exploited to write the second equation.

Thus, the conditions at the perturbed electrode surfaces are related to those

in fictitious planes x=0 and x=d for the rotor and stator respectively as

v * *

Bl =-2(Elf) » B =-EY C
s < < A étd

B, =-33(E7) » 2= -E¥wbhVoes O

First, find the net force on a section of the rotor having length £ in the y
direction and Zﬂﬂg in the z direétion at some arbitrary instant in time.
g{=e,£% {ExEL), (6)
The periodicity condition, together with the fact that there is no material
in the air-gap, and hence no force density there, require that Eq. 6 can be
integrated in any x plane and the same answer will be obtained. Although
not physically meaningful, the integration is mathematically correct if
carried out in the plane x=0 (the rotor plane). For convenience, that is what

will be done here.

By way of finding the quantities required to evaluate Eqs. 4 and 5, it

follows from Egqs. 1 that

A 'wt A* . t A ‘& - s .E
s ] —at A k7 2
B¢ M +V T)E 43 e @

£ (V) 1+]V,% +(V,)e

T\‘Z i&%meé(wt-ﬁ*) a «sgéé(uf-ﬂe) a ad (uteRe), as¥ futehe)

1

|

i
i
i
1
1
i
)
i
I
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Prob. 4.13.1 (cont.)
and that A AT (3“t Ez)‘ "‘g - (3ut -R
b
Ere= {[V §e A 1 "

+[(V*§rﬁc (at + (\?, \«) _a(wt Qa\l}

Thus, these last two equations can be written in the complex amplitude form

k
S P VATCA S “36 +(vo “Ve de"‘1 ®
By =5y & (v,§" e (Q*%"c'“f L

The transfer relationS, Eqs. a of Table 2.16.1, relate variables in this

form evaluated in the fictitious stator and rotor planes.

~3 | Ve
E“ ~coth &4 ST R4 é
~ve & oy (11)
Ex Y eoth BY ||®

It follows that

E:': &i%‘_ 'SU -'_g-——-———'[\/ ? . wt il?se.dut] C-Oﬂl

&d
24d sinfk (12)
A \g K2 AR A N*13 -6
+Lzé:eirb_91‘[\/? G ]e
Also, from Eq. 4, .ﬁ’.;
A AY 3. AN Aap 'awt -3
E:.-.&'-?sa[v ea +Vo? :(C (13)
Thus, the space average called for with Eq. 6 becomes
~ r -~ »
fo = S22 L QIR (ETTY )

which, with the use of Eqs. 12 and 13, is

= €W - ’P;. A A Eag F u’(‘ Adag. Y -4
&2 a‘{z%:ﬁhﬁi( +% b3 S }

N AQASATE AR A

+V, Vo §% +V, Va?? e_-z m](ls)
_Agjuua&[zv,? 0§ +(‘¥ )z(".,z e L 6-15“)]

AL
¥ A
The self terms (in ?‘f ) either are imaginary or have no time average. The
. av An

terms in ? '? also time-average to zero, except for the term that is
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Prob. 4.13.1 (cont.)

independent of time. That term makes the only contribution to the time-
As A " -~ 'G‘
average expression- (? = ?, ,i = ?, Ca )

A 2 A Al —‘33
£ = c.on VA .25 ¢ 9 (16)
YA & dtsinhBd G 4325
In the long-wave limit kd ¢ ¢ |, this result becomes
A 2 2z
IR N LA APV )

which is in agreement with Eq. 4.13.12.
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Prob. 4.13.2 For purposes of making a formal quasi-one-dimensional expansion,

field variables are normalized such that

= = (1)
MWl xed s fed g

) > 'Y‘/lo(é)“
=“°(%'). Ha 222 2 y @ = HOJ ¢ , ?

)

The MQS conditions that the field intensity be irrotational and solenoidal in

the air gap then require that
SHy 3\4;

D%

D\'\x (J)D 2=0
]
If all fleld quant:.t:.es are expanded as series in X'—:—. (“-‘ /)\),
W,y S WY

- . _ 4
H" ‘;2,:, e ’ Hi -Z H"’-i\‘ -

i=o

n

=0

jw

then, the equations become

M DMac My _ My,

5
d - o~ =
d2 ER Py 2
The lowest order field follows from the first two equations
PR -
DM _ dHuo I
a R
It follows that o2
H*= H“ = ‘F(i,-t) 8
He = Hao = *55 +9(2,2) -
Boundary conditions at the stator and rotor surfaces respectively are
Hy = \‘(%(E,t) = W, e (we -Ra) ' (10)
- = (11)
AxN(x=5)=0
In terms of the magnetic potential, these conditions are
2 \_I .
= = (Z)z7 e Lam(z-2)] 12

¥(x=1)=0 =

where variables are normalized such that Ho=K ) t=-7T ; (‘T ] zrr/g),
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Prob. 4.13.2(cont.)

Integration of H=-VY between the rotor and stator surfaces shows that

a 0
Hd €% = [y W, ddx o

In view of Egq. 8, "+ ?

-~IHJx-'(I $)f 15

-1
and so the 1ntegrat10n function f(z,t) is determined.
§Ce,2) = -4// = 2 confaw(e-)) 16
- d 2m | -% B
From Egs. 8 and 9 it follows that
a a >4 ] :
Fad = — + = = - 17
H, = H“-[XM_ ‘;}“-o K, = amfan(z -2)] 17
so that
%.:: b(3 (18)

Actually, this result is not required to find the force, but it does complete

the job of finding the zero order fields as given by Egqs. 8 and 9.

To find the force at any instant, it is necessary to carry out an integration

of the magnetic shear stress over the lower surface of the stator.

\
<{-’->e = Son H, d= 19

Evaluation gives

(1

(fea@K e 20

o

jl'L con L2m(2-2))
{d M) - §, confam(ue-c2-n]

“ aimfam(t- 2)]}&1

!

(3_)‘_\_ f an Lan(z-2)] de = F(2,9)

d/ av
o | =%, e f4m(ut- @-0)]

The time average force (per unit area then follows as

l 2
(K802 = [Feen s =

In the small amplitude limit, this integration reduces to ( 3_ <<'1)
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Prob. 4.13.2(cont.)

(5, =

-
>
™~

s faw(e-2)][1+ %, con (ar(ve- ca -5)]d2 22

1]
]
o~ o‘—\
~ -

> o

)

o"”“" [am(e )] cocfan (U2 - (2- $)]dz

DF.
=
a.

z -4 %)t? jw [4Tr(t'-e)]m'-[4ni(u-l)t+&]}Ji
= -g'-(%)zs a-{(U-D2 +3]

Thus, the time average force is in general zero. However, for the synchronous
condition, where (/ = [U/?)I[-’”/UI =1,
it follows that the time average force per unit area is
2
85D = -1 (%) , 23
In dimensional form, this expression is

(24)

{5y, = 4l F‘i’ an(2RY)
4 (Rd)
and the same as the long wave limit of Eq. 4.3.27, which as kd"O,becomes
{85, = -2kl R pce 3RY —» — g, KRS, o aRy @
‘;ﬂMJZ ﬁA A (%45‘

In fact it is possible to carry out the integration called for with Eq. 20

provided interest is in the synchronous condition. In that case

and Eq. 20 reduces to ( G = <<l /7? 4 F)

a+aT ,
G = L g,w;“sm(ens)—msm‘-ﬂi e | 26

4t
| = %, 608

where o

S = 4w (£-2) $4%% | a =z 4v(¢tas) -4T

In turn, this expression becomes

a+4&vy at+av
G=wasu( s AS_M;,m,S cer S dS 21
T T, w3 am ) 1-%,und

The first integral vanishes, as can be seen from

atam atam q+4n
S_____.M"'g dg =~X_____‘l(""3) =+ i, m§] ln['] o (28
) 12T ens 1-€cnS %
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Prob. 4.13.2(cont.)

By use of integral tables, the remaining integral can be carried out.

C = - A—R‘c ( | - r—l—f:‘) (29)

In dimensional form, the force per unit area therefore becomes

Ko e 2B 5 o (30)
<¥a>*‘ /;(?%51-(5*)‘ Il SV (3 ]

Note that under synchronous conditions, the instantaneous force is independent

of time, so no time-average-is required. Also, in the limit i/u ((bthis

expression reduces to Eg. 25.
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Prob. 4.14.1 Ampere's law and the

condition that H is solenoidal take Ax
the quasi-one-dimensional forms § === - === 35
' |
.a_'-.l-’-‘- =0 (1) :’— c |
% ¢ ! 1y
SHa  DHx @ § = —--'>le‘§
_S—X- = 2 2 24
and it follows that
Mx = Hx(®) (3).
My = ")—;{" + £ (e (4)
The integral form of Ampere s law becomes
b R-AL= [HaGat)-Hlo]b=
5
~n L;-zN (x-0R) ; ocacd )
X'.S ndo =
h‘c{_ +2 Na (2 -38/2) Y Q<a <2l

Because the model represents one closed on itself,

it follows that Eqs. 5 become

Mk tads (3 -d) jocacd

n(a +Q) = -H(2) and

H(2)=/ =2 (6)
“ng o Data (z-3d 1Az <24

and it follows that b b o }

;\_\x {i-Nuc‘a/L 5 x,( 24,y =

X u (& 5)
At the rotor surface, ere x=0,

H; = t/\(u‘-u Y £< 'Z( (8)
and so Eq. 7 can be used to deduce that o L

v /K '
tNaC(5-1) 5 2€2% 22 (9

M, =

hscs—u(z—!)f) MNota(£-1)52= g

o

The force follows from an integration of the stress tensor over the surface

of a volume enclosing the rotor with depth d in the y direction and one

periodicity length, ZEin the z direction.

(3%
§=dlumn,de
o

(10)
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Prob. 4.14.1 (cont.)
This expression is evaluated. *
? =/‘°J{ J[M + Nqb‘uCE - 2)] “‘“(__ _‘)Ai.',f(‘h‘%“a(i» C{E (11)

]

[T el -o}ée - [z e (n-2]-4 ! lée}l

- o
= - Nn”.p ¢, ‘;ﬂo d%—
This detailed calculation is simplified if the surface of integration is

pushed to x=0, where the impulses do not contribute and the result is the

same as given by Eq. 11.

- o, d9
= ~Gn Gl b G Ep T MNaly (12)
Note that this agrees with the result from Prob. 4.10.1, where in the long-
wave limit (b/g {41) oo
C.— ,a.AR,N z}_ i (19
1Te e
because hel

| i
')Z'l : ¢ o
To determine the field terminal relation, use Faraday's integral law

-+ E.dQ = —9_\_7\ Vo dg B &S?V\&c\ (15) l
uSura ot S' ’ s' K9
Using the given fields, this expression becomes '

=" a6
q> 41, ,u,u,‘ae-c(g [ 264 4Doto e &ilude= g L=Adndf2)

This results compares to Eq. 31 of Prob. 4.10. l where in this limit

[-]-4
Ly dseddng ") o an
8b n=t (edd)
The field winding is fixed, so Ohm's law is simply j G'E and therefore Eq. 15
becomes
$.41 = -Lg 48
'1’* + S o ' - 'G ?é- (18)
WL
Because
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Prob. 4.14.1 (cont.)
- 1 2n.d
R, = = £9 (19)
s’ Aw!r&
the field equation is
Y = R + L gl (20)

For the armature the integration is again in the laboratory frame of reference.

The flux linked is

A
2= | @I o 2l
(-]
where 2+ h 1 212 .
= g/(oH da'= 5,4(0[1'5_‘.{ +M‘a(;-_)]‘lg+y %% féi.'ﬂ(z'—s__!)]h'(zz)
E b z
= Mod [-—h; 4(.2 -22) - Nato 2 (2-4)]
Thus, b
Ao = Lo..“u$ Loz 6 /u’JL No.. (23)
This compares to the risult from Prob. 4.10.1 oo 4
s GG . A2 T
Gb -00(ed ) oo odd G/
For the moving conductors, Ohm's law requires that
~) 25
By = g - Vi 4l (29
and so Faraday's law becomes
24
. (26)
e dNE e - (M de = -d L. e
or o ,Q aY

—v&+a/v«{”°°~ S WALT SV EYRN SR

~=u
Thus X'

‘g—ﬂzﬂoi_m} _N@CL (a—%)lc‘i]g-.- —Lq.c_(_c‘}_ (28)

and finally

‘lﬂk = (aRe — G\“ 7}2_ L‘& + La 4_‘_"& (29)
dt
where
.\7\“ = 24 dNa
AT
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5.1

Prob. 5.3.1 In cartesian coordinates (x,y)
E - -
=1a.>_-zg.] ey

Thus, the characteristic equation, Eq. 5.3.4, becomes

Ax “b (A +\°5Ae)

(2)

di 23 (At hAY)

The ratio of these expressions is

dx _ S—E(AvtL;AE)

- (4)

Ci%_ %ﬁz (l\v't \’i/\Ef)

which, multiplied out, becomes

%(AvtLCAE)AX+%<AVtLEA§)=O )

If Av and AE are independent of time, the quantity Av i»biAE is a perfect

differential. That is,

AVt \,; AE. = c,ons‘\n\a'\' (6)

is a solution to Eq. 5.3.4. Along these lines pi = constant.
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Prob. 5.3.2 In axisymmetric cylindrical coordinates (r,z), Eq. (h) of Table 2.18.1

can be used to represent the solenoidal E and v.

§_17I§ ¢ Q_IJ\-E (1)

In terms of AE and Av’ Eq. 5.3.4 becomes

fif: = - ( *) j\ 3 ’ (2)
da _

di - Yo (Avth D) @

The ratio of these two expressions gives

dy = "%'i (Av : l’i As> ‘ (4)

a—

S (A kA

&
12

and hence

%(Avt\:ﬁ.Aﬁ)AHQA_( b A ) )

Provided Av and AE are independent of time, this is a perfect differential.

Hence

Av '}'_ L; AE = Constaut (6)

represents the characteristic lines along which pi is a constant.
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Prob. 5.4.1 Integration of the given electric field and flow velocity result in
AE=V(1/J and Av: -(QU/J“_()“/Q) - (x3/34)} . It follows from the result of
Prob. 5.3.1 that the characteristic lines are AV+bAE=constant, or the relation
given in the problem statement. The characteristic originating at x=0 reaches
the upper electrode at Y=Y, where Y, is obtained from the characteristics by
first evaluating the constant by setting x=0 and y=0 (constant = 0) and then

evaluating the characteristic at x=d and Y=Yq-

g.l:—%UJ/(\:V/A) (1)

Because the current density to the upper electrode is nqux and all characteristics

reaching the electrode to the right of y=y, carry a uniform charge density, nq,
the current per unit length is simply the product of the uniform current density
and the length (a—yl). This is the given result.

Prob. 5.4.2 From the given distributions of electric potential and velocity

potential, it follows that

— 21 2 - \ . -
E:_VR[-\-‘GCMQ%—-‘—FSMQCO] (2)
: 2
3 = AR oo d(e AR ] (3)
Bz UR[ (% -5)wmel, (G + 4 B)as6 4]
From the spherical coordinate relations, Egs. 5.3.8, it in turn is deduced that
2 ]
A = YR o 6 (4)
E ¥
z , ¢t .2 (3)
A - UR (__t.-_B_WG
v ) A Al

so the characteristic lines are (Eg. 5.3.13b)

v, 2 2,
= UR I_—B_) 2 bVR a6 _ s four
/\\,."’bAE _3—(“.‘ - AM.Q-!-_Y.T. = constaut (6)

Normalization makes it evident that the trajectories depend on only one parameter.

[(R) - % (1-2b)]ase - C

The critical points are determined by the requirement that both the r and ©

components of the force vanish.

B (B8 2B 8 =23 85 =2 atca B8 68288808 CC
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Prob. 5.4.2(cont.) 3
(3
1A
baVR 6 . U(l “Ti)em® =0 (8)
Y A )
bYR LR (9)
an @ - OB (X __.__) C 0=
Y: T n + 2 vz A O =0
From the first expression, \/
3
2
either @ = 1'\/.2 or (%") = | - l) U (10)
while from the second expression, 3
either O T or (‘%} = "—L‘(\— ‘% (11)

For V>0 and positive particles, the root of Eg. 10b is not physical. The roots
of physical interest are given by Egs. 10a and 1lb. Because r/R P 1, the
singular line (point) is physical only if bV/RU » 3/2.

Because there is no normal fluid velocity on the sphere surface, the
characteristic lines have a direction there determined by E alone. Hence, the
sphere can only accept charge over some part of its southern hemisphere. Just
how much of this hemisphere is determined by the origins of the incident lines.
Do they originate at infinity where the charge density enters, or do they
come from some other part of the spherical surface? The critical point determines
the answer to this question.

Characteristic lines typical of having no critical point in the volume
and of having one are shown in the figure. For the lines on the right, bV/RU=1
so there is no critical point. For those on the left, bV/RU = 3 > 3/2.

If the critical point is outside the sphere (bV/RU % 3/2) then the "window"
having area Tl((é"\z through which particles enter and ultimately impact the sphere

is determined by the characteristic line passing through the critical point

Z
T
Thus, in Eq. 7, 2
2 4/ oLV % (13)
C =% (%5 )



Prob. 5.4.2(cont.)

5.5

Y
o
<

In the limit r—ee@ , g—w/z

\

| R

C — (L) acte = GV/R

so, for bV/RU » 3/2,

(= p Ul Y = 3

‘2“/”-’” " (22 D)

(14)

(15)

= B8 B a0 s aE Bae s a8 8 =

o
;

s B e e =B =
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Prob. 5.4.2(cont.)

For bV/RU € 3/2, the entire southern hemisphere collects, and the window for

collection is defined (not by the singular point, which no longer exists in

the volume) by the line passing through the equator, 8 = M/2 ’Y‘/ﬂ, =1
(%“‘/l—qz = 2BV /Ry (16)

Thus, in this range the current is

¢ = 2bY T p:'/oU' (a7
RU

In terms of normalized variables, the current therefore has the voltage dependence

summarized in the figure.

? L'/ﬂ‘f’\t/‘U

a
3 2[(2Y n 7
4 2 U
3 ------------
[}
i
t
2} |
I
/ L]
i : W
2wV/RY =0
L] 1 : i 1 ] H >
0 1 2 3 4 Ky
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Prob. 5.4.3 (a) The critical points form lines in three dimensions.

They occur where the net force is zero. Thus, they occur where the 8
component balances
v(i+% )me =0 > 6=0 orT
and where the r component is zero
_U(]—-—>m9 *'\DVY‘,Q“(_S)
Because the first of these fixes the angle, the second can be evaluated

to give the radius

2 N \:\/ ' —
£-= :)\_/me *\/(—¥-) + | > .\_/ Q-UL(%)>M9”t1

Note that this critical point exists if charge and conductor have the same

polarity (\_/_)0) at @ =0 and if (_\[ (O) at @=T

(b) It follows from the given field and flow that

:VG ‘ = - Y‘-&-Z- '
AE m 5 Av U< Y)A“"‘e

and hence the characteristic lines are

: . LV — ns+.
Av*'t’/‘\r-.:‘U(V"%—)’“”Me+,¢.(ﬂo/a)- e

These are sketched for the two cases in the figure.

(c) There are two ways to compute the current to the conductor when the
voltage is negative. First, the entire surface of the conductor collects
with a current density —/GLEY- that is uniform over its surface. Hence,
because the charge density is uniform along a characteristic line, and
all striking the conductor surface carry this density,

¢=(amaw)obE, = anaw{obi V/aba(Roay] 4 V<O

and 1 1is zero for V> 0. Second, the window at infinity, y¥*, can be

found by evaluating (const.) for the line passing through the critical point.

This must be the same constant as found for r—o® to the right.

const = - U‘aar = bv'“'/,ﬁn (Ro/a)

It follows that i =(:|6”w)/av’ » which is the same current as given above.

B 5 B8 2 =2 8 = 2B B 2 858 B8 /| B8 2 =2 =2 = =
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CRITICAL POINT

-

Positive Particle Trajectories for a Positive Conductor in
the Stationary Flow Case (Repelled Particles)

"TRAJECTORIES

Negative Particle Trajectories for a Positive Conductor
in the Stationary Flow Case (Attracted Particles)

5.8
Prob. 5.4.3 (cont.)
TRAJECTORIES
\
“UMBREL LA”J ~WIND



5.9

Prob. 5.4.4 In terms of the stream function from Table 2.18.1, the

velocity is represented by 2Cxy. The volume rate of flow is equal to ﬂ
times the difference between the stream function evaluated on the
electrodes to left and right, so it follows that —ACa2£ = Qv' Thus,

the desired stream function is

_ Q
aa’d ,
The electric potential is Eh = Voxy/a . Thus, E = -Vo(yix+xiy)/a2 and

A

x(& (1

it follows that the electric stream function is
- 2 z z

Ae_"‘vo(x “%)/aa (2)
(b) The critical lines (points) are given by

- — QV - = \>v - -

B4+bE =~ (%, —y ) -2 (4 sx ()= (3)

2034 =~ 9 4 o2 (Lé x y o

Thus, elimination between these two equations gives

Q.

X (4)
.4 =4
43*(bV,)
so that the only lines are at the origin where both the velocity and the
electric field vanish.
(c) Force lines follow from the stream functions as
20X 203
The line entering at the right edge of the throat is given by
- @ 2 .2 2 4 4
5 %y + Vo (x -g)z-%m + BYo (ctoat) (®)
C

and it reaches the plane x=0 at

'y 'moc"“(C -~ ) @)

Clearly, force lines do not terminate on the left side of the collection

electrode, so the desired current is given by

bE, (0,y)d 2pbVe (8)
S.X/o ( 'Y) 4= ‘#%ZFT %
where Yy is equal to a wunless the line from (c,a /c) strikes to the left

of a, in which case Y1 follows from evaluation of Eq. 7, provided that it
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Prob. 5.4.4(cont.)

is positive. For still larger values of bVo, i=0.
Thus, at low voltage, where the full width is collecting, 1 =‘ﬂpbvo/2.
This current gives way to a new relation as the force line from the

right edge of the throat just reaches (0,a).

<
bY, = Qua e (9)
(c* +cta® - at)

L= ,Qg)ov, 1 ._Q_V_ QZ_ (c‘_ o,*)]___f@, _j 2\3\/‘, (C‘- aq) (10)

aat ,f‘:\L c® ) L0t

Thus, as bV0 is raised, the current diminishes until y1=0, which occurs

at

/a Gvalcz
1p (5= o)

For greater values of bVo, i=0.

¢

bV, =

(11)

|
|
1
I
i
i
1
]

c:-cz Qv O.z C.z le bVo
JIGRTEY A(ct -
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Prob. 5.5.1 With both positive and negative ions, the charging current is,
in general, the sum of the respective positive and negative ion currents.
These two contributions act against each other, and final particle charges

+ . :
other than zero and -q, result. These final charges are those at which the

two contributions are equal. The diagram is divided into 12 charging regimes

by the coordinate axes q and E0 and the four lines

E.= Vo /b, (1)

(2)
° =-Uc/l>-
2
-+ (3)
In each regime, the charging rate is given by the sum of the four possible

current components

"‘" +3‘I+ (l 4-'?\)

(4)
(.+ - 2 ‘I!\ (5)
e =
where 'I*=“p\ L‘ g‘nx the unipolar cases.

In regimes (a), (b), (c) and (d), only t'; is acting, driving the particle

+
charge down to the -q, lines. Similarly, in regimes (m), (n), (o) and (p),
only L'.,_ is charging the particle, driving q up to the lower i-qc lines.

+ .
In regimes (e), (i), (h) and (1), the current is ¢" +¢, 3 the

equilibrium charge, defined by
+ -
‘.l (9:) + ‘u (31) =0 (6)

Y,
li*‘ + | ‘:*‘ )2 2
3 =13l T - II |t 1
F . (‘I* 1)7'
where the upper sign "holds for[I*\)El wh

is

(7

ile the lower one holds for

"I'+| {JX) . In other words, the root of the quadratic which gives |?.| <l }g\

is taken. Note that ?l depends linearly on ‘Eo\ y the sign of 'is that

of \I*\"\I_‘. This is seen clearly in the limit ‘I_‘_\-vo or |I,\—wo
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Prob. 5.5.1 (cont.)

In regime (j), ét is the only current; in regime (g), C: is the only
contribution. In both cases, the particle charge is brought to zero and
respectively into regime (f) (where the current is f:.+ i:. ) or into
regime (k) (where the current is f:.+ 5: ). The final charge in these

regimes is ;z’ given by

(8)

0; |t
t2 (?:.)"‘ ¢, (71)": o
which can be used to find q,.

1T | EATEER G
}zz-;.\w (|+2E;\)-[(|+2|—I:;)-1] (9)

Here, the upper and lower signs apply to regimes (k) and (f) respectively.

Note that qz depends linearly on Eo and hence passes straight through the origin.
In summary, as a function of time the particle charge, q, goes to 9,

for E <-U°/L- or E,)U,/B+ and goes to q, for - (/,/ b. < B, Uo/!:,., .

In the diagram, a shift from the vertical at a regime boundary denotes a

change in the functional form of the charging current. Of course, the

current itself is continuous there.
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5.14

Prob. 5.5.2 (a) In view of Eq. (k) of Table 2.18.1

_1 DA, R
%= Fome s.ne So -U (1 “'?5) ces® W
2
W= = D'A“’:.U(l-'- )s-ne @
\'sih® oFr
and it follows by integration that

3
A =-U(x*-Bysue (3

v 2 A g

Thus, because ‘AE remains Eq. 5.5 .4, it follows that the characteristic

lines, Eq. 5.3.13b, take the normalized form
L2 2\ 2, —
--'z Yz——lf>5-h 6+E (—\';- +ia‘f ) sin e B?Cos O = const. (4)

where as in the text, "?c_;_\ZWGoRzE, and E:r/R,EELtE /U and 3:\5 ‘}/ﬁc

Note that g /t:?C is independent of E and, provided U > 0, is
always positive. Without restricting the analysis, U can be taken as
positive. Then, E can be taken as a normalized imposed field and 3_ (which
is actually independent of B because E/:‘ is independent of £ ) can be taken
as a normalized charge on the drop.

(b) Critical points occur where
>t )’-_&_ B =0 (5)

The components of this equation, evaluated using Eq. 5.5.3 for E and

Eqs. 1 and 2 for ‘T} , are

_(| -—%,)CoSéiE(—% +I>C°5 e T ii- =0

A% (6)

)

|+ SR )e6tE ([-)sine=0
( 2‘\3
One set of solutions to these simultaneous equations for (r, § ) follows

by recognizing that Eq. 7 is satisfied if
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Prob. 5.5.2 (cont.)
. 0\ =+ 1=R
sin@=0= 9-‘:(.“- #COSQ--}.: (8)
Then, Eq. (6) becomes an expression for r.
& {- (e3-D2E (240971 3gr=o 9

This cubic expression for r has up to three roots that are of interest.
These roots must be real and greater than unity to be of. physical interest.
Rather than attempting to deal directly with the cubic, Eq. 9 is solved

for the normalized charge, q,
%z;g-[(tl-s)f‘-—l.—(tHzE)] (10

The objective is to determine the charging current (and hence current of
mass) to the drop when it has some location in the charge-imposed field
plane (g, E), Sketches of the right-hand side of Eq. 10 as a function of
r, fall in three categories, associated with the three regimes of this
plane g(-l&- ,‘{(E <4,4 (€ as shown in Fig. P5.5.2a.

The sketches make it possible to establish the number of critical

points and their relative positions. Note that the extremum of the curves

%
o = l+2E]s>j_ ;g”E
m= L2Ce-nd < E<-1

For example, in the range |<E this root is greater than unity and it is

comes at

(1D

clear that on the @=0 axis

- 7_* < <=?~ => ho roets ‘,-E<'j. <-5;’=} 2%oots C.)_ {-E> Lt (1)

where A A
i
” L (1x2E)J2(E-N]" 3 4 <CE
C% = 24 % 1 (13)
+(-2e-NJ20-8)]"; B
2 9
With the aid of these sketches, similar reasoning discloses critical points on the

z axis, as shown in Fig. P5.5.2b. Note that %_'-'- E > }=;g~


http:P5.5.2a
http:P5.5.2b

E¢-z—

Posi-\-we l:°h$,9='0
(vepsr signs , B =4)

34

XY/
[ 2 (E")] '

posidiva lons,H=T
(vppor signs B =14)

Fig. P5.5.2a
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Prob. 5.5.2 (cont.)

Any possible off-axis roots of Eqs. 6 and 7 are found by first considering

solutions to Eq. 7 for sin® # O . Solution for r then gives

Y
€ = Qll_tE_Y (14)
(ET1)%
This expression is then substituted into Eq. 6, which can then be solved
for cos@ A(_‘
Cos 6 = - }— as

|
¥ l
|

A sketch if Eq. 14 as a function of E

shows that the only possible roots that
are greater than unity are in the regimes \

where | { € . Further, for there to be —-;:_\

|
|
1
I
|
a solution to Eq. 15, it is clear that |
|
|
|
I
|

,}‘ < | ?*‘ . This means that off-

axis critical points are limited to

regime h in Fig. 5.5.2b.

Consider how the critical points evolve for the regimes where 1< _E_

as 3 is lowered from a large positive value. First, there is an on-axis
critical point in regime c. As 1 is lowered, this point approaches the
drop from above. As regime g is entered, a second critical point comes
out of the north pole of th_e drop. As regime h is reached, these points
coalesce and split to form a ring in the northern hemisphere. As the
charge passes to negative values, this ring moves into the southern
hemisphere, where as regime i is reached, the ring collapses into a
point, which then splits into two points. As regime 1 is entered,

one of these passes into the south pole while the other moves downward.
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Prob. 5.5.2 (cont.) '

There are two further clues to the ion trajectories. The part of the
particle surface that can possibly accept ions is as in the case considered
in the text, and indicated by shading in Fig. 5.5.2b. Over these parts of
the surface, there is an inward directed electric field. 1In addition, if
] € gé , ions must enter the neighborhood of the drop from above, while
if B <4 they enter from below.

Finally, the stage is set to sketch the ion trajectories and determine
the charging currents. With the singularities already sketched, and with
the direction of entry of the characteristic lines from infinity and from
the surface of the drop determined, the lines shown in Fig. 5.5.2b follow.

In regions (a), (b) and (c), where there are no lines that reach the
drop from the appropriate "infinity", the charging current is zero.

In regions (d) and (e) there are no critical points in the region of
interest. The line of demarcation between ions collected by the drop as
they come from below and those that pass by is the line reaching the drop
where the radial field switches from "out" to "in". Thus, the constant in
Eq. 4 is determined by evaluating the expression where €= and
Ces O ‘-‘"?'./‘fc =-3/E and hence sin O = l-cos’@ = ‘_(i/§§ . Thus,

the constant is

3gL
coust. = %g (.\ + —E—:"> (16)

Now, following this line to 2-»0 , where cos®-+] and {‘s:hg-»a* gives

2

o= L /08 )

Thus, the total current being collected is

+

oF = 1"8*70%- (U-LE) = -3 T\’RZL\E\/%— <\ - %:\5. (18)
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Prob. 5.5.2 {(cont.)

The last form is written by recognizing that in this régime E {0, and
hence g‘ is negative. Note that the charging rate approaches zero as the
charge approaches | 3“ .

In regime f, the trajectories starting at the lower singularity end
at the upper singularity, and hence effectively isolate the drop from
trajectories beginning where there is a source of ions. To see this
note that the constant for these trajectories, set by evaluating Eq. 4

where sih®=0 and ¢o°$ =4 is const. = -3q. So, these lines are
rAN| .2 yas 1 et kA -
...lz(‘f --i_-)s.ne-\-c(r-;.z'&‘)sm 9-3%(.039- 3% (19)

Under what conditions do these lines reach the drop surface? To see,
evaluate this expression at the particle surface and obtain an expression

for the angle at which the trajectory meets the particle surface.

3E 2O = -
__Z,sme -3‘?@:056 \) (20)

Graphical solution of this expression shows that there are no solutions
if E)o and :6->O . Thus, in regime f, the drop surface does not collect
ions.

In regime i, the collection is determined by first evaluating the
constant in Eq. 4 for the line passing through the critical point at @=Tf.

It follows that const. = 2 1 and that

2 / bE
g = 123 o= 5 (%) & 2
- l"_E_ (l - é_E_) ?L
Thus, the current is v
ot 2
¢, = wyt (U -) E)p+ =-12TR 4 ME\%:I (22)

Note that this is also the current in regimes k, 1 and m.

In regime g, the drop surface is shielded from trajectories coming
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Prob. 5.5.2 (cont.)

from above. In regime h the critical trajectories pass through the critical
points represented by Eqs. 14 and 15. Evaluation of the constant in Eq. 4
then gives 2

"
counst. = E"Z- (%}—%: (| 4+ ‘3‘;1) : (23)

and it follows that

ey (3 )[3%+%§?<.+;§g]

% { <

Thus, the current is evaluated as

c':z 2R \E i— 3 + 2 %ZU ,J] (25)

Note that at the boundary between regimes g and h, where ?:'?*, this

L

expression goes to zero, as it should to match the null current for
regime g.

As the charge approaches the boundary between regimes h and J,?ﬁ-$
and the current becomes L —’ 2T l:‘: ?”/‘} This suggests that the
current of regime m extends into regime j. That this is the case can be
seen by considering that the same critical trajectory determines the
current in these latter regimes.

To determine the collection la&s for the negative ions, the arguments

parallel those given, with the lower signs used in going beyond Eq. 10.

‘ --_--”-----~
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Prob. 5.6.1 A statement that the initial total charge is equal to

that at a later time is made by multiplying the initial volume by the
initial charge density and setting it equal to the charge density at time
t multiplied by the volume at that time. Here, the fact that the cloud

remains uniform in its charge density is exploited.

g, 3
%.W(R:‘—Rf)/auz%'ﬂﬂz \+1341‘;R“: &) —(E“—ﬂ%e
3
+(%)- i -2
’ Te
= 4wl [1-(E]1+ 2] L
Te
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Prob. 5.6.2 a) From Sec. 5.6, the rate of change of charge density for an
observer moving along the characteristic line

%:D-\-Lé (1)

is given by

de - ‘/i’-t-\-> (2)

d¥ €

Thus, along these characteristics,

= _Z"__ ' = £ (3)
C= Teem T b

where throughout this discussion the charge density is presumed positive.
The charge density at any given time depends only on the original density (where
the characteristic originated) and the elapsed time. So, at any time, points
from characteristic lines originating where the charge is uniform have the same
charge density. Therefore, the charge-density in the cloud is uniform.
b) The integral form of Gauss' law requires that

ieé-ﬁ&a: ffAV (4)
and because the charge density is uniform in the layer, this becomes

Ec-Ey= Lo L (‘ )(z -2y) (5)
The characteristic lines for partlcles at the front and back of the layer are

represented by

des _ E. ' 9% _ (/+bE,
:{T_U"’é g b g-;- (6)

These expressions combine with Eq. 5 to show that

d
——— 2.-%2,) = L - (7)
( -5) = |+UY<2¥ ZL)
Integratlon glves
26 (-2
f §Gea) | [d(¢rr) o
2e-2q (25 -2) | ¢ ¢/
and hence it follows that o
2 -2y = (l-l-i/‘r)(zp_zs) (9)

OF o8 S0 G5 E Owm o M M B b T em Ny 9 R SN ==
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Prob. 5.6.2(cont.)
Given the uniform charge distribution in the layer, it follows from Gauss'

law that the distribution of electric field intensity is

2-%
E= Eb +(Eg Eb)l ] ab< < 2“ (10)
R <z <4
B A
From this it follows that the voltage, V, is related to E and E. by

) £ b
V= gE&i =t zb*'Eb(z;'iL)*‘(E - )(; +E (1- i‘_) (11)

.From Egs. 5 and 9, ; b .
E_;-E\, 2-%.(2‘:‘23) (12)

Substitution for Eb and zf-z as determined by these relations into Eg. 11

b i

then gives an expression that can be solved for Ef.

By = }/_ - ?‘g' (—Z—"—(%F-zg)"(n %)-;-}ﬁe‘! (2, 2oz, (14)

d) In view of Eq. 6a, this expression makes it possible to write

-2 LV _ | v . L
- <EF3 s)%z {U +T " 5% (?.-1:-%3\] 2“_( - )'T (15)

Solutions to this differential equation take the form
-2
e(iﬁ—@% +RBt + C (16)
The coefficients of the particular solution, B and C, are found by substituting
Eq. 16 into Eg. 15 to obtain

B = ZE-TB (17)
T

I 2
C BII-K %F-ZE]X , K= U+ J—I'T-(zl:—za) (18)

The coefficient of the homogeneous solution follows from the initial condition

that when t=0, zf=zF.

aT
A= =- ('"KZF-i )-’%— (19)
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Prob. 5.6.2(cont.)

The position of the back edge of the charge layer follows from this

expression and Eq. 9.

T =2 - (2 ~25)( 1 + t/7) (20)

Normalization of these last two expressions in accordance with

t =t/ N = ’t’b\//,?z’ v =u/CLv/R) (21)
(g‘ﬁ )?:-F y 2, -%—B) = (EF)%F;%\: ,13)/,9

results in

v (2p -7 l} (Zg-2g)t
g =)z -1y U + |- (2 -2g)
§ % F o2 ZF‘23[ ay ] ¢ ) 22
V (20-23)
L (e LoV fy4)-(2ets)
+ Z (2;: %1;)1Z-F i = EF'in U+ Q'V ]l
and

The evolution of the charge layer is illustrated in the figure.

' “’- 2~ =0.5
‘ M * t_}- —Olg
2 S ' .

A . .07 Yy =025
oAf e
a.z-' '.. N . . ‘. . . . . " I-
-, g |

0 b | i |

0 0.2 0.4 gt/ 4

- - “‘ - ~ _ ~ - - v- »-‘ -
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Prob. 5.7.1 The characteristic equations are Eqs. 5.6.2 and 5.6.3, written

as

do - - o'b \
%= »

dz _ (+LE 2)
di

It follows from Eq. 1 that

A / l .

£
b
Charge conservation requires that
T=p(bE+U)=L )

where i/A is a constant. This is used to evaluate the right hand side of

(3)

Eq. 2, which then becomes

= (5)

where Eq. 3 has been used Integration then gives

Sia:fc‘r (”-r) (t)_ V' ___)_|] ©

Finally, substitution into Eq. 3 gives the desired dependence on z.
1

2 =1+ (%)('f‘;;ﬂ- z ©
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Prob. 5.9.1 For uniform distributions, Eqs. 9 and 10 become

? (2)
=RAn - ‘1{'ﬂff

- —ﬂl’l + dﬂ+'ﬂ.
dt ) T
Subtraction of Eqs. 1 and 2 shows that
d _ (4)
&) =0
and given the initial conditions it follows that

/’-l- :(0. (5)

Note that there being no net charge is consistent with E=0 in Gauss' law.

e

b
—‘—

(3)

g

(b) Multiplication of Eq. 3 by q and addition to Eq. 1, incorporating

Eq. 5, then gives

S(Arym=o ©

The constant of integration follows from the initial conditioms.

Prryn = 3n, ¢

Introduced into Eq. 3, this expression results in the desired equation for

n(t). dh } 2
Sh = -Bh +a(h,-h '- 8
dt % ( ° ) ®

Introduced into Eq. 1 it gives an expression for fi(t)'

d 2, 2
Eé':—%ﬁ‘-%{ﬂ r@n, (9)

(c) The stationary state follows from Eq. 8 .

- A3 Y (10)
n=(h + -—) \(h + BN
° gd? J( o+ Qdf’ -]

(d) The first terms on the right in Eqs. 8 and 9 dominate at early times

making it clear that the characteristic time for the transients is "f;h‘-‘?./ﬂ.
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Prob. 5.10.1 With /-}(X,.?.MO) defined as the charge distribution when t=0,

the general solution is

-t/
P = (e (xe 2,0) € . Tz €/T (1)
on the 1lines
X=Xo X
Thus, for 20(0'/)5‘:0 and /0\;:0 on :
I
-a-0UX (3) |
'20—2 Tt<o |
, l
while for 2 Yo, :/) and =/, ,qxpft/T) on |
220 ferlorrd 2 p .
- I
20-.2 g—d&i >O (4) _,L _________________
This solution is shown X /% .
. . . ,{?&(x.z,o)
pictorially in the figure.
T g, .
yd ;
|
]
-
-t 2
x cfet
] e
L
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Prob. 5.10.2 With the understanding that time is measured along a characteristic

line, the charge density is - (t-t;)/ﬂr
/O=/4<t=tg)a'=°)e N T=€/G" (1)
where ta is the time when the characteristic passed through the plane z=0, as

shown in the figure. The solution to the characteristic equations is

R = constant (2{
-E:-ga-)—‘-(t’ta.) (3)

Thus, substitution for t —ta in Eq. 1 gives the charge density as
-2
fs € YoxTrd)  loc¢z ¢ uxt/d

=9 s Uxt/d <2

The time varying boundary condition at 2=0, the characteristic lines and the

(4)

charge distribution are illustrated in the figure. Note that once the wave-front

has passed, the charge density remains constant in time.

px - a/(ya."_f)
/o::/%;e

3

o ol PR
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Prob. 5.10.3 With it understood that

%: S&AV

v
the integral form of Gauss' law is

§€§‘F\ cLo;:“T
S
and conservation of charge in integral form is

io'"ﬁ-ﬁc&o.a- Af‘t =0

Because € and @ are uniform over the enclosing surface, S, these

combine to eliminate E and require

d — C T = e/a
ﬁ*l-o ,

ITJ

Thus, the charge decays with the relaxation time.

(1)

(2)

(3)

(4)
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Prob. 5.12.1 (a) Basic laws are
VxE=0o 3> T=-vd (1)
‘7‘E:€§ =:/4& (2)
v 3+ 2% -0 3
¢ dt

The first and second are substituted into the last with the conduction current

as given to obtain an expression for the potential

bé o2 528, > (;‘é Ve Ve 0
"3 sy TR xS T IR

With the substitution of the complex amplltude form, this requires of the

potential that
2 3 LA
c\§ \(@_:O (5)

A R

where

"= R, (0 4301 B (430 0] /(0; + jese)

Although ¥ is now complex, solution of Eq. 5 is the same as in Sec. 2.16,

except that the time dependance has been assumed.

A Ad&i‘__. 8% o A X (x-a) (6)
PYSI @'

from which it follows that
A

AQ3
du=-Goe roys] ﬁ;‘: _ % c‘:ﬁ?;a)]

Evaluation at the (d,ﬁ) surfaces, where x = & and x = O , respectively,

(7

then gives the required transfer relations

- Ad I
<] - kYo Tove |[§

- (,Bc_..‘) € -\-0;)‘6 @

). ~1 Ag
] v u—fjm.FJ
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Prob. 5.12.1(cont.)

(b) 1In this limit, the medium might be composed of finely dispersed wires
extending in the x direction and insulated from each other, as shown in

i X
the figure. With 0"3 and G;-» o, ol §

ol el et e e e e
X?f—.-.éwe?:/(q+éwe)->gufgz/0}

(a)
&S W—>»0,

That this factor is complex means that

s b o e -A—---Jhk -l antes wd e —d e
2

the entries in Eq. 8 are complex. Thus, V<] conducting
ol sheats x|§
there is a phase shift (in space and/or ————— T — ; --------
in time depending on the nature of the
‘ (b)
excitations) of the potential in the bulk
relative to that on the boundaries. The —— e - — — z ________

amplitude of X gives an indication of the extent to which the potential
penetrates into the volume. As w-o,X-vo » which points to an "infinite"
penetration at zero frequency. That is, regardless of the spatial distribu-~
tion of the potential at one surface, at zero frequency it will be reproduced
at the other surface regardless of wavelength in the directions y and z.

Regardless of k, the transfer relations reduce to
Ad Ad

9,‘ -1 )

. O (9)

*A A AB

x -1 ‘ 1 @
The "wires" carry the potential in the x direction without loss of spatial
resolution.
(c) With no conduction in the x direction but finely dispersed conducting

2 2

sheets in y-z planes, ¥ "'?L (|+°;/a'0 G) . Thus, the fields do not penetrate
in the x direction at all in the limit &@-»0 . In the absence of time vary-

ing excitations, the y-z planes relax to become equipotentials and effectively

shield the surface potentials from the material volume.
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Prob. 5.13.1 a) Boundary conditions are

2a A
g =V (1)

A b Ae Il
§ = i (2) :‘
\

Charge conservation for the sheet requires that

h/
4

~
-
-

al'

o
L4

\
\

% S6(% e+ (3 + 2.35)(0F -07)=0

-
N —

where A . a \\\‘ | ,/’,
Ee - aw\ ________
In terms of complex amplitudes,
2
C:wm b Al A _
s . & +:a(w-"“-“-)(9.- -D.)=0 (3)
R‘l
Finally, there is the boundary condition
2d
® =o (%)

Transfer relations for the two regions follow from Table 2.16.2. They are written

with Eqs. 1,2,and 4 taken into account.

N £ (Ra) 9 (a,R) ] PV;
L“. =€°_3m(n.c~) $u(a,R) | Li‘: (5)
R ESCUR ECD) Y .
‘Sfj o_%m(L,R) fu (b)) | ©]

Substitution of Eqs. 5b and 6a into Eq. 3 gives

S
ogm Eb

"o ¢ + %(“’ -'m.n.) e,{gm(n,a)\?,+§¥[ {N(Q'R)-;h(b,m]} =0 (7)

or sb - sef/,gm(n,a.)R
®= — (8)
m° o+ 4 Sp[ £ (a,R) -5, (b, R)]R

vhere S = e‘,o(w-w\.ﬁ-)R/G}.
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Prob. 5.13.1 {cont.)

b) The torque is
Ab*

= (awn l) L Re D | (9)

Because Eo"émilﬂ and because of Eq. 5b, this expression becomes

WP\X,G{ 15 4 (R, 0-)V§_‘_a_"j_)§_ ] (10)

Substitution from Eq. 8 then gives the desired expression

&4 € Vo) 3in (R,0) Se
f“q’ r S, 4. (a,R)-§_ (bR ™

Prob. 5.13.2 With the (§¢)coordinates defined T

l}-—.

2 = (11)

as shown, the potential is the function of &
shown to the right. This function is

represented by

gral) Vo o y3

4n@ ,1 Y athe

The multiplication of both sides by €

and integration over one period then gives A ‘/t
3T R, ¢
é ‘h6
2

<<}”F4

[N
Y,e de (2)
ud

A ‘n ,
;‘t\ﬂnzz ° 63 dé - 5

~id

which gives (n —» m)
A .
= 2V, ain (55 ©)
m T‘ m

Looking ahead, the current to the upper center electrode is
) mb 400 A b
Py A 00 A ) j{l O
EPOLERNN = .0 e gy (M
(=334 E,(D‘)me df = 20wy e sin (2X) @

It then follows from Eqs 6b and 8 that
2 - AWV, Z-g Sin (m“) %m(b R) Sem V 9 (R,2)
N w4 3 SeJE@R)-S (bRIR

(5)

o,

m S -0

where G = (w-w Q)RG,/O; .
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Prob. 5.13.2 {(cont.)

If the series is truncated at m='!j, this expression becomes one
analogous to the one in the text.

= g4 owee a,(b R)q,(},a) Sa
w { i +55¢|IS,(Q,M—§.(|:,@]R )

i
i
i
]
or L
1
|
!
!

|+ 3 S GRS RIA
Hi =4 ow eVl g, (bR)9.( R.a)( 32.5" 0-)

@)]

Vi Sl em-f Rl /Y] + SRR el

Prob. 5.14.1 Bulk relations for the two regions, with surfaces designated

as in the figure, are

AQ

fLRa) 3.]E

= (1)
ab

B |are) Sfapl|d

b g

1(t-ﬂf me)'

and

AC 'L
O, =¢5.(o,R) & (2)

Integration of the Maxwell stress
over a surface enclosing the rotor

amounts to a multiplication of the

}‘

average traction in the 6 direction by

the surface area, and then to obtain a torque, by the lever arm, R.
A oA
LB b
“'@xl.ﬁrl RE D]

~b
Because E = +&_h_e§ . introduction of Eg. lb into Egq. 3 makes it possible to write

A A

[-N
this torque in terms of the driving potential @ = V° and the potential ‘

on the surface of the rotor.
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Prob. 5.14.1(cont.)

A' Ab
) (4)

2 -w{V
T, = TREEQ, (R (35, &
There are two boundary conditions at the surface of the rotor. The potential

must be continuous, so
A b

® = &c (5)
and charge must be conserved.
. b A Ab [ A
3(@-&1\;\«)(6* —D:'\)+(9'&.D, —Z*:.D:)zo (6)
6'“ eb Aa A

Substitution of Egs. 1lb and 2, again using the boundary condition §l = V; and

Eqg. 5, then gives an expression that can be solved for the rotor surface potential.
A b A .
@ et -Vo gm(ﬁ'&>1€“é(w_ﬂw)+q-“] (7
TS @ R) =01 (0,8) + (- )&, § (0,0~ €5 (0. R))

Substitution of Eq. 7 intolEq. 4 shows that the torque is

=T R G €. 3w (ﬂ,%)a&‘.e“ (w ‘D.M) -'aoll\qo\l | (8)
Rlozigm(o‘)“)-o-;&u(olﬂ)] L\ + 3 Se]

where S - (0 -w) (€, S () - 6,4 (0,R))
e =

O‘;. %M(QIR)- o-b 'cua(O)R7
Rationalization of Eg. 8 show that the real part is

4= - TRV (6 oy - e R (0,8 Se
| ffe,m)-gf o)][ef@Rr) -6 S (om] |+ S

Note that fm(O,R) is negative, so this expression takes the same form as

Eq. 5.14.11.
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Prob. 5.14.2 (a) Boundary conditions at the rotor surface require

continuity of potential and comservation of charge.

12l=0

a
Elffi II.EEEE = Elgé
2t 36 3%

b

where Gauss' law gives G'i = G“E: -€.E,

(1)

(2)

Potentials in the fluid and within the rotor are respectively

® =E@)rcose + P@) Ses @ +T%(t)m—;9 eSSk (3

B = Q(t)rces 0 + Q@) ¥ a0

(4)

These are substituted into Eqs. 1 and 2, which are factored according to

whether terms have a sin 8 or cos 0 dependence. Thus, each

expression

gives rise to two equations in P, Py’ Qx and Qy' Elimination of Qx

and Qy reduces the four expressions to two.

(€&+ eb) éd—%. + ( €a*€b)npg 4 G'p* = -Bz(gg‘ea)é‘% +0—¥:E (5)

(GJGB)%\E—ZA ~(er& 0B -(c - Qb +aR =0

(6)

To write the mechanical equation of motion, the electric torque per unit

length is computed.

amw a N
e, ¢ 3%
T = b goz 28 28, do

Substitution from Eq. 3 and integration gives

T = aec_wrapb

Thus, the torque equation is
I i\f} +yRBA=-32&nER,

The first of the given equations of motion is obtained from

(7)

(8)

(9

this one by using

the normalization that is also given. The second and third relations follow

by similarly normalizing Eqs. 5 and 6.

" /| H : - -
4 Y . ‘ ‘ ‘ ‘ ‘ ‘ ~ _ - - - -[
[n d i
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Prob. 5.14.2(cont.)

(b) Steady rotation with E=1 reduces the equations of motion to

0= D': (10)

2
D‘P‘Q*R = \'\e_ (11)
—D.px-\-p.a ‘—‘4\-\2_&1 (12)

Elimination among these for .(3. results in the expression

Ho(+5)a=0«00 W)

One solution to this expression is the static equilibrium n-; o.

Another is possible if Hi exceeds the critical value
2
2
Ho= ' /Gep) 2 S & (10
7
in which case ) is given by

QO = Q(n;)ne"-\‘ (15)

Prob. 5.15.1 From Eq. 8 of the solution to Prob. 5.13.8, the temporal modes

are found by setting the denominator equal to zero. Thus,

2
T .
m -\‘}(w—mn)fs__ﬁ [-‘rm(ﬁ,ﬂ) - -gm (*,}ph]:. (o] (1)
S
Solution for @ then gives
. 03

_ _49%%
ER'mM§ (a,R)-%,(b,R)]

where s.m(qﬂ)Oand S..(B,R)(O so that the imaginary part of &2 represents

w= mi. + (2)

decay.

Prob. 5.15.2 The temporal modes follow from the equation obtained by setting

the denominator of Eq. 7 from the solution to Prob. 5.14.1 equal to zero.
- . - (1)
G;*m(u'ﬂ) q-b*m(oza)*a(d -QM)IGA":M(Q,“) - eb{.‘ (O, R)} =0
Solved for W, this gives the desired eigenfrequencies.

Tadw(aR) - oy f., (0, 1) @

e“*m(qan)- eb '¥M (0, R)
Note that -S-M(&,V\))O while -?(oﬁg)(() » so the frequencies represent decay.
=

W= m 4,
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Prob. 5.15.3 The conservation of charge boundary condition takes
the form
%K +2%=o0 &

ot

where the surface current density is

R=Za(0;E;)+ a,(O;E¢+G'F()_RM9) (2)

Using Eq. (2) to evaluate Eq. (1) and writing E in terms of the potential, E s

the conservation of charge boundary condition becomes

e N T

With the substitution of the solutlons to Laplace's equation in spherical

coordinates d>
A WA - :cot 4
= REMT (cnd) e o @

the boundary condition stipulates that

THANOT LY (o6d BP)_WE R ()
— L»c-e —Sa(méséiﬁ)—‘”m ]'\'a(«)"'ﬂ)mac' "
=0

By definition, the operator in square brackets is
AQ %) (6)
-h (V\ -\-l) @ p“

and so the boundary condition becomes simply

%ﬁqh(h+\)+é(o—wﬂ)a_'::o (7

In addition, the potential is continuous at the boundary r = R,

X -\ A b

® =3 : ' (8)
Transfer relations representing the fields in the volume regions are
Eqs. 4.8.18 and 4.8.19. For the outside region [3-»(a) while for the

insice region, & =* (b). Thus, Eq. (7), which can also be written as

ek S - .

S SN WS S S e
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Prob. 5.15.3 (cont.)
T Ao . Y AL
FS; n(me® & 3 (U-WQ)(D\. - 'Dr) =0 (9)
laX-N "5
becomes, with substitution for ‘v and O, , and use of Eq. (8),
Ac\ A A
E‘ar\(m—\)i .\.a' (w ..\MQ)[Q.(PH n)§a+ €bh .éal: o (10)
1L ey =

A
This expression is homogeneous in the amplitude qfk, (there is no drive)

and it follows that the natural modes satisfy the dispersion equation

wz=mL 3TN (11)
Ri€bh+€“(n+|\l

where (n,m) are the integer mode numbers in spherical coordinates.

In a uniform electric field, surface charge on the spherical surface
would assume the same distribution as on a perfectly conducting sphere....
a cos O distribution. Hence, the associated mode which describes the
build up or decay of this distribution is n =1, m = 0. The time constant
for charging or discharging a particle where the conduction is primarily on

the surface is therefore

= n (€ +€) /g (12)
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Prob. 5.15.4 The desired modes of charge relaxation are the homogeneous

response. This can be found by considering the system without excitations.

Thus, for the exterior region,

2 2b ~b
= cLenRt=emg W
R

while for the interior region,

0= €50 (0,R)8"= - 5;_*_\ )

At the interface, the potential

iz

must be continuous, so
Ac A b

Q = (3)
The second boundary condition

combines conservation of charge and

Gauss' law. To express this in terms of complex amplitudes, first observe
that charge conservation requires that the accumulation of surface charge
either is the result of a net divergence of surface current in the region of
surface conduction, or results from a difference of conduction current from
the volume regions.

2.b Camb o _c
(%2 -\-Q) 0‘-—-\72 ¥—h ﬂl"ﬂ 5V2§ -<_<':Dr -.é__’iD‘.> (4)

where
2

2
v = ;*\;‘:E So(e=? ,;e)*';:'a 34«}

For solutions having the complex amplitude form in spherical coordinates,

| 2N = (5)
(/.»..6 PE L 393 t e ze 8%/ w(nd )
so, with the use of Gauss' law, Eq. 4 becomes
. ab - w1\ oo ay 2¢c b
g (w-mn) (B -67) = 2% & +(Z5.-25)

Substitution of Egs. 1-3 into this expression gives an equation that is homogeneou

2\ - )

in §§ . The coefficient of Eﬁ must therefore vanish. Solved for écd, the

resulting expression is

jom i 2505 O 0% figmunea] |,

‘ ~ —)
‘ B

\
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Prob. 5.15.5 (a) With the potentials in the transfer relations of

Prob. 5.12.1 constrained to zero, the response cannot be finite unless
the determinant of the coefficients is infinite. This condition is met if
sinh Y&4=0 . Roots to this expression are "(A=énﬂ', n=1, 2, ..... and

it follows that the required eigenfrequency equation is the expression for

¥ with Tz=-(nn/o)1.

5

azjo=- 190D roly BT ol LR @
cle+ (FF]

(b) Note that if O;:aa-_-caga , this expression reduces to -0‘/6' regard-

less of n. The discrete modes degenerate into a continuum of modes represent-

ing the charge relaxation process in a uniform conductor. (c) For G —»O

9

and S3-»0 , Eq. 1 reduces to

=% (om) 1R+ (22V] -

Thus, the eigenfrequencies as shown in Fig. P5.15.5a depend on k with

the mode number as a parameter.
Ox ~




5.43

Prob. 5.15.5(cont.)

(d) With 0;‘-'0,0;3: 0, =0, , Eq. 1 reduces to

&2-% Pez'/[ P{z{- (ﬂg)z

and the eigenfrequencies depend on k as shown in Fig. P5.15,5b.

(3)

4 . . -
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Prob. 5.17.1 In the upper region, solutions to Laplace's equation take

the form
A

_ 3 simhBax _ £ _sinh R.(xd)
Qh-g sinh R d @ sinhi d (1

It follows from this fact alone and Eqs. 5.17.17-5.17.19 that in region I,

where i“:O
. - BN o (wt-83)
g-tugledel (o " -] sinh Rteed) o
% (R,-0)D (w0, Ry) sinh B,4

ne-|
A
2o
Similarly, in region II, where Q = v

NPT WY
§ =-Re 3 V.,AG. { (“"&hu)é e s

sinh B, (x-d)

S - (Ra)0' (R sink o
ns- AR

(w-aV) e‘o sinh a(x-4) )

D(e,8) sinhpad

> -B2 ot . Cob-aD)
(w-R)e? " sinhR(x-d) | 3¢ st-62

v ‘ ¢ +&Vo€- inh
(Bn -@)D'(w, R } sinhax

sinhpd
sa
and in region III, where & =0

nz)

1ﬁ9 '(uf—ﬁw‘7

A oo '@n
8= Qe a'V,Ae{ (@-E " 1]e®  sinh Ru(xed)
% m (R, -8)0'(w,R,) sinh R “
In the lower region, 643 0 .throughout, so
T§_h = ‘_&b sinh B, (x+d) (5)
sinh R,d
and in region L '
& ~co AT a'(“'t'ﬁ"a)
e ~1]e sinh B (xad)

§=6§e-‘1{/ﬂ1€2 (w-8,U1
% (Ra-@)D(e0,B.)  sivhRd (s

ns-|

in region II
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Prob. 5.17.1 (cont.) l
' — ,@ a)ﬂ R
= ReyVode)\ (w-r0)[é sinh B.(x4d) |
T (%n-("‘) 1®) (w,ﬁn) sinh £,d I
-8R
(w-aV) e cinhalxsd) )
O(w,8) sinhpad l
. B2 ot |
+ z (w- @nu)e sinh R, (x4d) c‘&“ !
nsi (E"ba) D (w'&“) S'n.\—\ @“A I

and in region III

§:_&é4°4€ i(u-fs,u){eé ”(’}R,]e " }e%-ge

N (R-ps) D'(=,8,.) (8)

S
nzi

Prob. 5.17.2 The relation between Fourier transforms has already been

determined in Sec. 5.14, where the response to a single complex amplitude

was found. Here, the single traveling wave on the (a) surface is replaced

by

a A ﬁ(wt -3 2) sa
® - ﬁeivoiu_'(z) -u(z-n) e = & Q(e)e (1)
where ‘pi
Aq A )
d = V,[a_'(i)—ql(i-ﬁ)lc )
Thus, the Fourier tr"iaar;sfo&m of the dr1v1ng potential 1s a(@.(g)y
8= [Bei s [ ¢k L
2 4% = 3(R -@)
It follows that the transform of the potential in the (b) surface is given
by Eq. 5.14.8 with VO-D-Q » and a=b=d.
: €o. (4)
sk Rd op 4Gy + g Cw- @u)(eue,)
a v pRE R e Y

a
where @ is given by Egs. 1 and 2. The spatial distribution follows by taking

the inverse Fourier transform.
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Prob. 5.17.2(cont.)

A b \
) A

I

@_ ea ZA% (5)

(f-2)R . .
A 5 V, @ -RUY -3, 1] e? e.apﬁ— e-ahzlc\g

-0 (Q-ﬂ) DC“,&)

- o0

where

D(e,R) 2 kB[ (ausray) 13 (w-RBOY(, +€,)]

Singularities of the integrand given by D(&,k)=0 are either

cosn(@d) =0 Rd4(l2ni-)T/3 > %::(E‘g_’.’-‘)%'—z)'.“““' coo (6)

or

(Tatay +é(w-80)(eu+€b)=o >R= _3 -3 (OZ“'G'Z)_LE%“ "

With the transverse coordinate, x, taken as having its origin on the moving sheet,

the distributionrof potential is in general given by (&q = 03
_g° allix-dy
&E - Ak Rd ’
ab o UWR(x4d) |
® anR Rd y %40

Thus, the n # 0 modes, which are either purelly growing or decaying with an

(8)

exponential dependence in the longitudinal direction, have the sinusoidal

transverse dependence sketched. Note that

these are the modes expected from Laplace's

equation in the absence of a sheet. They

have no derivative in the x direction at

n=0
the sheet surface, and therefore represent ¥\\J__Er_
. >
N~—_ - 2
/

modes with no net surface charge on the

”~
-

sheet. These modes, which are uncoupled from the sheet, are possible because
of the symmetry of the configuration obtained by making a=b. The n=0 mode

is the only one involving the charge relaxation on the sheet. Because the

wavenumber is complex, the transverse dependence is neither purelly exponential
or sinusoidal. In fact, the transverse dependence can no longer be represented

by a single amplitude, since all positions in a given z plane do not have the
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Prob. 5.17.2(cont.)

same phase. By using the identity M"l(“*a.v): m—lﬁu coaV & .&O‘V‘a w AV,
the magnitude of the transverse dependence in the upper region given by Eq. 8

can be shown to be

‘Mﬁ @ (’"iQ\= SR - dead Blx-dy+ mﬁ'&,(x-cl)m;‘&(x-l)j (9)
| ol Rd avel* R d eoBid 4 sl d 0iPR.d

where the real and imaginary parts of k are given by Eg. 7b. gg‘

. o -
In the complex k plane, the poles of Eqg. 5 LA (n=-3)

ad
are as shown in the sketch. Note that k= ﬁ is

87 (n=-) "

not a singular point because the numerator

A I -
contains a zero also at k= /6 . In using & T ¢ N
e (N =

ad

the Residue theorem, the contour is

AT (n:z
7

3

closed in the upper half plane for z € O
and in the lower half for z :‘ .

For the intermediate region, II, the term i

multiplying exp jk(g -2) must be closed from above while that multiplying exp -jkz

is closed from below. Thus, in region I, z<£ O,

ot - g0k, 08 -5,
3= @e3“32[é<~- R LT
‘:7:-: -é(@“ -B)(-1Ya [(03.*'01)*3(@ -BUMe e ] e

in region II, the integral is split as described and the'"pole"at k= @£ is now

A ‘Uf = . g .(R‘E)g - ‘55(
w - % n
Eb- Q.Q Vo ea [a( N+l - U)€ +G;] C e g

= 30 d(R,-@](Gs00)+ j(w-RUNE 4 6,)]

+ [ e, -o5 gy ]e-58°z (1)
codd B,d § U(€“+€‘5](?e, D)

;B2 -
+z[3<“, 'Q"U)eo.""c’a] e a + [éeo. (‘*’ -ﬁ’U>+G;J c D@i
n .-_,KR,“@) (- ')nc( [(0'“-\.0'5)*&‘(& -Q“UXGJQ)-_‘ ©(w,B)

Finally in region III, z > X R

actually a singularity, and hence makes a contribution.O(?.'( X l
i
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Prob. 5.17.2(cont.) 1(}1 ) a‘;x Bz

& =_. A u‘t La(w-% U)€ +G"] e - C-} " ]
5 (RaBI (D4 (o, 403y 5(w -B V(6]
3(2-3)Q -bﬁﬂ -3 B 2 }

(12)

_'}[eao:,-e.,ﬂa e ¢ - e
Cav €y 1 B4 U (€ +6)(B )

The total force follows from an evaluation of +c0
”~
= L G [*b[‘s; 05T R = W@ID STk v
Zeo
Use of Egs. 5.14.8 and 5 14 9 for .Q and ﬂD“results in

%:-@f @[3&» -+ 18 8 (e on )

(14)
) ach Bl ed (Ve (o -RUT(EL €]
The real part is therefore simply
-4 OO
; - 6&6—5-660.\ R_ ((.0 QU) € ‘ﬁ A% (15)
ATY M.QQA esali Rd [(O'QWQ + (o - ﬁU) (€.+ GL)IJ

where the square of the driving amplitudes follows from Eq. 3.

i“@‘a - +l\/\ [Q__Ll (16)
(R-3Y
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6.1

Prob. 6.2.1 (a) The zero order fields follow from current continuity

and Ampere's law,

B =(3/0) (, (0

3=3,0 ;
) - L a
31 3, ?H =~ I3 (2)

where d is the length in the y direction.

Thus, the magnetic energy storage is

.2 2z _ A ,ucuq .2
‘—;-L(.:A—Z& H% 3—3—3—:" ¢ (3)

=5

from which it follows that the inductance is L /AO.,Q/SA

With this zero order Hy substituted on the right in Eq. 7, it follows that

SH_ G- d¢

Two integrations bring in two integration functions, the second

of which is zero because H =0 at z=0.

,Mfi d( . (5)
‘r\.é| —11 It r §(He

So that the current at z=-§ on the plate at x=0 is i(t), the function f(t)

¥<

is evaluated by making Hy =0 there

sl Al (6)
b= ¢4 I+ ' ’

Thus, the zero plus first order fields are

- - Ac { 3
M=t AT ()

The current density implied by this follows from Ambere's law

3=—¥h=i;wwd( Efyﬁ
" 3t 4J 22/ 4+

Finally, the voltage at the terminals is evaluated by recognizing from Ohm's

(7

law that v= QE,E':- QX“(—X)/O'. Thus, Eq. 8 gives

ﬁ:ﬂc+L% 9)
*
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Prob. 6.2.1 (cont.)

where L= u fa /3¢l and r= & /g4 .

Prob. 6.3.1 For the cylindrical rotating shell, Eq. 6.3.2 becomes

v [ OKe _)(:K ‘?)l_ o P
w158 "l s & o Rm. o
and Egq. 6.3.3 becomes
¥ 26 >

The desired result involves ﬂ\-\e“, which in view of Ampere's law is Kz‘ so,

between these two equations, K, is eliminated by operating on Eq. 1 with + ¢ )/3

(]
and adding to Eg. 2 operated on by «22C YNe .
2 2
v 2 - —va 2 (2 S\.Qﬁ) (3)
(f S T ;9‘51&* - s 35( 3T Y558

Then, because Kz= ﬂHe“’ the desired result, Eq. (b) of Table 6.3.1, is obtained.

~

aE o o’ ou A oS G &S @

Prob. 6.3.2 Equation 6.3.2 becomes

(Vx RQ( = -G‘si-—Bf + aslvx (v xt‘*)],« (1) '
or, in cylindrical coordinates a
1 3% _ DKo _ OB, By ()
a 36 "3"{‘—¢’<a-t +u>a -
Equation 6.3.3 is ;K é K I
- ‘ 9 k
. =g == + T =oO -

while Eq. 6.3.4 requires that

[Hel=1Ky 5 -THf= Ko (4)
The o) /3& of Eq. 2 and o /dOof Eq. 3 then combine (to eliminate Sl‘(i/Q9>Z)

to give
“(dzbe‘+a&*)'49' O;Aa(bf +U5)8

(5)

Substitution for HO from Eq. 4b then gives Eq. ¢ of Table 6.3.1.
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Prob. 6.3.3 Interest is in the radial component of Eq. (Z)Vevaluated
at r= d
| ;<K¢me>_a<l<ad)},_c.(ggmdwse,)
d® aan 6 o8 d ¢ AR Y (1)

In spherical coordinates, Eq. 3 becomes

. 2 -
Y [%(Kadm B) + S-é(lqd)l =

To eliminate KQ , multiply Eq. 2 by geﬁ”" € and subtract Eq. 1 operated
on by) /Ab Because Eq. 4 shows that“ H¢“= —Kﬂ’ Eq. (d) of Table 6.3.1
follows. To obtain Eq. (e) of Table 6.3.1, operate on Eq. (1) with d%a(m;-ze),

on Eq. (2) with %(cl A0 )and add the latter to the former. Then use

Eq. (4) to replace I‘(d’ with n Hau

Prob. 6.3.4 Gauss' law for B in integral form is applied to a pill-box

enclosing a section of the sheet. The box has the thickness A of the sheet

and an incremental area$§A in the plane of the sheet. With C defined as
a contour following the intersection of the sheet and the box, the integral
law requires that

A/A<§>ﬁ~¢7n49 +3A0RL]=0 .

The surface'divergence is defined as
% H S <%\~\ W48 (2
z-HE= JA=»o SA

Under the assumption that the tangentlal field intensity is continuous through
the sheet, Eq. 1 therefore becomes the required boundary condition.

su v=-H + {B.1=0 (3)
In cartesian coordinates and for a planar sheet, \:\ = -V ¢/ and Eq. 3 becomes

—A/Aij ;%1-1_‘, “B“ 15) (4)

In terms of complex amplltudes, this is equivalent to

A/A@z‘; + (8 —%il =0 (5)
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Prob. 6.3.4 (cont.)

From Table 2.16.1, the transfer relations for a layer of arbitrary

thickness are ~o . ~a
Bx - CMQ s /q,\,.\,a Ra q/

=uR .
B . o) @ ©

Subtration of the second expression from the first gives

g -8, —/"31 _l( @) (7

In the long-wave limit, cosh ka- l-l(b\/z and sinh kA — Ra so this expression
becomes “ N
2 a o~
sa b G+ °)
LA NPT & @
”» o~

- a . .
continuity of tangential H requires that (//-vl,V,so that this expression agrees

with Eq. S.
Prob. 6.3.5 The boundary condition reflecting the solenoidal nature of the
flux density is determined as in Prob. 6.3.4 except that the integral over

the sheet cross—sectlon is not simply a multlpllcatlon by the thickness. Thus,

,u%{[uc JxlAQ + %Ai\BB o (1)

is evaluated u51ng Ht = (H,‘ . To that end, observe that
A -
- 7 e - - G, ~ b - Y L
gu.c.‘clx:ut-(_,,b +.'3¢>(\.\£_H£).L,‘ = A{RY>-C (2)
o

so that Eq. 1 becomes

§<H>t..c\9 + {B.l=0 3)

SA
In the limit this becomes the required boundary condition.
wuaVy WY & B.1=0 (4)

With the definition

-— A
K. = |3 dx (5)
1 °
and the assumption that contributions to the line integration of H through the

sheet are negligible compared to those tangential, Ampere's law still requires
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Prob. 6.3.5(cont.)

that
(6)

The combination of Féraday's and Ohm's laws, Eq. 6.2.3, is integrated over the
sheet cross—sectlon.

I(sz;) dx =0 ilb-g’—"- + v x (=8I, 13* )
This reduces to

@ % \’<¥)h = - c’Ai gt + U —-1( B.D (8)
where evaluation using the presumed constant plus linear dependence for Bn shows

that ¥\

g’B,c‘x = & {BD

(9)

It is still true that
VZ . \‘(; =0

To eliminate Ky, the y derivative of Eq. 9 is added to the z derivative of
Eq. 10 and the z component of Eq. 6 is in turn used to replace Kz. Thus,

the se ond boundary condition becomes

R TREEEE 1L S A RS S

Note that this is the same as given in Table 6.3.1 provided Bn is taken as the

average.
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Prob. 6.4.1 For solutions of the form AL —>00
s B - EV ;i T T /./I/.' -a-. rE PECEY |
expa(wt' ‘33 where ¢3S , let . ’& 2 2 a‘) = ” -t
F/ = - V(P Then, boundary conditions
L . «d) L,
begin w1thb:t:§conduct;ng sheet . . 1 ]—l l [“(I(CT ') 1
- = -q2_ é_)B (1) o = a8Vt -y
ﬁ? s a«g( Y A M= Qe (e :
or, in terms of complex amplitudes, \l | [ 1 |
2 A e Ac AL . 2 A
& H‘) a;wa Hs( $/‘o“a = —4E- ‘-VT (2)
L)

At this same boundary the normal flux density is continuous, but because the
region above is infinitely permeable, this condition is implicite to Eq. 1.
At the interface of the moving magnetized member,
o ~d e

nxjHi=o = Yy =@ (3
and (wf Qg)

neehl=-R-Ju.ml= &Ia,Me H He

ad e = He-Ha= %)

and because the lower region is an infinite half space, '-P-DO as X-»-00,

Bulk relations reflecting Laplace's equation in the air-gap are (from

Table 2.16.1 with B —»u.H,)

AL ] ~ e
el _a —eoth R T q)é
ﬁ: __—st::\ Rd ccth R} | & )

In the lower region, V-/II.J\:O » SO again Vt(’= O and the transfer relation
(which represents a solution of [J=-V¢where Y"‘/’=O with 4A—»A, and hence Bx"/lo H,..

Of course, in the actual problem, Bx= /(.( Hx + M,‘) )is

RS = - e | )

Looking ahead, what is desired is

4

<—r>--/xoaeu i =- wh @ el o
From Eq. 2 (agaln with H = a&w )

(T, =8 G 7 (B 5"



6.7

Prob. 6.4.1 (cont.)
‘e
To solve for ({/ s plug Egs. 2 and 3 into Eq. 5a

- .p‘z - AQ- - =
. b Pe coth Rd Q 0]
Mo Sy .o sin® Rd ¥
-2 "€
——x R (1reatbhied) || ¢ M| ()
I sinh fd i L _J L

The second of these follows by using Eqs. 3,4 and 6 in Eq. Sb. Thus,

e . MR (10)
inh > - tco R co '&t
sin {l R coth J(H- *h@JB]-E:C___;(HcAH @A)g}

sinhRd
Thus wit}x'(_jsﬂ.q“u "» Eq. 8 becomes
(T, = LM ¢
9 e T
R Y 7 LT D TTY) FYORSTEIS A C

To make <T%>tproportional to U, design the device to have

2 2 (12)
Clammar - coth Bl (eeoth BA << (4 coth €d)
In which case 2 Q{ )
- zqu ¢ ‘¢$v
mz 3 sinh*Rd (1 +ceth &4) (13)

so that the force per unit area is proportional to the velocity of the rotor.
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Prob. 6.4.2 For the circuit, loop equations are

A A
1:‘0<L|+M) "—ACJM L'“ “ﬂc..
= (1
SjeM <L'+M)*£'.. i 0
Thus,
4 8 4o (L +M)+ - ]
(= (2)

L (l,+M)[1u (Lo +M)+ = 1 4 ME

and written in the form of Eq. 6.4.17, this becomes

A wM R M) 4.
Y = {.sw(t M) - 3«.4,0..[3 "'“M(L‘ )"‘] 5
ﬂ [I-&-w (Lz"’M)
TR
where comparison with Eq. 6.4.17 shows that

A= i (Li+m) = S, coth RS “
L +M = i&_ﬁ coth Rd ()
A wM?/p = S... whNaHo/ 3 R sinhRd (6)

These three conditions do not uniquely specify the unknowns. But, add to them

the condltion that Ll-L2 and it follows from Eq. 6 that
LI 1

A _
R S‘n\htgd 4“‘ o AT
so that Eq. 4 becomes an expression that can be solved for M
t R 2
M= N ﬁJgi/u;,g (8)
A’“ Sth\'l ﬁ&
and Eq. 5 then gives
L= L. —1%-&[& Ahoed- L -wx agezuz(%)(g)
“ A 3
Finally, a return to Eq. 7 gives
Qm — S. _A4vW (10)
R W WAL

These parameters check with tﬂége from the figure.
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Prob. 6.4.3 The force on the "stator" is the negative of that on the "rotor".

(i, =-el gl T =4

x4t Hg*

ar ot A rw-i S N e D

¥ H H,‘_ -, H,-
In the following, the response is found for the + waves separately, and

then these are combined to evaluate Eq. 1. From Eq. 6.4.9,

Ay " A Ay
Hy =54l ot & coth fd @7 @

xt sinh fd

So that AaA
i (TR | cothRARAAT L &
DARTME { Rl mhee\[\x\*u"’”*“v} e ®
+ (ot bd-D) 1, T
Now, use is made of Eq. 6.4. 6 to write Eq. 3 as
| W, a ‘HH' \K:H |- S:t
sinh | + Sy coth® 84 0

So, in general

al Aal S‘ )
<_$ > __ng U {“'( l (‘ Sm*) “'('l(l— M- (5)
x 8 skl ]| tS; mh‘ﬁd N+ S] _cathid

With two-phase excitation (a pure

traveling wave) the second term does ‘\\\\\\\\\

not contribute and the dependence of —

, ™4
the normal force on Sm is as shown

to the right. At low frequency (from

the conductor frame of reference) the

magnetization force prevails (the force

is attractive). For high frequencies
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Prob. 6.4.3 (cont.)
qu!> 1) the force is one of repulsion, as would be expected for a force
associated with the induced currents.
With single phase excitation, the currents are as given by Eq. 6.4.18
A~
Ke =R = £ Nacy 6)

and Eq. 5 becomes

4 T 2
<-F> - Pgw dON:"O-’ Sm* - 1 + Sm- - l
¥ 32 sinht fd { +S:‘f°ﬂ’\l 8A | & S:‘Sdhtﬁd n

where Smt = U0, (w:ﬁ())/ﬁ

The dependence of the force on the _

A,

speed is illustrated by the figure.
ilaking the velocity large is
equivalent to making the frequency

high, so at high velocity the force

tends to be one of repulsion. In thé
neighborhood of the synchronous
condition there is little induced

current and the force is one of

attraction.
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Prob. 6.4.4 Two-phase stator currents are

represented by 'w't

~

K ac(. e Na COS(.Q.E) (1)

+('be N COSR&Q)-ﬂl

and this expression can be written in terms

of complex amplitudes as
e z(ut -mB) , 1(o't+m9’
K = Re[K; +iCe 1@
where A T ‘ ‘

K: =% (G Na+ 25/\/5 €ta?>

Boundary conditions are written using designations shown in the figure.

" At the stator surface,

H =-KK , (3)
(]
while at the rotor surface (Eq. b, Table 6.3.1)
T A AP P A
- 0em ¢ AY
B Ho = 2 (@-=)Be D Hy= qlo-m)GA) @

In the gap, the vector potential is used to make calculation of the

terminal relations more convenient. Thus, Eq. d of Table 2.19.1 is

At Fo(ba)  Guen®) || HE
ap = Uo (5)

Ar

A G (b,a) F.(a,b)|| H,

av Aa ar
To determine HG , write Eq. 5b using Eq. 3 for -HO and Eq. 4 for A

i . .
° = Mo Gm( L’a) lA&'\'—/“(’ F:n (°‘) B) HG ©

-§ G(w-mQ)
This expressio;l is solved and rationalized to give
'1:\;, = R:G.n“ °)ﬂ.0;(w:m fo_;i +R.Q@Qb G wima)] o)
) Vo (o, ) [4,0; (w3 madl’

Here, HeY is written by replacing m—#-m and recognizing that Fm and Gm are

even in m.
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Prob. 6.4.4 (cont.)

The torque is

S A 4,.% AV A
()= ambw L Re[ &7, (A7) +R. (A7)

(8)

which in view of Eq. 5b and é\,z --am'A/Q' becomes
e wid e A sae F LAY LAy B 9)
<‘1‘)t = “BW&°[J§"‘A4(HQJ +-3{'-"A-(H,-) ]
_ 2 N Ana .\,t . AN Ar ¥
=W Reldmse (06 (b, o)1} ~smu, K G (b)) ]
Finally, with the use of Eq. 7,
~ A k4
<’T>t= ﬂbwrn/u, G:‘(L,a){ “'<.|.l MU (w-m L)
b+ F:\ (Q\L)Y_/(QO} (u-mn)ll (10)

|1 24 03 (0w 02 }
L+ FL @S e DT

where m=p/2. This expression is similar in form to Eq. 6.4.11.




Prob. 6.4.5 From Eq. (f), Table 2.18.1

o, = e |A(6") -Ae'+ 2]

A, , A
Because A (9 +%)=A (9') , the flux linked by the total coil is just
P/Z times that linked by the turns having the positive current in the z
direction at §' and returned at 6+ w/p.

In terms of the complex amplitudes

_ a 4(wi-me’) . wt+me’)
§)‘22'.!p‘°'lA+ ¢ + A c/a(

ra a(wt mMmE-NT) A, a(:..-t-|»m9+ﬂ‘)

- A, -A_e I (2)

AL - t-ne A e’ ‘wt
= PWRCI_A.;Q +A‘.' arm ]ca
so T/p
X§7 Nycos(e2)ade’ (3
e
or

P el o'

. 0 . ’
2= MaPware |[Ae

> X4
2 (4)

(2]
Nl P O

The only terms contributing are those independent of e’
= Nopwa fa gay g9t
-_Lf_—_ReIA*+A_1¢ ()

Substitution from Eqs. 5a and 7 from Prob. 6.4.4 then gives
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Prob. 6.4.5 (cont.)

7\&'-'-'- _Ni??_w:.: RQ%-/M,FM(L,Q)\"\(_:L —/uormcL,A>)2f.

e (6)
o G0, D) Ry G (b,0)2, 030 -me)5 + E. o, b, 05 (- mad)

I+ T:(a,L)[/«,OZ(w-waﬂz
MGV REC (4 2)ug s ma)5 +R. (a, b)u,T; (i ma)]

+

|+ Fo (6, D) 1o (0 4mDT?

A2 | * 1
For two phase excitation |A+ = 3 /\/u le. . =o
this becomes
A awf (7
ﬁa = RQ ?“ e. )

where

A
'

[
S = Moo puab f
4

-Fa (b | Ga(ab)6.(le) .
o b*
‘ .y R (a,b

I+ Bs (o)) S
b'l.

For the circuit of Fig. 6.4.3,

R N AR MR
ﬁ“:éw ,.:a'w{(L.‘*'M)'{ MZ(Z'+M2+3 Mﬂ-]}
g <)-1+M) + (%)l

. (8)
=éw{ (Li+m) oM a L + o (Lam)z] }
U1+ (2ot m]

A TS G T AR S EE T R O S N O OE s OB & @G &=
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Prob. 6.4.5 (cont.)

compared to liq. 7 with 4,,% SM//I,G;LU =(l-”‘.%.l) this expression gives

L+M = —poNapwba  E,(b,a) 9)
4 b
w(l_z-r/\/\)-"-‘-: Fin (a,b) = (Lz"’M) (10)
R b R M, 05 b
A uNipwab Go(a.b) Gu(b,e) (a
17\/400-_55 4 bz
Assume Ll = L2 and Egs. CI; and ‘13) then give
F’m(O‘;L):_ /\/:P“’“ V. (3,0) (12)
b Ros 4 b

from which it follows that

/\l: PWOL Fm (L'a)

R = -
4 9s F (G‘!B) (13
Note from Eq. (b) of Table 2.16.2 that Y, (L,a)/F_(a,L) :--A/l) so Eq. 6
becomes
N pwa
R= N
4-6'_;\7 (14)
From this and Eq. 4 it follows that
z 2 \
M = HMolNe. pwa - G,..(2, BYG,, (1,%) (15)
& - ab '
Note that Gm (a‘!,): - G, (L,&)\)/A » So this can also be written
as
1
M = Ao Ne. Pw ab G. (L,a) 16
&b
Finally, from Eqs. 2 and 9 .
L = L. :/u,/\/,,pwlag -F:., (L,a) _ Gm(L'“)}
& b b an
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Prob. 6.4.6 1In terms of the cross-section

PERLCD) AT yA
shown, boundary conditions from Prob. — /u = IJ Y '
o
(ay
6.3.5 i that A
reCIu:Lre& a e b e b Y i / w0 /// C// . '
-“}."E—‘AO'\ '*H s (8, -® )0 oy s 7, /- T a 3(”¢
» ab
-@(H - H )+0'Ag(w RU)EAR,) @
In addition, the flelds must vanish as x-»00 and at the current sheet
AQ -~ a A A A .
e =gkt =k > o= R4k
Bulk conditions require that
Ae AC
Sl ¢ (R0

&, ~odRe —pER || ¢
Aa =/“°%' -1 W, (5)
Y e ||

In terms of the magnetic potential, Eqs. 1 and 2 are

z A P Py AN

&-f—e<</’c+ ") + (B, -B))=0 (6)
z A ~ b ce b (7)

‘a& (L/’ - @ >+¢A(“"@U)<‘3x ""Bx>=0
These two conditions are now written using Egs. 3 and 5a to eliminate B}c{ and BZ.

“c] 'ao\k ]
[, (Rau s R ¢ | LeXo
/”0(::/,“) (Tﬁ+wd J) ;}M&h’-d

(8)

n

"b ‘o'A(w-PkV)/!l\?_o
LQ[ 3+¢A§u %U}}_l% —-@_@_’:&%ﬂﬁl} -‘f’ 1 B d ]

From these expressions it follows that

~e R.’ {‘ +-$}_‘2{_A.(w—ﬁ(f><—%‘?;%)-§ | (9)

¢ e
{[<,+udg4>+m] sl alnd (.wtﬁm]}




6.17

Prob. 6.4.6(cont.)
In the limit where ,u—o/(/,, , having «,0° & (U 'QU)/& >>14

results in Eq. 9 becoming

(;/f_ - M&A /{u aa(w-RoO Ro) o) a(j@c{] (10)
&

Thus, as ,u,ﬁ'b(w-ﬂv) /Q is raised, the field is shielded out of the region

above the sheet by the induced currents.

In the limit where g >0 ., for (ﬂé)/a./o) ¥4, Egq. 9 becomes

v &l:w'\FéJ i (B24) an

and again as &b/‘/ﬂ' is made large the field is shielded out. (Note that

by the requirements of the thin sheet model, ka 4<1 , so ,u//l, must be very large
to obtain this shielding.)

With &A/A//dﬁ finite, the numerator as well as the denominator of Eg. 9
becomes large as /,CI'A(L.;-QU)/ @ is raised. The conduction current
shielding tends to be compromised by having a magnetizable sheet. This conflict
should be expected, since the conduction current shields by making the normal
flux density vanish. By contrast, the magnetizable sheet shields by virtue
of tending to make the tangential field intensity zero. The tendency for the
magnetization to duct the flux density through the sheet is in conflict with

the effect of the induced current, which is to prevent a normal flux density.
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Prob. 6.4.7 For the given distribution of surface current, the

Fourier transform of the complex amplitude is

~ (-8
K*= R, f A A @
o 0 a‘(@-@)
It follows from Eq. 5.16.8 that the desired force is
*fp by ¥ oo
=36 gB,‘(H%)Ai =2 Q| B (7 )4R @
- 00 —co

In evaluating the integral on k, observe first that Eq. 6.4.9 can be

used to evaluate B;.

+c0
":<A Ae “r*
(8% =&\ 4] omT ek kd By T( H, ) 4R ‘3)

Because the integration is over real values of k only, it is clear that
the second term of the two in brackets is purely imaginary and hence makes

no contribution. With Eq. 6.4.6 used to substitute for ﬁ;, the expression

then becomes

TIKT S, AR @
=W oy m §
G‘&Z ww RS (1 + S5l R4)

The magnitude |KS| is conveniently found from Eq. 1 by first recognizing

that M __( [ @9 0
\< [c _ ]ca ;K MI(E-M] .A(iég)

36&-@) 24 - jR-8) )

Substitution of this expression into Eq. 4 finally results in the integral

given in the problem statement.
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Prob. 6.4.8 From Eq. 7.13.1, the viscous force retarding the motion of

the rotor is 1
—wpl /272U
£, = et (L) e

Thus, the balance of viscous and

ﬁ.?t oy '?v

magnetic forces is represented

graphically as shown in the sketch.

The slope of the magnetic force curve

near the origin is given by Eq. 6.4.19.

As the magnetic field is raised, the static equilibrium at the origin becomes

one with U either positive or negative as the slopes of the

equal at the origin. Thus, instability is incipient as
2 (A
%A RMiKM coth Q‘A - ],_ >‘"’\1;A
.2 2 2
/‘W& qd [RM coth Rd 41 1

/ 2
where R = w‘ﬂﬂ)-’i‘;g/uao;/ﬁ) TMV:.' 7/44,H,,

respective curves are

v (2)
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Prob. 6.5.1 The z component of Eq. 6.5.3 is written with U~=(Q Yt and

[+
1-5; = A(f, 9,{;) (; by recognizing that
x - 1A 7 DA
VIAE IS TS e W
so that _ _ - _
¢ o ¢
BrUxA= ° s =-¢, )a'—A (2)
L T
[ Y 998 PR ]

Thus, because the z component of the vector Laplacian in polar coordinates

is the same as the scalar Laplacian, Eq. 6.5.8 is obtained from Eq. 6.5.3

A qu = E_A_ + .Q..)_A. (3)
MT dt >0
Solutions A= kge :&\(“) [Rp JA (ot ~m o) are introduced into

this expression to obtain

/Ao-)_r dr ) m ] (- -mOdA “
which becomes Eq. 6.5.9

<§Zi& _L_<& K‘ z-+- Eé% A =0

e s Sy - (¥ \‘.;)P\ (5)

where

\61 = é,u@ (0 -ma)

Compare this to Eq. 2.16.19 and it is clear that the solution is the

linear combination of \-\ - XY ) and ‘X ¢ that make
-3 ~ (4
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Prob. 6.5.1 (cont.)

A Ad A A p
Aa) = A A(g) = A
This can be accomplished by writing two equations in the two uknown

coefficients of Hm and Jm or by inspection as follows. The "answer" will

look like
Aov= AMLC OHGED (I gem]
( ) ( ) (6)
+ Aﬁi (____)H,.(éxﬂ)f ( )jm(én)]

( ) ( )

The coefficients of the first term must be such that the combination multiply-

N
ing A vanishes where “‘=13 (because there, the answer cannot depend on
A

A ). To this end, make them _Sm (a‘@) and H...(a 6’/3) respectively,
4a
The denominator is then set to make the coefficient of A unity where

A
\*=d, Similar reasoning sets the coefficient of A . The result is

A(ey= A LG 5.G8) -3, Gro) W (50)]
[ B (389) T(86) = I (3¥) H - ()]

N
o BT (89) 3. (89 - (0 ML (53]
[ Hu GY6) T (34) =30 GY6) Ho (550 ]
The tangential H, HB = - (QA/Q\’)//A so it follows from Eq. 7 that
?\9=-g{;\°‘[ni( ¥, G¥) -G B GYed]
MG ETGI9 -3 G ¥a) M (300
N "A@[H.ﬁ (¥ T G¥A)-3IGSY) N (554)] ®

[ Ko GG38) T (3¥e)- T (UMY |
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Prob. 6.5.1 (cont.)

* d
Evaluation of this expression at Y =d gives F‘O

HG = ‘?m(ﬁ,d,ﬂ;\d’r a (d,6,%) AA} 9
where
L (aex) = 3 L@ RG¥- K. (83, (]
| Hyo (8 ) 30 (336)- T YR KL (3369
and

Qun(t,6.6) = 4 13~ GE) Ho GY)-H, G¥l) 3. G¥al]
T4 H GIO) T GE)- 3. Gye) Mg

Of course, Eq. 9 is the first of the desired transfer relations, the first of

Eqs. (c) of Table 6.5.1. The second follows by evaluating Eq. 9 at ¢ =43
Note that these definitions are consistent with those given in Table 2.16.2
with &—D-X . Because ¥ generally differs according to the region being
described, it is included in the argument of the function.

To determine Eq. (d) of Table 6.5.1, these relations are inverted.

For example, by Kramer's rule

F_(g,d¥)=L I CN R
/'—':—ikm(ﬁ,dﬁ)-f... (du@;X)—%""(‘g’d 'X)%"‘(dlﬁzb')]

(10)
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Prob. 6.5.2 By way of establishing the representation, Eqs. g and h of

Table 2.18.1 define the scalar component of the vector potential.

A 7 - A= AF (1)

9 \
?3 2
s Ale, @

Thus, the @ component of Eq. 6.5.3 requires that (Appendix A)

- \ /\—
B= w5l

_\_P_ LA 1 L UIA (3)
> \v ar< vA) ;2" Dt 2
In terms of the complex amplitude, this requires that

2

Acwz _L_c\ﬁ - (x +:‘-3_)1-\=o (4)

where }( k + j(LJ-kUL;4d‘ The solution to this expression satisfying the

appropriate boundary conditions is Eq. 156.14.15. In view of Eq.l ,

H = Ba - 3A ‘ (5)
2 /«Y‘ 3?
Observe from Eq. 2.16.26d (evaluated using m=0) thatuR +R, = (UR) = “R

where Rm can be either Jm or Hm and the prime indicates a derivative with respect

to the argument. Thus, with Eq. 6.5.15 used to evaluate Eq. 5, it follows that
{ 2% LHGYES.Gm 3,640 H( Yo
[Hl(am)xn(dkﬁ:&(gﬂﬂ\-\‘(a‘ Yel)] (6)
+ A° L3, YO HGY) - H GYa) T, G ve) ]
[T ¥ HGY8) - R GY) T (YR

Further, observe that(Eq 2.16.26¢c) 'S (aKX) = --S (3¥K> so, Egq. 6 becomes
Hz=-___ A [3» (1%8) H,(axr)-\-\,(gXﬁ)Xe G
¥ TH YT, (Y-, AVTHAT )
A LM (YT ) - 37 (YA, (3] }
$¥ 13, (ED W (8- W, (4¥a) T, (3¥8))

This expression is evaluated at r= d>and r 3B respectively to obtaln the

H, =45
/0\

equations e of Table 6.5.1. Because Eqs. e and f take the same form as

Egs. b and a respectively of Table 2.16.2, the inversion to obtain Egs. f has

already been shown.
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Prob. 6.6.1 For the pure traveling wave, Eq. 6.7.7 reduces to
i ab, Abd ac ac g
(5= kB ROG-RGES)

The boundary condition represented by Eq. 6.6.3 makes the second term

zero while Eq. 6.6.5b shows that the remaining expression can also be

written as

Ho
<SA>‘#-_---‘5(‘-J’%U)&1 a?;[ i

wzﬁaa (e | (;\:)*

The "self" term therefore makes no contribution. The remaining term is

evaluated by using Eq. 6.6.9.

Ll M,H%ir #s i‘
(S, =¥ 7 £ wmamduf)
Y Mo

Prob. 6.6.2 (a) To obtain the drive in terms of complex amplitudes, write
the cosines in complex form and group terms as forward and backward traveling

waves. It follows that

A 2 S 3 N p ALl
K-\- = ‘a../\_/ﬂ'. + ‘b_/\_/_b_ e ' L\/_c-_ Qs 3 (1)
a

To determine the time average force, the rod is enclosed by a circular cylind-
rical surface having radius R and axial length £ . Boundary locations are

as indicated in the diagram. Using the

theorem of Eq. 5.16.4, it follows that

§,= ;nmx(% H>
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Prob. 6.6.2 (cont.)

the "self" terms are dropped and Eq. (2) becomes

{8 =T &It"a,m.u,&)(f\ij-i%«(R*“'"%Xﬂ:-y] )

Ad
So, *\2§ is desired. To this end observe that boundary and jump conditions are
Ac A A
Ha = K (4)
AJ e
He = W, (5)
~d A

::Ae = //\\A';?\e (6)

It follows from Eqs. (f) of Table 6.5.1 applied to the air-gap and to the

rod that
,/\\ » i (7)
e .5 (on .Y)\-\i -He %O(R, BIK™ -/-%(QRB)H
Hence, - 2 Y
iszi_ - 94n, c(,'tQ)K Xg\/%.;é,uo'(w:&(f) (8)
A (R ETHE ;Ms;(om)
4
Prob. 6.6.3 The Fourier transform of the excitation surface current
is . e - 1‘—@)'3
A TR WSS (7' W
5 (k-0 A z

In terms of the Fourier transforms, Eq. 5.16.8 shows that the total force

(5= —-M(B)H 0 .

In view of Eq. 6.6.5b, th1s expression becomes

Al ~b
s i)

is

(3)

. Abrbe
where the term in }-\.3 0433 has been eliminated by taking the real part.

With the use of Eq. 6.6.9, this expression becomes

TORTR
= -
G=im & S R Rd1E4 eo(f\’cq-ci(fﬁ.l] ®

With the further substitutlon of Eq. 1, the expression stated with the

problem is found.
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Prob. 6.7.1 It follows from Eq. 6.7.7 that the power dissipation

(per unit y-z area) is
A gl Ag, A
- _ A (w-BRV) Gy, - A 1
7e sy demalR R o
The time average mechanical power output (again per unit y-z area) is the

product of the velocity U and the difference in magnetic shear stress acting

on the respective surfaces
Ad LA ¥ 23 ,and
R =L &l (H) -8, (&) u @

A A
Because B":‘é% A, this expression can be written in terms of the same

combination of amplitudes as appears in Eq. 1
Q . Ad ‘d* AB Aa* (3)
sz “3&31_A (H.a) "'A (Hg)l
Thus, it follows from Egqs. 1 and 3 that

E.. = B = U )
£t .+ (w/R)

From the definition of s,

Y = -~ (5)
(w/R)
so that
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Prob. 6.7.2
The time average and space average power dissipation per unit y-z

area is given by Eq. 6.7.7. For this example n=1 and

8y, = - Ged(=-RY) 4 ACRYY -
— Re.i(0-RU, Ab¥ b
= Qe 4 (= RUAY 1,

because H% Hi = 0.

From Eq. 6.5.5b

A ¥
wRD) g0 RE b @
<i E;A\> <Sz¢ 3 g;—-iz—-—'igi.[ — }‘} ]

f Sinh fd 9
AL Al

where, in expressing A , the term in H'& has been dropped because the
real part is taken.

In view of Eq. 6.6.9, this expression becomes

Aa2
<SJ> = - @e{,(“‘ﬁv)//o ‘ R"'l (3)
%t [ fé S'\\-\\-\z BJI%-/% co‘H1 Kﬁ‘\‘c"ﬂ’l QJJ

Note that it is only because \‘ = vc&a\l-}—é S. /OL is  complex that

this function has a non-zero value.

In terms of Sh‘ E,uG'O»l (cﬁ-@V}

(4)

<S> =-Qe S""‘/“(" ll:{:]z
d'yt 2uG o® & sinh’gd [%'f} coth¥a + coth &A:(

Note that the term in E ] is the same function as represents the S'“ depend-

ence of the time average force/unit area, Fig. 6.6.2. Thus, the dependence



Prob. 6.7.2 (cont.)

of < S

. 4%

on

6.28

:SL, is the function shown in that

figure multiplied by f;ﬁh

03¢F

10
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Prob. 6.8.1 Equations 6.8.10 and 6.8.11 are directly applicable. The
’\@ Aol
skin depth is short, so ¥L} is negligible. Elimination of §4g between

the two expressions gives
M
<T> = - .QCY'%)( SJ> \I;—-; < Sé}}t (1)

where is the time average power dissipated per unit area of the
d \3

interface. Force equilibrium at the interfaces

b
can be pictured from the control volumes shown. 5%?‘

=0 PR P
Pb' (2) ? “a

{T,) +R, =0 @

Bernoulli's equation relates the pressures at the interfaces inside the

liquid.
VR VR T (4)
Elimination of the p's between these last three expressions then gives
= -29% (5)
LT, =

So, in terms of the power dissipation as given by Eq. 1, the "head" is

= Ve =S, ©



6.30
Prob. 6.9.1
With
— X, jJuT
TN
3
£ :
2 HD=H = Lhe ¢ 4
and
1
X 45 ax 2 33
Taking this latter derivative again gives
l
2 - -1 2
Di = 3 \uo ¢’ EEIR LY df
bx / diz % 4 d?z
Thus, Eq. 6.9.3 becomes
- 5 3
| / —_— %
;E-t A——%-Hl = - Xyug tf ‘iﬂ'é
a3 4%

or,

In view of the definition of f? ,.Eq. 1, this expression is the same as

Eq. 6.9.7.

(1)

(2)

(3)

(4)

(5)

(6)
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Prob. 6.9.2 (a) The field in the liquid metal is approximated by

Eq. 6.9.1 with U=0. Thus, the field is computed as though it had no y

dependence and is simply . ' "
H, = & N oe? c1(wt *s) (1)
Y p)
The amplitude of this field is a slowly varying function of y, however,
given by the fact that the flux is essentially trapped in the air-gap.

-~ A
Thus, H%'-'- QH,/h and Eq. (1) becomes

A RS
H, = @l“H" P )
4
(b) Gauss' Law can now be used to find H . First, observe from Eq. (2) that
. R
oHe _ DMy _ g, all, dh § i(w+R)

Then, integration gives H

’\ X '(Lat "%?)
H =0k a Ho3 \é—he (4)
* 14§ W4y 3

The integration constant is zero because the field must vanlsh as x —9 -o,

(c) The time-average shearing surface force density is found by integrating

the Maxwell stress tensor over a pill box enclosing the complete skin region.

’ A Ax
<Tg>t =L R H W

y 1|H\3 (5)

dy

X=0
As would be expected, this surface force density goes to zero as either the
skin depth or the slope of the electrode vanish.

(d) 1If Eq. 5 is to be independent of y,

AL‘ = constaut= '—S-f
\—\3 ay ' ol
Integration follows by mu%;iplying by dy
h
oo ("5 4
i
[» 8 o

and the given distribution h(y) follows.

(6)
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Prob. 6.9.2(cont.)

(e) Evaluated using h(y), Eq. 6 becomes

AN (8)

Prob. 6.9.3 From Eq. 6.8.11, the power dissipated per unit area is (there

is no @ surface)

S, = | 4
— (1)
< ‘(>1.t Zo—g" )
where
/ Z N
3 e
Thus, Eq. 2 of Prob. 6.9.2 can be exploited to write Hacxzcb in Eq. 1 as
<SS = AT +2 S (2
d4:~ 2oy )]

The total power dissipation per unit depth in the z directiomn is

y 1
5< 52,9 =

o

A
' gp zg<%>143—lz“¢yo sty @



6.33

4

’ — - -7
Prob. 6.9.4 Because .S& = :S; and 3}; ZG'E)the power dissipation per

unit y-z area is

S;: JE-:& dx = S
—w .

-0

)i ©
o

&l-‘S dx (1)

In the "boundary-layer" approximation, the z component of Ampere's law

becomes

ohy _DHe L DHy = T, 2

——— —

% 3y Idx

So that the dissipation density is

2 2
S -l (éﬂ%> 3)
o S \dx
In view of Eq. 6.9.8, €?l
2 2 2 Hz > e.’ 2(»)?5'
TR f (D= ( )
-6_3 = ?[ax 1 g \ yw [/ \ax
2 (4)
2 -2%
= Ho /.t‘-— e
M
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Prob. 6.9.4 (cont.)

So, for %)Vﬁ where ¢ = '3,/(/’

r o H T S Ut
_ : H&
Sc( _{ ,S Ty,\cr't
= (6)
UM
—_ 5 0 <y KUt
L )Y %¥I'g
For (/¢ {L the total power per unit length in the z direction is
vt . L .
o = Jrz",uu, +JFZ",«H, dy )
Tucy
. U Ut\/ﬂ/uc-t
and this becomes
2
! -
P=E—‘_M_H°[2JFM‘+\)'_?—(L Ut)] (8)
\ W ua
/
I pHe
—___/L'__[U\)t +L/\}T]
N Taud

The time dependence of the

total force is pherefore as .

shown in the sketch. F
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Prob. 6.10.1 Boundary conditions for the

. . s
eigenmodes are homogeneous. 1In terms of %,/{/ ./”////r/ ;s ////5

the designations shown in the sketch,

A

M, =0

ca)
d
(b)
(1)
2.-1“\6.' -'( )" ) -I.‘Ia.?—-—u
.. . .t ced). . .. N
2 .
(2) P 5

@ §/// ST

a

(5)

(6)

The bulk conditions are conveniently written with these conditions incorporated

from the outset.

6.5.1 with suitable identification of properties and dimensions.

In all three regions they are as given by Eq. (b) of Table

air gap, it is the second equation that is required.

Ab

A

For the slab
+b

1e

A

—
—

¥

ranll 18A

= Mo pef R4 lt\.;
e

ab
M_wij:l‘(a ;"‘!7'5‘('& H}

In the upper

(7)

(8)

while for the lower gap it is the first equation that applies
Ae Ae
N = 4 ot Rd R,

f

Now, with EgS. 7 and 9 used to evaluate Eq. 8, it follows that

g
-4
¥
L

Note that both of these equations are satisfied if H§=H

wth Rd -%‘1 cothifo

———————

Avndh XA

1

2
¥ pufiXa

Mo R4 + A cothon
¥ Y ]

e
Yy

(9)

o
y

(10)

Ae

H:l

. Jd

so that
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Prob. 6.10.1(cont.)

— \ —
-:‘_;f coth fécf-,_%_(ucﬁam + ikav )=o0 (1)

with the upper sign applying. Similarly, if H§= —H;, both expressions are

satisfied and Eq. 11 is found with the lower sign applying. In this way, it
has been shown that the eigenvalue equation that would be obtained by

setting the determinant of the coefficients in Eg. 10 equal to zero can be
factored into expressions that are given by Eg. 11l. Further, it is seen that
the roots given by these facto;s can respectively be identified with the even
and odd modes. By using the identity ((‘,o'iﬁ X —l)/AaJ-QX = M("/Q)

and (mﬁ X *‘)/,M;ﬁx = ud(XIz) it follows that the eigenvalue equations

can be written as _ b,n :a o L eV en
» MBJ _ éf& (12)
T Re | ety¥a . ,dd

|fm

so that the expression for the odd solutions is the same as Eg. 6.10.1 with

roots given by the graphical solution of Fig. 6.10.2 and eigenfrequencies given by

Eg. 6.10.7. The even solutions are represented by the graphical sketch

shown. The roots of this expression |

can be used in Eg. 6.10.7 to

obtain the eigenfrequencies for

M3

'

]

]

)
these modes. Note that the é%o

Moo 8|
fo

dominant mode is odd, as would ;r

A

be expected for the tangential
magnetic field associated with a current tending to be uniform over the sheet

cross-section.
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Prob. 6.10.2 (a) In Eq. (d) of Table 6.5.1,

~a
HO

of the coefficients is zero. But, the result-

A
and Hg are zero so the determinant

ing expression can be written out and then
factored using the identity footnote to

Table 2.16.2. This is the common denominator

of the coefficients in the inverse matrix, Eq. (c) of that table. Thus, the
required equation is (see Table 2.16.2 for denominators of xm and 3,“ to

which the determinant is proportional).

3‘*\(3‘)‘&)H\ﬂ(a'XL)—Xm('&XL)HMCéYQB_—_ o (1)
This 'can be written, using the recommended dimensionless parameters, and the

definition of H,."in terms of A, (Eq. 2.16.29) as

3_..\[-(,‘(3’&)] Nin L (32T =3, ;060 AN [ (¥a)] =0 (2)

where ):_:_L/aranges from 0 to 1 and XQ, = \/,&/“g—af (c.)-w\_ﬁ.\‘.

(b) Given Az db/m and the azimuthal wavenumber, m, Eq. 2 is a transcendental
equation for the eigenvalues Yo = (X(L) (which turn out to be real).
mn

The eigenfrequencies then follow. an

2

= mL -3 CXO“)MH (3)
uag ot

For example, for m=0 and 1, the roots to Eq. 2 are tabulated (Abramowitz, M.

and Stegun, I.A., Handbook of Mathematical Functions, (National Bureau of

Standards Applied Math Series, 1964) p. 415.) However, to make use of their

tabulation, the eigenvalue should be made ¥b and the expression written as

AN ERLY Nmi(a’“)%] - TGN (3¥b)=0 )
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Prob. 6.10.3 Solutions are of form

W = (e ClA/(Y‘\) phmexpé(wt'h'\d’)

(a) The first boundary condition is Eq. <‘,

Table 6.3.1

2 >
(395\"19 5\h6+

35

= —G'R Sin qu)(bt 4+ -O-b )

d BY
(2)
A A
With the substitution of the assumed form and Hd) =4wm Y/x sine
a‘m ((?}"‘__ (i/")IS&_ sihed_sine —\—r:‘] P:(C s 6)
R 48 de Sin B
(3)
— . AQ m
= -0 Rsin 6 m(-m O RY B (cos 6)
In view of Eq. 2.16.31a, this becomes
. Ao A Aoy -
..g_:{‘__(({) -y )h(hfl)z-—@sRB\. (4)
The second boundary condition is
A o A b
s = B, (5)

n H n () “o
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Prob. 6.10.3 (cont.)

Bulk relations are (Eq. (d) of Table 2.16.3)

LY

B, = M. (n+) @° )
u |

for the exterior region and (Eq. (c) of Table 2.16.3)

oAb Al
- _uhn
P, = /“———-R W %)

for the interior region.

These last three expressions, substituted into Eq. 4, then give

75&@‘: = ~;Rm (- m)B] (g

‘%——n(m)l

Thus, the desired eigenfrequency expression requires that the coefficients
Neo
of B‘. be zero. Solved for <O, this gives,

{ (n+)
mO +GT;&E/_“- i_ b+ /u//“‘] (9)

W =

(b) A uniform field in the z direction superimposes on the homogeneous solution
a field q/:' - H.,1 = - Ho‘f cos B, This has the same 6 depend-
ence as the mode m=0, n=1. Thus the mode necessary to satisfy the initial

condition is (m,n) = (0,1) (Table 2.16.2) and the eigenfrequency is

Cdo'
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Prob. 6.10.3 (cont.)

The response is a pure decay because there is no dependence of the excitation

on the direction of rotation.

(c) With the initial field uniform perpendicular to the z axis there is a

¢ dependence. ? 2
W=- H,X = —Hof' Ssine cos

~0.
This is the @-¢ dependence of the n=1, m=1 mode (Table 2.16.2).
So .

9 RHo S
r
A=Y¥5in0cosd

The decay rate is the same as before, but because the dipole
field is now rotating, there is a real part.
Prob. 6.10.4 (a) The temporal modes exist even if the excitation is

turned off. Hence, the denominétor of Eq. 8 from Prob. 6.6.2 must vanish,

#o §,(,RR) _ L (0rY) (D

_——J—-—‘l—-
M e ¥
(b) It is convenient to group

é,uo"(w—év): Sa

(2)
Finding the roots Sn to Eq. 1 is tantamount to finding the desired eigen-
frequencies because it then follows from Eq. 2 that
- S 3
W, = +%U (3)

h
Note that for Sn real both sides of Eq. 1 are real. Thus, a graphical

procedure can be used to find these roots.

N
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Prob., 6.10.5 Even with nonuniform conductivity and velocity, Eq. 6.5.3

describes the vector potential. For the z component it follows that

_L.VzA::?_A_ A (1)
AT ot +U_3..‘; '

Thus, the complex amplitude satisfies the equation

A__A -¥A=zo: X(x\;_ ﬁ +é,ucrm[w - ﬁU(x)] . (2)
dx* ’
On the infinitely permeable walls, Hy=0 and so

dA(x):o | éA(o):O (3)
dx ax
Because Eq. 1 applies over the entire interval 0 ¢ x<a+d=-.:ﬂ , there is no
need to use a piece-wise continuous representation. Multiply Eq. 2 by another

A
eigenmode, A , and integrate by parts to obtain

m
P ) N 2 A A ‘
A dAa| - (éﬁ: dA. A...A..) dx = 0 @)
- 3% dx &%
With the roles of m and n reversed, these same steps are carried out and the
result subtracted from Eq. 4." 1
A A A A
A”c_\___Aw ..A“A_A_\» - (\6: ‘\(‘:);&v— An AX =0 (3)
dx d x

07_0

z .
Note that by definition, ¥, -\5,,, = qM o (wn-“’w)

In view of the boundary conditions applying at x=0 and x= { , Eq. , the required

orthogonality condition follows.

|

(Wn-wu) G'(%);\,.A.. d % (6)
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7.1

Prob. 7.2.1 If for a volume of fixed identity (Eq. 3.7.3)

Sd.‘- dV = constant
Vv

then

dt
From the sc1alilar form of the Leibnitz rule (Eq. 2.6.5 with S —=q,)
-ad.;, AV - -
— + V-hda =0
|3 =
v S

< Xo\;AV:O

(1)

(2)

(3)

where U is the velocity of the material supporting the property d,. With

the use of the Gauss theorem on the surface integral

g[%d? +7.(¢B)]dV =0

Because the volume of fixed identity is arbitrary

Ddl + v.d‘{-}=o
>t

Now, if =/6ﬂ‘: , then Eq. (5) becomes

(4)

(5)

(6)

The second and third terms cancel by virtue of mass conservation, Eq. 7.2.3,

leaving
b—-ﬁ‘ + ‘D‘.Vﬂ‘ =0
ot
Prob. 7.6.1 To linear terms, the normal vector is
S SRS S
n= ¢ -—"3 - — (3
49 2%

and inserted into Eq. 7.6.12, this gives the surface force density to

linear terms

(:\:;2‘ = -¥ <— Dgzz. -izt)

(7

(1)

(2)
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Prob. 7.6.2 The initially spherical surface has a position represented by

F=r- (R +%0,60)= 0 @

Thus, to linear terms in the amplitude, f  the normal vector is

Rz -3 ~a ___3_?_ ) - (2)
PRI~ " TR 369 T Rateded '
It follows from the divergence operator in spherical coordinates that
2
7n =l ID‘(‘WG D ("‘MGQE) D X Dj] (3)
a0l dr 08 R D@ 20 A 4800
Evaluation of Eq. 3 using the approximation that
4 ~_l._i (4)
y ~ N R
therefore gives

('~‘1),=Y1-; f 936(» §§)+ ' za%g] (5)

where terms that are quadradic in s' have been dropped.

To obtain a convenient complex amplitude representation, where
~ M
? el (f(g ? 'P ((‘,«,9) )x?(-'-n&)use is made of the relation, Eq. 2.16.31,

M——-I--é §9(W9) P(Me)) —/;-:—P (Lh.g) -~ (n+41) (6)

Thus, the complex amplltude of the surface force density due to surface tension is
7
(o), = I( h-n(n+2)]§ )

Actually, Egs. 2 and 3 show that E; also has © and § components (to linear terms
in ? ). Because the surface force den;ity is always normal to the interface,
these components are balanced by pressure forces from the fluid to either side

of the interface. To linear terms, the radial force balance represents the balance
in the normal direction while the @ and ¢ components represent the shear

balance. For an inviscid fluid it is not appropriate to include ary shearing
surface force density, so the stress equilibrium equations written to linear

terms in the © and § directions must automatically balance.
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Prob. 7.6.3 Mass conservation requires that
3

3 3 3 3 3
-%-"“?‘ + %‘T?z = '2(%. Tl’?b ) 2 %:l +?L ;2?0 (1)

With the pressure outside the bubbles defined as Py the pressures inside the

\
respective bubbles are

X
P°—2‘<:‘. S P,,-P°=3§: (2)

. so that the pressure difference driving fluid between the bubbles once the valve

is opened is

cpe= ¥t -7 |
Pu-Pe=23¥1% "1, 3)
The flow rate between bubbles given by differentiating Eg. 1 is then equal

to Qv and hence to the given expression for the pressure drop through the

connecting tubing.

A?
Q, = 41t3 i 879 (P -B) = TST;XJYT_—l-—Z] (4)

Thus, the combination of Eqs. 1 and 4 give a first order differential equation

describing the evolution of ?: or ?L . In normalized terms, that expression

%= %1@%{33/3’?1 5
A [’éﬁfjj

Thus, the velocity is a function of g‘ , and can be pictured as shown in

the figure. It is therefore evident that if ?l increases slightly, it will

tend to further increase. The static equilibrium at ?ﬁ:io is unstable.
Physically this results from the fact that }{ is constant. As the radius of
curvature of a bubble decreases, the pressure increases and forces the air into
the other bubble. Note that this is not what would be found if the bubbles were
replaced by most elastic membranes. The example is useful for giving a reminder

of what is implied by the concept of a surface tension. Of course, if the bubble
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Prob. 7.6.3 (cont.)

can not be modelled as a layer of liquid with interior and exterior interfaces

comprised of the same material, then the basic law may not apply.

In the figure, note that all

variables are normalized. The

asymptote comes at the radius
where the second bubble has

completely collapsed. 0

.-




G N SU A P S0 SR T G5 PP G e AN W Bt e R & e

7.5

Prob. 7.8.1 Mass conservation for the lower
fluid is represented by
CEANNCIS S PRV NN
and for the upper fluid by
LYERATN RS PALNEY
With the assumption that the velocity
has a uniform profile over a given

cross-section, it follows that

A
¥ = Ly (3)
2 Ag

while evaluation of Eqgs. 1 and 2 gives

= E& - M A
% Ag?, m:ﬁf,d, (4)

- A, Me Ay - (5)
?} ? .+/%sA2 Aﬂy ¥

Bernoulli's equatlon joining points

(2) and (4) through the homogeneous fluid

below gives

z 2
L,(Q
A5 () A (BT b p st Al el
where the approximation made in integrating the inertial term through the

transition region should be recognized. Similarly, in the upper fluid,

T
o as 4L (4?)_ 45_ Af,) le,
R AT )-AG- Rk = p-agi s A ()4 APRAES
These expressions are linked together at the interfaces by the stress-balance
and continuity boundary conditions.
PlzP'L)Px"Pq,‘vs 7} -') 7} (8)

Thus, subtraction of Egs. 6 and 7 gives

[/ % +8.) A (8, )ik T (A (%,-,a)g?v (©
[‘/ b(gg ﬁ (Qe‘ff;)P %, _1( "/’a_X 3 (ﬁ,—/a)g%

(A‘?w N
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Prob. 7.8.1(cont.)

Provided that the lengths y‘. >>?, and !x > >€1 » the equation of motion

therefore takes the form

i\? 1 -fa)i( s‘) (‘H‘) 1 + KBS =0 (10)

where

S A RO AR A TRTCIS SN REANTENCr ) ERR

For still smaller amplitude motions, this expression becomes

( fﬁ +fr)(4 +9)i$: +9 (l—} ;Xﬁ—/o“)?r =0 (11)

Thus, the system is stable if /{ )fa and given this condition, the natural

frequencies are

3= (1 + 55 I
(/b"’f’a (A.- 1 +4Qwr)

To account for the geometry, thls expression obscures the simplicity of what
it represents. For example, if the tube is of uniform cross-section, the lower
fluid is water and the upper one air, /4L:>)/42. and the natural frequency

ié independent of mass density (for the same reason that that of a rigid body
pendulum is independent of mass, both the kinetic and potential energies are

proportional to the density.) Thus, if X=]ﬁh the frequency is

—
{-:2’—:#22__—#&-07}\
o JTTS‘§+)r “amNg T 2

|

o &9 S0 = 0 Or o Gn wm A
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Prob. 7.8.2 The problem is similar to the electrical conduction problem
of current flow about an insulating cavity obstructing a uniform flow.
Guess that the solution is the superposition of cne consistent with the

uniform flow at infinity and a dipole field to account for the boundary at r=R.

o1 = - U con + B coat )
Because vr=0 at r=R, B=—R3U/2 and it follows that
3
Hz_uruaa-pa\g e O (2)
1}9_._ "%-U . 0 (3)

Because the air is stagnant inside the shell, the pressure there is R;=
P"—f%h « At the stagnation point where the air encounters the shell
and the hole communicates the interior pressure to the outside, the application
of Bernoulli's equation gives

%Fﬂ;- -\—p%l‘\ +p = B | (4)
where h measures the height from the "ground" plane. 1In view of Eq. 3 and
evaluated in spherical coordinates, this expression becomes

__\_1,?1—_‘? Ul‘le (5)
P-Pn=-3f 0~ g LY A | (5)

To find the force tending to lift the shell off the "ground”, compute

2M
{= -‘pn*éa = - g(P-P;n)nx\'f,o&eJGe(Cb ()
X
: . -w/2 0 ‘
Because h%: A0 » this expression gives
L (7)
__wal-9 Uzp,;..a'GAG
—&x- nd %f
[
so that the force is
z
2T\ U (8)

i, = (5



7.8
Prob. 7.8.3 First, use Eq. 7.8.5 to relate the pressure in the essentially

Lou® - LR = L Lut
pa+;(o1ﬂk_pb+3ﬁ1&:>‘rh+o °"'4fu (1)
Second, use the pressure from Sec. 7.4 to write the integral momentum conservation

static interior region to the velocity in the cross-section A. '
statement of Eq. 7.3.2 as '

o - + "\—}.ﬁém
f= ¢ rrda =-§p%
* s
Applied to the surface shown in the figure,

this equation becomes

.&: —AU/ZO (3)

The combination of Egs. 1 and 3 eliminates

U as an unknown and gives the required result.

Prob. 7.9.~1 See 8.17 for treatment of more general situation which

becomes this one in the limit of no volume charge density.
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7.9

Prob. 7.9.2 (a) By definition, given that the equilibrium velocity

- K
is W= 00, the vorticity follows as

- =~ \ oo A
w:VX‘l}=:‘T—§—;(r7ﬂ9)cz = ZQ-C.E

(1)

(b) The equilibrium pressure follows from the radial component of the

force equation

- _ - - z P _
P (v-vv)vjvg—-o:} —ﬁSIY‘ + 'S% =
Integration gives

2 R
P=R+3p,0Y

(2)

(3

(c) With the laboratory frame of reference given the primed variables,

the appropriate equations are
vieu's

o (3 2519y o

(4)

(5)

’ ' -
With the recognition that P and ‘U% have equilibrium parts, these are

first linearized to obtain

’ /
(P ) s L, N,
Y YT

ﬂ;ﬂ' ZQ-’/Q9>+§_£ =0

r’ Ar‘

P

2%, Vg Ny lo® _
/( st ﬁ+zn7ﬁv)+rj%,_o

3L o
Tt

The transformation of the derivatives is facilitated by
the diagram of the dependences of the independent vari-

L
ables given to the right. Thus

S 233t .30 .3 a3 3 ) 4

SP 33 " 3e Mt dt 26 3 )? (10)

(6)

(7)

(8)

t —> t’

Because the variables in Eqs. 6-9 are already linearized, the perturbation



7.10

Prob. 7.9.2 (cont.)

part of the azimuthal velocity in the laboratory frame is the same as that

in the rotating frame. Thus

(_ I- ’ = x‘ _‘y ,_ .
ﬁr—ﬂ,’dgzﬁrnﬂg]pm Oy 9,113-7}%) P =P (10)
Expressed in the rotating frame of reference, Eqs. 6-9 become
p L 3% 3.,__.-'} (11)
<= = (W) + =2 o 2 =0 .
¥ ar( \) Y 332
Y p (12)
‘E;i? -:Z,£)-1%;> 4--—;: =0
(13)
3___._1}9 Q%) ISP - o
/4< St +2 r) 56 -
My, 2P _o (14)
P 3 Y

(d) 1In the rotating frame of reference, it is now assumed that variables
take the complex amplitude form a(‘—*’f O - %-E Y

[3)- &3] <

Then, it follows from Eqs. 22-24 that A

o= L Zréhh‘g-éwag (16)
\g /a (zn)z - ot d“

-(3 = - m_‘.“ﬁ 3 -2 ) —I% : an
9 /0 <?a S):)Z.-_ tgbl

{ji - B 2 (18)

Substitution of these expressions into the continuity equation, Eq. 11, then

gives the desired expression for the complex pressure.
A 5 A 2 .2
¢ d -Hf%‘-e—@(\m +‘5")=0 (19)
€% Ay

where
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Prob. 7.9.2 (cont.)
2
2 (200
\‘Z‘:_: g« Il- w;]

kS L&
(e) With the replacement % —"\( , Eq. 19 is the same expression for
A
P in cylindrical coordinates as in Sec. 2.16. Either by inspection

or by using Eq. 2.16.25, it follows that

4 HmGlA T (¥ = S (UBY N (¥ )

A A
P=P
Him (3%) Jea(3¥) = Tm(3¥6) Hu(58 )
(20)
450 _ T GV B (¥~ W (¥ T (Y V)
T (334 W (380) - Hi(330) T (3¥6)
From Eq. 16, first evaluated using this expression and then evaluated at
Y=d and V=@ respectively, it follows that
~ /‘d- - - -
1}' Sf‘m(ﬁn d)b') 4.'2&%1;" %M(d'(’!,)w) ]Sd
I
= 'J—;—; (21)
’\{5 ["(49--‘0> P
% G (6,3,%)  S.(@p ¥z E
| i B
The inverse of this is the desired transfer relation.
[ aa] _ [ Mg
P ';hgd(sl()+z-‘%n:?: -3-—-@#’3) 1} (22)
= {9<4§]ﬁ—u;)
A{} 3‘QD AN
P -9 3,4,%) ;hga,A,x)»fgg; %

where

D = [ (6,24, 94222113 (08, 1) 20 -5 (830)yo00)
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Prob. 7.11.1 For a weakly compressible gas without external force densities,

the equations of motion are Eqs. 7.1.3, 7.4.4 (with .Igex=0) and Eq. 7.10.3.

B«% + /37 Y=o €))
Pl Y L pvB]+vp=0 (2)
£ = fo + (p-P)/a? (3)

where /0° , &% and P are constants determined by the static equilibrium.
With primes used to indicate perturbations from this equilibrium, the

linearized forms of these expressions are

1 2p v-v'=0 (4)
otSt /% -
- ]

where Egqs. 1 and 3 have been combined.
The divergence of Eq. 5 combines with the time derivative of Eq. 4 to
eliminate ¥+ and give an expression for p' alomne.
= %_E- 9 P )

(ot - md)
For solutions of the form p-&e P(V)p ('-”Q)Cé , Eq. 6 reduces to

(See Eqs. 2.16. 30-2.16.34)
\Ml A " 3 A
vc d JP P nd .
( AY) 2 sinb (s‘ T ‘(“s no P P= 0

In view of Eq. 2.16.31, the second and third terms are -n(h +Y) P., P
so that this expression reduces to
TA
'(‘
AY‘ +zrs\;g s (25 h(hﬂ)]{;__.o (8)
Given the solutions to this expression, it follows from Eq. 5 that

1} .3___9 9)
w(’o ar

provides the velocity components.

Substitution into Eq. 8 shows that with &= Q&'_‘ , solutions to Eq. 8

‘3"‘(“)- zu Xn(\-:o ) h W) 2 r HM.L

(.4‘“ and ‘-\h are spherical Bessel functions of first and third kind. See

are

Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, National
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Prob. 7.11.1 (cont.)
Bureau of Standards, 1964, p437.) As is clear from its definition, hh(ubis
singular as U—» (0.

The appropriate linear combination of these solutions can be written

by inspection as

W) hn(-af)] [a'.x‘-:,—:‘) i} h,‘(%?)l

= xﬂ‘) ha (48) o Lin(82) @2)
in(E) - l'_'_n._(_eé)] [ih(“’ig) _ I’l (ﬂé)] (10)

! 'én ) h, (&) , 4n () h, (2)

r-_;_ {a (5 b, () b () (45) o
o & g ()b, () = b @) jn (2) 7
PN CNCRIMC OPHCO NP B
5 * hy (28)gn (22) - 4n (), (23

where é" and h" signify derivatives with respect to the arguments.

Evaluation of Eq. 11 at the respective boundaries gives transfer relations

) R R X I WCRON N
= 3 (12)
ve| Pl gn@e,)  Sa@e)| | pe

where

- e h (294 (84) - 4n(®) he (29
S’n(x. )= -
Y ,&h <_x)|1 (2y) - 3.,‘ (__‘z)\—. (w x)
b (£7) 40 (8) —3n (8%) b (8%
S am@a)h, (29)-n (& 9) b (£%)

In(xy) = -2
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Prob. 7.11.1 (cont.)

Inversion of these relations gives

;sdq fula,6) -9, (d,8) '\:
0 = =P 3 (8.4) §*h(@:‘)_ 1')55 (13)
) {'n(ﬁ,d) "n(d'(s) ~3n ((gi’l)gh (a,8)
“and this expression becomes

[ ] i 1€ A ]

I;J F; (6 :d') Gn (dlg) 1}"' .
| =i A (14)
7 | Gu(8,?) Fah®)]| ¥ |

where

FGo = & Pa) 6 -dn(@ b (29
" IR - i GO E)

Gnlxy)z-2 by (22) 4 (82) -4, (B2) b ()
L ()6n (28)-4 (22) b (29

With a rigid wall at r=R it follows from Eq. 14 that there can then only

be a response if

k. (o,R) = '6"( ) (15)

N
so that the desired elgenvalue equation is
n (=0 (16)

This is easy to see without the transfer relations because in this case

Eq. 10 is replaced by simply

A ad ;. (LF

so that it follows é:;m Eﬁ 9 that
._.;1__F> (L_{) .—J:>
in(2F)

A

A
For pd to be finite at r=R but Vr-‘o there, Eq. 16 must hold. Roots

to this expression are tabulated (Abromowitz and Stegun, p468).
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Prob. 7.12.1 It follows from Eq. (f) of Table 7.9.1 in the limit B—~O

that o
ﬁ“:é(u-BUS/aVMCO.R)#, )
where
3. (¥R)
F. (o,n E
(o,)—~ R IL(GYR)

It follows that there can be a finite pressure response at the wall even if

@)

there is no velocity there if

YR =0 > w -Ru = tak (n= )

(4 : = . 3
T.(3¥R) =0 3 ¥R =y ,n#o,ti 2 .- (3)
The zero mode is the principal mode (propagation down to zero freqguency)
R === (4)
vla

while the higher order modes have a dispersion equation that follows from the

roots of Eq. 3b and the definition of .x .

~aide 2R _(w-BUY

(5)

Tkz
Solution of k gives the wavenumbers of the spatial modes
L 3
U2\ afwt- (a®-vda (6)

R =

This dispersion equation is sketched below for subsonic and supersonic flow.

| w
\\\\\\\\:\\Tz§~____—

{
=';”— —

(a® -U7)

U+a
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Prob. 7.12.2 Boundary conditions are

[ XS

[ £

. =0 (1)

Ac(_____ AL (2)

X 1.3

ad (3) )

P = P *b . './ab)ab . ) .
A (4) § {
W =0

With these conditions incorporated from the outset, the transfer relations (Egs.

(c) of Table 7.9.1) for the respective regions are
[ $<] B A A B | Y
- ‘e . AM\RXQCL

NI -1 ad
. P J L M_'_,Q‘(a& wJY“a J J
Fad? - 7

Y ol Y
P " L By b l@dn\:.q

L
where K ﬁ’_ w/Q and Xi = & z/qb . By eguating Egs. 5b and 6a

(5)

it follows that

$20 wthia = 9Lt wehnb
'S b

(7)
With the definitions of \(& and xhthis expression is the desired dispersion
equation relating ) and g . Given a real ¢’ , the wavenumbers of the spatial

modes are in general complex numbers satisfying the complex equation, Eg. 7.

For long waves, a principal mode propagates through the system with a phase
velocity that combines those of the two regions. That is, for |X&01“\and \\6\,\5‘ < 1!

Eq. 7 becomes

P
{—& {;'—?’ﬂ%( 1% (&)1 _

and it follows that

-y

_’0_
fla (9)
1>

g

o
W
1+
Pl
0
o
N
oy
pole

. e =S



Prob. 7.12.2(cont.)

7.17

A second limit is of interest for propagation of acoustic waves in a gas over

a liquid. The liquid behaves in a quasi-static fashion for the lowest order

modes because on time scales of interest waves propagate through the liquid

essentially instantaneously.

Thus, the liquid acts as a massive load comprising

2 £ 3

%)
one wall of a guide for the waves in the air. 1In this limit, Q. {<Q and %>> o
°

Y, ~@

Lo_ thR

Aoy

This expression can be solved graphically, as
illustrated in the figure, because Eq. 10 can

be written so as to make evident real roots.
= (Y a . (1)
‘;?, Raodl &b = (X2 fom (¥a)

Given these roots, it follows from the definition

and Eq. 7 becomes

b=-

¥

¥,

a

\

|
!
|
i
|
I
|:

a,
|
|
|
|

of Xq that the wavenumbers of the associated spatial modes are

%_4-(&":_ dh

A

)2
T @

(11)
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Prob. 7.13.1 The objective here is to establish some rapport for the

elastic solid. Whether subjected to shear or normal stresses, it can deforr

in such a way as to balance these stresses with no further displacements.

Thus, it is natural to expect stresses to be related to displacements rather
than velocities. (Actually strains rather than strain-rates.) That a linearized
description does not differentiate between ?(‘:;,t)interpreted as the displacement

of the particle that is at X, or was at :fo (and is now at ?o-i'g(‘.',,t)) can be

seen by simply making a Taylor's expansion.
3(5,+%, 1) = $<v>+°?\%+--- a

Terms that are quadradic or more in the components of i are negligible

Because the measured result is observed for various spacings, d, the suggestion
is that an incremental slice of the material, shown analogously in Fig. 7.13.1,

can be described by

. -p ?(x-mx) $L (%)

AX

(2)

In the limit Ax—»0, the one-dimensional shear-stress displacement relation

follows
Teos G2%
DX

For dilatational motions, it is helpful to discern what can be expected by

(3)

- s e W e

considering the one~dimensional extension of the

thin rod shown in the sketch. That the measured /‘—_“"

result holds independent of the initial length, 1

j , suggests that the relation should hold

s -
for a section of length Ax as well. Thus, T

SO\
AN
——
e =s

® K )
3 b o l
T = Y ;x(x v - 3,00 Meaxs'- 3, (X+6%)
xx AX (4) g (x) |
In the limit bX-»0, the stress- displacement relation for a thin rod follows. '
’T - E. bi (5) ‘
XX Bx ’
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Prob. 7.14.1 Consider the relative deformations

of material having the initial relative

displacement AY , as shown in the sketch.

Taylor's expansion gives ?
5% +6¥) -t (¥) =f‘(‘t")+%;‘£a ax, - L))

Terms are grouped so as to identify the 9

rotational part of the deformation and exclude it from the definition of
the strain.
i‘.(i-+o\‘-)—$i(f)=la. ); )Y 14;)( + € &Axa,e -:ll?i*_é%l 2)
Thus, the strain is defined as descrlblng that part of the deformation that
can be expected to be directly related to the local stress.
~ The sketches below respectively show the change in shape of a rectangle

attached to the material as it suffers pure dilatational and shear deformations.

hofvv\ag 5'\'!‘&.1\«\ S»\ch-f S'\’hu‘-m
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Prob. 7.15.1 Arguments follow those given, with gij-—’ eij' To make Eg.

6.5.17 become Eq. (b) of the table, it is clear that
Q‘—@t:aeﬁ,;%z=7’
The new coefficient is related to G and E by considering the thin rod experiment.

Because the transverse stress components were zero, the normal component of
stress and strain are related by

T« [k, ®. &]le.,

°|= %z. %. Ez Cyy

0 %1 %‘L %t eu
Given Txx' the longitudinal and transverse strain components are determined from

these three equations. Solution for e x gives

(%,+R,) (3)
&.(@.+&)-:&:T*"

and comparison of this expression to that for the thin rod shows that

Ge +"hs
Solution of this expression for —)5 gives Eg. (f) of the table.

It also follows from Egs. 2 that

] _(Rr-R&)  _ R,
?ﬁ R+2(&-2D - R, 4+ R, >

With k1 and k2 expressed using Egs. 1 and then the expression for '), in terms of

G and E, Eq. g of the table follows.



-’ -

.
— - ‘- -' -/

A

oy 8 @ ==

7.21

Prob. 7.15.2 In general

eaé = Q‘:Q Qa‘g em

In particular, the sum of the diagonal elements in the primed frame is

¢
evm = a"& Qns eﬁj

It follows from Eq. 3.9.14 and the definition of a.j

Thus, Eq. 2 becomes the statement to be proven

/

C“n - S&R c&g = e‘hn
Prob. 7.15.3 From Eq. 7.15.20 it follows that
.p o 297
: d
S, =] o P 0
Y o P

Thus, Eq. 7.15.5 becomes

J

that a, ,a, , =
J

rp-'T [2) 77:]‘-4 ”n,q

° P-T o ||n[=0
. U ’
|7 0 P=T]|hs)

which reduces to
3 2
-(p-T) + (—%—g)(P—T):O
Thus, the principal stresses are
T=p )-W— = ‘D'i 7lbq
From Eq. 7.15.5¢ it follows that

n|= :‘:‘13

3y

so that the normal vectors to the two nontrivial principal planes are

L

i% = i%f'< zt-t.zi)

T

(1)

(2)

(3)

(1)

(2)

(3)

(4)

(5)

(6)
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Prob. 7.16.1 Equation d of the table states Newton's law for incremental motions.

Substitution of Eq. b for T 3 and of Eq. a for eij gives

3Ty _ k )+—) > (A?&3 (1)

DX DX&
Manipulations are now made w1th the vector 1dent1ty
vx9x% = v(93) -9°8 (2)

in mind. In view of the desired form of the equation of motion, Eqg. 1 is

written as

D Vi é?g 3?3 )
_D__i = (;g;z)b ) G, Aax ;xe) c,gx (% + j_;) (3)

Half of the second term cancels w1th the last, so that the expre551on becomes

43 --(.‘?(;7') (EEE)-(‘,&[%KS—&-)— Pf_?:_. 1 (4)

SX D% X
r fe 3"33"3

In vector form, this is equivalent to
v T = (2G42:) V(%) - Glv(v-3)-v'% 1 (5)

Finally, the identity of Eg. 2 is used to obtain

VT =QGAN)VW(vT) -G, VRIXS ()

and the desired equation of incremental motion is obtained.

- - A
Prob. 7.18.1 Because As is solenoidal, VXVXAA_ = =V AA and so

substitution of f into the equation of motion gives
{3t 6T El et e

The equation is therefore satisfied if

q - —
A AL 4 L Yz IG/2 (2

vV = S@G,*ﬁs)/,o 3

That Xs represent rotational (shearing) motions is evident from taking the

“J ‘ - - - —y ~' '-
; v

curl of the deformation

v %% .-.invxla]—vxv‘& = -szz\,g (4)

Similarly, the divergence is represented by qgalone. These classes of deformation

propagate with distinct velocities and are uncoupled in the material volume.

However, at a boundary there is in general coupling between the two modes.
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Prob. 7.18.2 Subject to no external forces, the equation of motion for

. ‘
" i !

the particle ié simply
c&tj U=0 (1)
/A% + 6T ;71% =
Thus, with U0 the initial velocity,
U = Us axpl(=t/0) @
2
G/D(PR/))

Prob.7.19.1 There are two ways to obtain the stress tensor. First, observe

11}

where T

that the divergence of the given Sij is the mechanical force density on the
right in the incompressible force equation
95y - 2 S, > (é? )
— (1)
S X ;x ~P 0y + & ax

Because ;f/;x s V3$=0, this expression becomes

5: D AT
Dpx - S{ * SBXDX 2

which is recognized as the right hand 51de of the force equation.

As a second approach, simply observe from Eq. (b) of Table P7.16.1 that the
required Sij is obtained if \sv’f - -p and eij is as given by Eq. (a) of
that Table.

One way to make the analogy is to write out the equations of motion in terms

of complex amplitudes.

éw{mhﬂ,:-é_')é‘ (Jv -gv‘) (.aw)ff ".ﬁ-\-G (A? ﬁf)

Ax'-
(Jf Y= a%P -\-7(.——') % C'}“)ﬂiﬂ aap -\-GA(—-a %Zé;) (4)

(5)
2 - , ?
_cr— 3% ' ;,{" b (6)

Sxx= _";.;-7{;3;’: éx,‘: ~?+G _A—L (7)
x = 7(%\%“3@7@ Sye= G Ti‘é‘és")

The given substitution then turns the left side equations (for the incompressible

fluid mechanics) into those on the right (for the incompressible solid mechanics).
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Prob. 7.19.2 The laws required to represent the elastic displacements

and stresses are given in Table P7.16.1. In terms of ZS and Y4 as

defined in Prob. 7.18.1, Eq. (e) becomes

SA A )Y, - *w.l= 0
?{5 44.(;_‘vxv><A,]_vaS{_.z (2G42,)V %]_ (1)

- - 2
Given that because v.A,=0,v><vx Ay = -V As , this expression is

satisfied if

Bzﬁs — 2'_ b"-A - Gs i_A_{ +§_A_

Dt 9/25- v As ; Jt2 ﬁ < p S ‘qz) (2)
&=ZG+)5VC&$_D__‘_K_26+7\SQ_({: g_t_f (3)
Jt? ot? 2 9% dyr

In the second equationms, K.s= A(K.‘g,{)il, % = (/’(x»ﬁat) » to

represent the two-dimensional motions of interest.

Given solutions to Eqs. 2 and 3, ? is evaluated.

_ DA D¢
gx—s-‘é——-—é—;- (4)

% __._:DA\ Eﬁf/ (5)
9 dx Yy

The desired stress components then follow from Eqs. (a) and (b)

from Table P7.16.1.

+ ?sbj‘é

3x
= (2. Gs +7\s3"§;

Sax = G ( gx > 7
a'(“’t - gg)

A
In particular, solutions of the form A = Re Al(x) e and

(6)
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Prob. 7.19.2 (cont.) )

A 'wt"g
¢ = Re@(x) ea( 2)

are substituted into Eqs. 2 and 3 to

obtain
2

A
-4 A=o ®)

N

C\z
4

X

AZ{P _X1A=O (9)
e <Y

where Y: = %1"("74/ Gs  and Xcz = RZ - wzf / (2 Gs + 7’9
With the proviso that \‘s and Kc have positive real parts,

A A thX " A iK,_X

A:A\C > Y=u,C (10)
are solutions appropriate to infinite half spaces. The upper signs refer
to a lower half space while the lower ones refer to an upper half space.

It follows from Eq. 10 that the displacements of Eqs. 4 and 5 are
" i-xsx A '.thx

%,ﬁ - KA e Fl.We | (11)

A +Y X A +Y %

%-3 :-Ks A\C +a%q}| ¢ (12)

A A
These expressions are now used to trade-in the (A| ) (-I/,) on the

displacements evaluated at the interface.

W R 2% A

(13)
4 ly
I ‘3- I +Xs 3 ] LLK_

Inversion of this expression gives
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Prob., 7.19.2 {(cont.)

[~ A I . % t\‘ n '“?31
A, ? < 15
_ | (14)
Al ?g-‘{c_‘{s A4
R
¢ 1Y, Nk
-3 -l - o - 9-
In terms of complex amplitudes, Eqs. 6 and 7 are
& A
0 o (26, 425 RN
Sxx - ( st as .J;— -3 14 (15)

"

S'a* Gsi_%;‘a “6%%\"1 e

and these in turn are evaluated using Eqs. 11 and 12. The resulting

expressions are evaluated at X =0 to give

- ar - . ar . (17)
5: 72, G 8 [-(26 R 3,] A
S -GE)  TiGRA W
ax

Finally, the transfer relations follow by replacing the column matrix

on the right by the right-hand side of Eq. 14, and multiplying out the two
C o *_ 2

2x2 matrices. Note that the definitions, V. = (2 Gs+7as)//t) Y = Gs/ﬂ (and

k3 E 8
hence ¥ -2U =7’s/f’ ) from Prob. 7.18.1 have been used.

\
— - _ u, " - -< - o - - _ -
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Prob. 7.19.3 (a) The boundary conc&itions are on the stress. Because
A

~
a
only perturbations are involved, S“ and Sg, are therefore zero. It
A

sa a
follows that the determinant of the coefficients of (?x , s‘;) is therefore

zero. Thus, the desired dispersion equation is

L (3 - By, (Y- R
K3 T 2..2 2 (1)
+ %‘-‘}:(x:_‘. %z— ZYCKS)I?; (-lﬂc. -2 7’05 ) -% X':. +2Xc.xs‘/os 1: o

This simplifies to the given expression provided that the definitions of

2 N T
Xs and Kc_ are used to eliminate l} through the condition

d}z(x:_gl) - 1}: (K: _Ez).
() Substitution of ¥, = B -3/ Uy ) Yo = RS =t/ into

the square of the dispersion equation gives

2 4 1 &

4
(ZQ"’"")—/& ( 1)?& =0 (2)
Y
S (2
¢

Division by ?L gives

Z
" U .

where & 2 w /@1& and it is clear that the only parameter is 1}5 &N
Multiplied out, this expression becomes the given polynomial.

(¢) Given a valid root to Eq. 3 (one that makes T’\e\‘s O and

Rel. V0 , @ = o , it follows that

ol Vs (4)

Thus, the phase velocity, o ¥ , is independent of k.

(d) From Prob. 7.18.1
2

':‘is‘{ = Gs /(2 g +7’s> (5)
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Prob. 7.19.3 (cont.)
while from Eq. g of Table P7.16.1
(‘¢;'*‘7Y2 Gs (6)
Thus, Es is eliminated from Eq. f of that table to give
2s = 2%G6/(1-2%) &
The desired expression follows from substitution of this expression for
TR, in Eq. 5.

Prob. 7.19.4 (a) With the force density included, Eq. 1 becomes

vz( bAv 7VA G) (1)
In terms of complex amplitudes, this expression in turn is :
24 A A
&£ _r¥)dA 2 ] _
(Z\T@ R Iz ¥ A+G(7) =0 (2)

The solution that makes the quantity in brackets [ ] vanish is now called

A A ~n
AP(X) and the total solution is A = AH AP with assoc1ated veloc1ty and

A A~
stress functions of the form 1}"=(1”)H + (I},‘)P and ) * <S,,)

The transfer relations, Eq. 7.19.13, still relate the homogeneous solutions, so

[ -1 -Ad Ao ]

(50, v, - (%),
éi‘(sﬁ),, ] '&f - ( af )
3

1P, P
A ¢ o d Aol
- (5, v, - (%)
- Sﬁ) @ _ 7)(3
( 9%/p ] L.VQ‘Q ( ")Pd
With the particular stress solutions shifted to the right and the velocity

(3)

L

components separated, this expression is equivalent to that given.
~

(b) For the example where G = Fox,

GE % W En ¢ 9 s 4 Gk .- . "= . ) On @ Sy G -
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Prob. 7.19.4 (cont.)

O 308 o) alE, ) B

Thus, evaluation of Eq. 3 gives

EATE N e
G2 | R 24| F (5)
Aot =7IF2] T Y -.E.JPL,] °

:x 4 pal ¥ d _\
.8 e |
| o] | 4] 9 -\

Prob. 7.19.5 The temporal modes follow directly from Eq. 13, because the

velocities are zero at the respective boundaries. Thus, unless the root
happens to be trivial, for the response to be finite, F=0. Thus, with

A = d, the required eigenfrequency equation is

%( | = cosh ¥d cosh @d)-&-.s;nk\fo( S'\h"l BA[(%;*- \ ]-':O (1)

where once ¥ is found from this expression, the frequency follows from

the definition
¥ = \] R® +é—“7—’~'9- (2)

Note that Eq. 1 can be written as 2

.Y
cor (EU)cosn@d - o 1= (%) ®
sm({%&d)smh Bd 2 (‘3%)

The right-hand side of this expression can be plotted once and for all,

as shown in the figure. To plot the left-hand side as a function of 6\6/% s
it is necessary to specify kd. For the case where kd=1, the plot is as
shown in the figure. From the graphical solution, roots 3\6/6'-'- @, follow.

The corresponding eigenfrequency follows from Eq. 2 as



7.30

Prob. 7.19.5 (cont.)

o=

L
o3
~

=TT - —— K

e T

Prob. 7.20.1 The analogy is clear if the force and stress equations are

compared. The appropriate fluid equation in the creep flow limit is Eq. 7.18.12.

2
2z -
vp=/vVY vp= GaVS (L)
= —p+7( Dﬂ) Sy —‘P‘*‘G( )(2)
‘t X5 I 4 LF
To see that this limit is one in which times of interest are long compared to
the time for propagation of either a compressional or a shear wave through a
length of interest, write Eq. (e) of Table P7.16.1 in normalized form
2
D% +
22, = 2Cetlety(rd) - Gal g x vid &
3t A
where (see Prob. 7.18.1 exploration of wave dynamlcs)
t= T : = \1@6 +)s)/*"
(x,4,2)= (2,9, )4
»5; e 9 Gh4%9
and observe that the inertial term is ignorable if
2 13
(_X_/l? & < 5 (_’gﬁﬂ‘<<l (%)

.Vst

-3

o W) o W= S O
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Prob. 7.20.1 (cont.)

With the identification p = QGS*'AS\)V'—é » the fully quasistatic elastic

equations result. Note that in this limit, it is understood that ¥V =0 and

g.$=o0

~Jd N@
Prob. 7.21.1 1In Eq. 7.20.17, e =0, 1}9=0 and h=41 | Thus,
n > n 2 ~ 2 ~
- (R =R - -3RU - 1
A| —E- ) Az ?U’ 'A'S - T )A4 - 0 ( )

and so Eq. 7.20.13 becomes

A= BUT(ET +4 (8)-3 (%)

2

1
The € dependence is given by Eq. 10 as Sin GE (COS 9) so finally

the desired stream function is Eq. 5.5.5.

Prob. 7.21.2 The analogy discussed in Prob. 7.20.1 applies so that the

transfer relations are directly applicable (with the appropriate substitutions)

to the evaluation of Eq. 7.21.1. Thus, U~ = and 7—9Gs. Just as the rate

of fall of a sphere in a highly viscous fluid can be used to deduce the viscosity

through the use of Eq. 4, the shear modulus can be deduced by observing the

displacement of a sphere subject to the force fz.

f,= ¢TGRZ )

2
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8.1

Prob. 8.3.1 1In the fringing region near the edges of the electrodes (at a

distance large compared to the electrode spacing) the electric field is
am‘ ‘g
This field is unaltered if the dielectric assumes a configuration that is

(1)

essentially independent of 6. 1In that case, the electric field is everywhere
tangential to the interface, continuity of tangential‘E-is satisfied and there
is no normal E (and hence D) to be concerned with. In the force density and
stress-tensor representation of Eq. 3.7.19 (Table 3.10.1) there is no electric
force density in the homogeneous bulk of the liquid. Thus, Bernoulli's
equation applies without a coupling term. With the height measured from the

fluid level outside the field region, points (a) and (b) just above and

below the interface at an arbitrary point are rel ted to the pressure at infinity

by

Pa +(ﬁa%? Peo

(2)
Peo (3)

P, +4:9 ¥

The pressure at infinity has been taken as the same in each fluid because there

is no surface force density acting in that field-free region. At the interfacial

position denoted by (a) and (b), stress equilibrium in the normal direction
requires that
. = : ; (4)
LI SN 1T In,

Thus, if 4 a/g, it follows from Egs. 2-4 that

/G‘
/,,03? = ﬂ_\"né“"\% 5 Tuy = Ea D = =), W (5)

To evaluate the coenergy density, W', use is made of the constitutive law.

E
W= SED 3T = J <€,E9 Ia +E9>A B, --eE -\-25«1 +E, _h ©
0 4

Thus, Eq. 5 can be solved for the interfacial position. !

Fe g (e (] - @
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Prob. 8.3.2 Because the liquid is homogeneous, the electromechanical
coupling is, according to Eq. 3.8.14 of Table 3.10.1, confined to the

interface. To evaluate the stress, note that

L&
, E L d /’—OB,‘\\\‘
W= DSE:‘SE'\' ',Quc«,Qd;E
2 e de
(o] ]

Hence, with points positioned as shown in the figure, Bernoulli's equation

requires that

"F%‘ =-"FLl (2)
= (3)
P +23%, = P +0S
and stress balance at the two interfacial positions requires that
Pu = Po @)
] Wid, E (3)
_fa, & FL, = :;; LL\ Ces ( L )

Addition of these last four expressions eliminates the pressure. Substitu-

tion for E with Vo/s(z) then gives the required result
s-3 = 2 4. COsL‘(B_t__\Lo) (6)
°
/30’; A(2)
Note that the simplicity of this result depends on the fact that regard-
less of the interfacial position, the electric field at any given z is

simply the voltage divided by the spacing.

— N
aE o = e
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8.3

Prob. 8.4.1 (a) From Table 2.18.1, the normal flux density at the surface
of the magnets is related to A by Bx=Bocos ky = 9A/3y. There are no magnetic
materials below the magnets, so their fields extend to x+w. It follows
that tﬁe imposed magnetic field has the vector potential (z directed)

-4
A=g’—°-/u;~g‘}, c&(x Y
e (1)

Given that & = Eo at y=0 where A=0, Eq; 8.4.18 is adapted to the case at hand.

-4
7) - _%- W%% c%(% ) 2)

and it follows from Eq. 8.4.19 with ’;‘“_,‘ % that
: B(g-4)
$=5, + 3,80 ain Ry FCF (3)
Ry C(ab-(a*B

Variables can be regrouped in this expression to obtain the given ‘f(y).

hand.

(b) Sketches of the respective sides of the implicit expression are

as shown in the figure. ﬂ,\-\.A | %(r_(
e

L.H. 2z J.Be

/l:-\ 4(P.fa)
N\

~ ¢

: R (5-2) 7 ey

The procedure (either graphically or numerically) would be to select a vy,
evaluate the expression on the right, and then read off the deformation
relative to Eo from the expression as represented on the left. The peak
in the latter curve comes ét k(E-—Eo)=l where its value is l/e. If the

two solutions are interpreted as being stable and unstable to left and
right respectively, it follows that if the peak in the curve on the right

is just high enough to make these solutions join, there should be an instab-

ility. This critical condition follows as

S.Ba/%(pb ) = axp]-R(4-%.)-1]
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Prob. 8.4.2 (a) Stress equilibrium in the normal direction

2
< e,E,,/‘ f
at the interface requires that —\%l
2 —_
P +JZ—GBE“ -¥Vvn=o0 (1 fP

The normal vector is related to the interfacial deflection by

(-2 ) L+ (2 )] 2)
In the long-wave limit, the electric field at the interface is essentially

E =~ -V

- - (3
-~ " A__§
Finally, Bernoulli's equation evaluated at the interface where the height,
is ? becomes
P +/3?=o+/35#f>=/’%(5-f) (4)
These last three expressions are substituted into Eq. 1 to give the required
relation

it
X%I“I}; ;e(ll?)_pg(? b)=o0 (5)

/ /
(b) For small perturbations of % from b, let ?: ‘)4? where ? is "small".
Then, the linearized form of Eq. 5 is

45’ \
X&a Viéb} <d1>3] Fat=e @

With the "drive" put on the right, this expression is
2
c.\a?l _ §/ _ —-€oV o
Atal ,?,; 2 (4%

sja-ey”

(8)

is real to insure stability of the interface. To satisfy the asymptotic

condition as (a-foo » the increasing exponential must be zero. Thus, the
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Prob. 8.4.2 (cont.)

combination of particular and homogeneous solutions that satisfies the

boundary condition at y=0 is
?l _ QV}g ( | _-‘a,/ﬂ,
(e )
(c) The multiplication of Eq. 5 by « = dg/dy gives

4 g_‘_a{(”“zs/“/‘ ¥ %% =0

P=s féo-}g -3 (5-)]

To integrate, define

where

so that {

u = (l-V&B \%

Then, Eq. 9 can be written as

v AV +AP=O
| -Vv*®

and integration gives

_\‘il--\lz + P = cCowust.

This expression can be written in terms of Ai/&a,?. A by using Eq. 10.

1 + ? = coewnst.
\ | +(S3)
dy

Because A%/AQQ—PO as ?-—D ?° » the constant is P(i’) - and

Eq. 14 becomes
]

N1+ (I
Solution for AY/J‘;leads to the integral expression
ki
b V[ I + P(f.)"?(f)]-l’ |ﬁ -

Note that the lower limit is set by the boundary condition at y=0.

= -P5) +Ps) +)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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Prob. 8.6.1 In view of Eq. 31 from problem solution 7.9.2, the require-
NS
ment that 1}1- = O be zero with d=R but (329 shows that if ?>d is

to be finite then
f,(0,r,¥)= 0 @

provided that w # ¥ 2 £ . By the definition of this function, given

in Table 2.16.2, this is the statement that

¥ GIR o —8SGIR)

Jo(8R) Jo(4¥R)

So the eigenvalue problem is reduced to finding the roots 5 X‘og“of

31 (a‘KR)"O )

In view of the definition of ¥ , the eigenfrequencies are then written

(2)

in terms of these roots by solving

2 2

¥ = -)So_%_——.%z{‘“-a—%)& (4)
rR? e

for w .

-+

Wy = —ZQlﬁ (5)
| + Xon

(RRY

(b) According to this dispersion equation, waves having the same frequency
have wavenumbers that are negatives. Thus, waves traveling in thel z
directions can be superimposed to obtain standing pressure waves that

vary as ¢€o% Rz, According to Eq. 14, if p is proportional to <o$% Bz
then 'ljid_ Sin ﬁ! and the conditions that ‘I}E(O)HD,T{(I):O are satis-
fied if R = nn‘/E,mO,i,Z, *** . For these modes, which satisfy both
longitudinal and transverse boundary conditions, the resonance frequencies

are therefore

. tT20

woﬁ - = -
\[l + Xor £
(GRLAeh

(6)

~ - v



8.7

Problem 8.7.1 The total potential, distinguished from the perturbation

]
potential by a prime, is @& =-E,«.& +® . Thus,

02 _3% , 598 28,58 = 438 .0

=5 2% +w3t s, (B4 %) (1)
to linear terms, this becomes

22 g,y =0 (2)

St s

which will be recognized as the limit g=eow of Eq. 8.7.6 integrated twice on x.

Problem 8.7.2 What is new about these laws is the requirement that the

current linked by a surface of fixed identity be conserved. In view of the
generalized Leibnitz rule, Eq. 2.6.4 and Stoke's Theorem, Eq. 2.6.3, integral

condition (a) requires that

4 E‘ Ados &Fi 23 (7. 391 nda+£vx(3 «B)Fda (3

The laws are MQS, so J. is solen01dal and it follows from Eq. 3 that

£
QE{‘-—VX(‘Exfx‘):D (4)
at

With the understanding that f° is a constant, and that B =,Agl4 , the

remaining laws are standard.

Problem 8.7.3 Note that v and J_. are automatically solenoidal if they take

f

the given form. The x component of Eq. (¢) from Prob. 8.7.2 is also an identity

while the y and z components are

% _ 32 -0 (1)
dt 3"
SIS -3, oY, -0 ‘ (2)
St S X

Similarly, the x component of Eq. (d) from Prob. 8.7.2 is an identity while

the y and z components are
L 8,3, + 7D_l)g (3
/° 5t

(4)

>V, _ 'Y
/<> St ESO:S%-+‘7 ‘b)(z

Because B is imposed, Ampere's Law is not required unless perturbations in the

magnetic field are of interest.
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Prob. 8.7.3(cont.)
In terms of complex amplitudes 19 GL jx?aﬁdt Eqs. 1 and 2 show that

o A A A Xx

Substituted into Eqs. 3 and 4, these relations give
IS
(7‘("-3.”/:5 a3‘6%o J
S0 Do -] 4
s (78 =3P |,
The dispersion equation follows from setting the determinant of the coefficients

equal to zero.
(78 -q20)% =

with the normalization 'T; =z Az(a/7 , Tuv = 7/.S°B°A R ¥ =Y%A

* 3.%, (7)

it follows that

J
:i‘(.z + ¥, = ['.11';—7‘“+J a,‘,-r)‘*é“m'l (8)

k3

Thus, solutions take the form

A A '6' x A -§,% A Y X A ‘Xz X

V= Ale +Aie +Ae & Ae 9

From Eq. 6(a) and the dispersion equation, Eq. 8, it follows from Eq. 9 that

X A -\JX A Gl A -sz
aA Aze +3A5e _3A“e

The shear stress can be written in terms of these same coefficients using

(10)

Eq. 9.
a A \‘,x A -X,X A A —x,_
g = 7(‘$|A. e -¥,A,e YA e“lx_ ¥.Ay e x) (11)

wn 3

Similarly, from Eq. 10,
A B A -0,x
Sa‘z 7(3X, . e -\-ab, A e + 'a zA e— -l,- 3\6 Qe ) (12)

Evaluated at the respective d and A surfaces, where x = QA and x=0,

Eqs. 9 and 10 show that



g

Prob. 8.7.3(cont.)

LG A =
, ,f\\ ,&c -3 & 4e -3
s S I T
o ? [ (13)
rd | = ° -
LR A, | Q= RO T S
I\a ~
2 A4J | [ { |
Similarly;bffgm Egs. 11 and 12, é;aluation at thexsurfaces gives - o
[ ad 9 S o “h .13 Bl
S A, e Se yYe RIS
&, A, ' ALY PATIPY O
~dl =U] £ Uz X ¥ —_\61 (14)
Six [" Ay ‘37 Y, e_f‘ Yo foe he
AB ~
_Sax AA ¥\ -¥, L R
The transfer relations foilow fré& inversion of 13 and multiplication with 14
Aad aol
Xy 1’?,
S Vv - (15)
Aax =[V‘J ﬁ?’ ;“‘I,'r [ Q"b-( { U"l)-]
Se X
as B8
Ssix 1&

All required here are the temporal eigen-frequencies with the velocities

constrained to zero at the boundaries. To this end, Eq. 13 is manipulated

to take the form (note thatA‘e“-l'Age-—xi(A.* A?-\M-VX + (AFAz) A«’-ﬂx )*

&;_ -3‘ wﬁi 'j,p«'-ﬂlf, éwﬁl{i aMﬁﬁi "A._M
A: '3 o A o A.*ﬁz
A: ) Y oLy, ol X, ol ¥, i\;ﬁ4 (16)
AR .
v 0 I 0 L [[ArA

The condition that the determinant of the coefficients vanish is then

Wﬁfl“"ﬂ.xz—ﬂ“j!l F‘:‘Eﬁrz‘:—- Wa(}.‘?;): 1 (17)

*
Transformation suggested by Mr. Rick Ehrlich.
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Prob. 8.7.3(cont.)
This expression is identical to coq 6(‘6, _Kt) =\ and therefore I
has solutions l

18
‘&<\‘il—lt):‘;n“’>n‘=olli2"' (18

With the use of Eq. 8, an expression for the eigenfrequencies follows

)
7 o) 4497 = 2 s

Manipulation and substitution s= a‘u shows that this is a cubic in s.

3 2 2\ _o (20)
A T, + (nwW) A ——4%;,

If the viscosity is high enough that inertial effects can be ignored, the ordering

ﬂ

of characteristic times is as shown in Fig. 1

-~
o
-
L

Then, there are two roots to Eq. 20 :
Fig. 1 "Q Tav Y
given by setting ‘1; =0 and solving for l
S.
=+ 1 (21)

A=t /yq, nu |
Thus, there is an instability having a growth rate typified by the magneto-
viscous time :)n'n‘T‘MV. l

In the opposite extreme, where inertial effects are dominant, the ordering of
times is as shown in Fig. 2 and the middle

term in Eq. 20 is negligible compared to

. L | 1 >
i
the other two. In this case, Y '7’~w Ty 0
‘ 2 2.8
A RYCS (22)
D = \/ z - o —©
(47N

¥s

Note that substitution back into Eq. 20 shows that the approximation is in fact

self-consistent. The system is again unstable, this time with a growth rate

determined by a time that is between 7\; and \1:“ .

Prob. 8.7.4 The particle velocity is simply U=bE = 3Q€E1/7. Thus,

the time required to traverse the distance 2a is Jal = 7/éEz
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Prob. 8.10.1 With the designations indicated in the

figure, first consider the bulk relations. The

perturbation electric field is confined to the

insulating layer, where
éé u—(‘f%i &
=t ,.e (1)
ex = uJ%A ]

The transfer relations for the mechanics are applied three times. Perhaps it is
best to first write the second of the following relations, because the
transfer relations for the infinite half spaces (with it understood that k > 0)

follow as limiting cases of the general relations.
. L A
g__;wﬁ_&‘ —~pP ™ (2)
l )y 2
d _.c&CZQEJ —_— ﬂ& cotng ;:IEZ n
g Abl (3)

el

Now, consider the boundary conditions. The interfaces are perfectly conducting, so

nxE-o D —E.%% =€, (5)
In terms of the potential, this becomes

£ = §,%° (6)
Similarly,

éb = EOS"’ (7

Stress equilibrium for the x direction is

Upln, = 1T, In; -¥v-7in, (8)

In particular,

(T, +0) - (T + ¢ )-‘e(E +€5) -\-1§(s i Ez) (9)

d2*

Hence, in terms of complex amplitudes, stress equilibrium for the upper interface is
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Prob. 8.10.1l(cont.)

R P i e A 10

Similarly, for the lower interface,

2 b
AL A ~e s (1D
-P +P€+€E°€x'@\6? 0
Now, to put these relations together and obtain a dispersion equation, insert

Egs. 5 and 6 into Egq. 1. Then, Egs. 1-4 can be substituted into Egs. 9 and 10,

which become

]—_ﬁ A ‘-_’f V,zZQ<(+€F gc‘,{[&] %@Iﬁﬁa %g_jl %o.

adld g

a
For the kink mode (i ‘i ) » both of these expressions are satisfied if

= ( 2+ (s ke )RR odRd - “mlRT-o o

With the use of the identity (u&u-i)/sonlv'f&.\‘l//g this expression reduces to

&(F“’M%) ¥R - GE@M& :1// o

““.@Z_ eg_%_l 5&22),%“&&4,,65:%%5_@‘5] ;

ot )

For the sausage mode ( i = '? ), both are satisfied if

—-( + MM*‘_L,.A)»feE ?&[cd@:‘ 1 R'Y¥=0 (15)

and because(wAuu)/va = ¢ u{z_

( uxj@c() _YR*— CE. @ud_i /\/ (16)

‘e

In the limit kd<<{ 1, Egs. 14 and 16 become

—"‘_’.L A s@_‘_“, - _ GE:J %‘7‘ (17)
<(0 ﬂ ) <\6 ) (18)
Lo+ Fe' AGE
(P g =Y s
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Prob. 8.10.1(cont.)

Thus, the effect of the electric field on the kink mode is equivalent to
having a field dependent surface tension with \( - Y - GE:J/l

The- sausage mode is unstable at k— 0 (infinite wavelength) with Eo=0 while
the kink mode is unstable at E = SJX/GA . If the insulating liquid
filled in a hole between regions filled by high conductivity liquid, the
hole boundaries would limit the values of possible k's. Then there would be

a threshold value of Eo.

Prob. 8.11.1 (a) In static equilibrium, H is tangential to the interface and
hence not affected by the liquid. Thus, H = EQHO(R/r) where HO=I/21YR. The
surface force densities due to magnetization and surface tension are held
in equilibrium by the pressure jump (/.4“5/4‘, , My 5/,4)
- -1 z ¥
—“Q _-“‘b = -2 (/“a.“/“b) H, & (D
(b) Perturbation boundary conditions at the interface are, at r = R+%
- T bg
. = -L .—- ‘. R
Ao DRl = (4~ 555 % - 5 o) (D G+ DM +hgigr i 1),
which to linear terms requires
) A
A —_ H wA
ﬂ/‘\"vu == ﬁ/‘*“ —-—-{:l\ ? (3)
and nX “ ﬂﬂ:o which to linear terms requires that ﬂheﬂ:o and “ha“ =0

These are represented by

Jgpl=o ()

With "-;‘IP“ :H‘[;suh. +an stress equilibrium for the interface requires that

lpl= "‘Lﬂ/“(“a +\19)ﬁ - Y7 (5)
To linear terms, this. expression becomes Eq (1) and

1pl = Il/uﬂ\'\ g ﬂ/ﬂﬁ\-\ 3___% +-—[(:-h~) (@R)]?
where use has been made of h MW/R

Perturbation fields are assumed to decay to zero as r—»@ and to be finite

at r = 0. Thus, bulk relations for the magnetic field are (Table 2.16.2)
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Prob. 8.11.1 (cont.)

A

@* = /s (0, R) 7
Bir/ . (0,R) (®

From Eqs. (3) and (4) together with these last two expressions, it follows

w0 = DA HE R R) 4, 5. (0,000 @

This expression is substituted into Eq. (6), along with the bulk relation
for the perturbation pressure, Eq. (f) of Table 7.9.1, to obtain the desired
dispersion equation.

et oFu(om)= (e L DA 1
© Wl = M R[/& @R AR (10)

-ka’"v L= ) -(%FS}

(¢) Remember (from Sec. 2.17) that Fm(O,R) and fm(O,R) are negative while
fm(w ,R) is positive. For /ub 5/4(,' the first "imposed field" term on the
right stabilizes. The second "self-field" term stabilizes regardless of
the permeabilities, but only influences modes with finite m. Thus, sausage
modes can "exchange" with no change in the self-fields. Clearly, all modes

m#0 are stable. To stabilize the m=0 mode,
2
(/Jb ~Ma) B_‘.’. > —\-‘;_ (b
R 1LY

(d) In the m=0 mode the mechanical deformations are purely radial. Thus,
the rigid boundary introduéed by the magnet does not interfere with the
motion. Also, the perturbation magnetic field is zero, so there is no
difficulty satisfying the field boundary conditions on the magnet surface.
(Note that the other modes are altered by the magnet). In the long wave
limit, Eq. 2.16.28 gives Fo(o,r():-f:;o"ﬂ)-p(.%ZK/_}).' and hence, Eq. (10)

becomes simply

e gy

_—-——-——_———
Thus, waves propagate in the z direction with phase velocity J(/u /.l,)\-\ //2




-
-

8.15

Prob. 8.11.1- (cont.)

Resonances occur when the longitudinal wavenumbers are multiples of n

Thus, the resonance frequencies are

$o= oo e - a
2g N7

Prob. 8.12.1 1In the vacuum regions to either

side of the fluid sheet the magnetic fields
take the form
H=-R¢ +h )

ii = ‘*02; +h (1
where h = -V Y.

In the regions to either side the mass density is
negligible, and so the pressure there can be taken

as zero. In the fluid, the pressure is therefore

A (uwt-Ry-R2
P = Jsﬂo“-:*@pc1(“ s ? R’E)

3)
where p is the perturbation associated with departures of the fluid from static
equilibrium. Boundary conditions reflect the electromechanical coupling énd

are consistent with fields governed by Laplace's equation in the vacuum regions
and fluid motions governed by Laplace's equation in the layer. That is one
boundary condition on the magnetic field at the surfaces bounding the vacuum, and
one boundary condition on the fluid mechanics at each of the deformable

interfaces. First, because '8 =0 on the perfectly conducting interfaces,

n: -0 X ) ) (4)
- - - - - ad . >
[ ‘3‘?5 ";;'?s‘zc'e]‘i-f/,ca +hlze Ri={BSH, e
A (6)
H?=—éga "W,
h (7)
hx =0

In the absence of surface tension, stress balance requires that

Ipin, = ITTIn. > @
In particular, to linear terms at the right interface

~d
pC= -/,Hoﬁj =‘j€%"‘°\'\° Y (9)
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Prob. 8.12.1(cont.)
Similarly, at the left interface

5f = o Qéu Ho & (10)
In evaluating these boundary conditions, the amplitudes are evaluated at the
unperturbed position of the interface. Hence, the coupling between interfaces
through the bulk regions can be represented by the transfér relations. For the

fields, Egs. (a) of Table 2.16.1 (in the magnetic analogue) give

-(i’c _ 3 !- - u‘tzﬁa — ™ rhi -
"ql ¢ ) :,;::Z—Ecn ul/gaj -hx-‘
- A | - - -
(ra | [~ Cddgﬂ 74, LRa h’?

s (12)
L‘/ f :& c,o-(j@a n:'J -

For the fluid layer, Eqs. (c) of Table 7.9. l become

[ ¢ I M %e]
P [ et/ Rd —ad e
af

P = cOl[fu "?
- -MQJ L Ms; ab

Because the fluid has a static equilibrium, at the interfaces, 3“5 ‘0?

I
|

(13)

It sounds more complicated then it really is to make the following substitutions.

First, Egs. 4-7 are substituted into Egs. 11 and 12. In turn, Egs. 1llb and 1l2a
are used in Egs. 9 and 10. Finally these relations are entered into Egs. 13

which are arranged to give

uﬁj%cl -\-/u, t w{[ﬁc\ ,:,_‘fg | -P%q-

(14)

1]
&)

£

—f ._Lfc,ld%A /“QH M@A %L
AR AL o b -
For the kink mode, note that setting ? =Ii insures that both of Egs. 14 are

satisfied if

— Mﬂu"l - M\EM
¥ doeh b = du ol ut

D f

=
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Prob. 8.12.1(cont.)
2 A2
9{,2 M%éz /uoHOBE coth Row (15)
B

Ao b
Similarly, if ? =“'?)so that a sausage mode is considered, both equations are

satisfied if

wp hBd - wutobe el
3 g

These last two expression comprise the dispersion equations for the respective

(16)

modes. It is clear that both of the modes are stable.‘ Note however that

perturbations propagating in the y direction (kz=0) are only neutrally stable.

This is the "interchange" direction discussed with Fig. 8.12.3. Such perturbations

result in no change in the magnetic field between the fluid and the walls and
in no change in the surface current. As a result, there is no perturbation

magnetic surface force density tending to restore the interface.
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Problem 8.12.2

Stress equilibrium at the interface requires that

L (1)
-T- El”’e Tw-\-0=> P =/.H,,? +MoH, \'—‘\9 W= 4 uH
. 231
Also, at the interface flux is conserved, so
) (2)
ﬁ'ul =0 D Ré = -'a"\a""‘ S
"’y L
While at the inner rod surface
A% _ : 3
K =0 (3)
At the outer wall,
re
e =0 4
Bulk transfer relations are
r Acn - _
P | TRy G (a,®)]f0
==._foca (5)
~d A
P ..Gm{ﬂno‘) Fm(‘uﬂ)_j L?J

hel (R Gn (D[R ®
=
Re] B [ Gub®) FL(m )]0

The dlspers1on equation follows by substituting Eq. (1) for pé in Eq.

(5b) with ‘19 substituted from Eq. (6a). On the right in Eq. (5b), Eq. (2)

is substituted. Hence,

R e S O TN
A
Thus, the dispersion equation is
2
wz——'_"’_{iﬁ_‘i__% —_:FM(L,RYK (8)
PRE (aR) R

From the reciprocity energy conditions discussed in Sec. 2.17, Fm(a,R):> 0
and Fm(b,R) ¢ 0, so Eq. 8 gives real values of ¢J regardless of k. The

system is stable.
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Problem 8.12.3 In static equilibrium v=0, ¢ , UV
2
1
_‘To..—“-b = -3 MoH, and
P ::.TT;-zﬂgi( (1)

With positions next to boundaries denoted

as shown in the figure, boundary conditions

from top to bottom are as follows. For the conducting sheet backed by an

infinitely permeable material, Eq. (a) of Table 6.3.1 reduces to
LYY S
- AC (2)
% \'\la - -/“Oc;gg(w —Ba USI'\‘

The condition that the normal magnetic flux vanish at the deformed interface

is to linear terms

hl o RMT=o @

*

The perturbation part of the stress balance equation for the interface is

A 2d _RYS _ oq$
-p¢ = o R] - RYT - o953 )

A A
In addition, continuity and the definition of the interface require that t&=éﬁ5§

Finally, the bottom is rigid, so

A

1}5 =0 (5)

Bulk relations for the perturbations in magnetic field follow from Eqs. (a)

of Table 2.16.1

F: - u—tﬁ Qm | }3,"’

% ,qmg\ &‘\ 3 )
. o - AJ
hé d &ﬂ .g| Zo ethBa h‘d

where ﬂ5 :éﬁ‘}(i/ has been used.
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Problem 8.12.3 (cont,)

The mechanical perturbation bulk relations follow from Egqs. (c)
of Table 7.9.1

[ e I T Y
3 -eatlRb P 1YY | R (7)

et R - 2t
P L el Rb “dg"- L%

where

;,f__:éwé (8)
Equations 2 and 6a give

P PAA IO BU)h‘( 9)

T WOy G pit (-8 0) citlfa]

This expression combines with Eqs. 3 and 6b to show that

QHS Q -4 Mo%a o (e -RU) eshle FJ (10)
AMQ %al@ +a A/Jp&(w g U)coﬂtﬁq 4

a
Thus, the stress balance equation, Eq. 4, can be evaluated using h from

A

Eq. 10 along with %C from Eq. 7a, Eq. 5 and Eq. 8. The coefficient of ?

is the desired dispersion equation.

——;ﬁudgL = (ﬂg *% 4 .(11)

|+ °"'(w BU coth Ra
T M, —awﬁa (S )
1 +3ﬂo‘% (w-R0) Jo L Ba
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prob. 8.12.4 The development of this section leaves open the configuration
beyond the radius r=a. Thus, it can be readily adapted to include the effect
of the lossy wall. The thin conducting shell is represented by the boundary
condition of Eq. (b) from Table 6.3.1.

(UG- g7 = T by ’
where (e) denotes the position just outside the shell. The region outside the
shell is free space and described by the magnetic analogue of Eg. (b) from

Table 2.16.2.
V. (@,0)K8 = ¥, (w,a) hE @

Equations 8.12.4a and 8.12.7 combine to represent what is "seen" looking

inward from the wall.

Ab

= F (roo) B 5 oo, )2 4 R A

Thus, substitution of Egs. 2 and 3 into Eg. 1 gives

b _ 6. (a R 4 RUL)T
T X_F (oo, a.) F (R, a?)l ~ ST “’)/("— +@1)

Finally, this expression is inserted into Eq. 8.12.11 to obtain the desired

(4)

dispersion equation.
wl{arm (eR) =/‘;‘:_\'.\.t —pto (W +F&H°) m (1)
AL

—iko (B, +RU) G (R,) G (aR)
s [ F(00,0) - F (R o)) — e )25 +RY)

The wall can be regarded as perfectly conducting provided that the last term

(5)

is negligible compared to the one before it. First, the conduction term in

the denominator must dominate the energy storage term.

0',’\:-:\ >‘_< ) F( ) | (6)
— (o) -F . (Ra)v0
(% +¥)



8.22

Prob. 8.12.4(cont.)

Second, the last term is then negligible if

[« A R XY -
Mo Ts 1ot > G.. (R,a)G., (G\,R)/gr (aR)>0 7
(m.? +6RY) ™ )
at
In general, the dispersion equation is a cubic in <« and describes the coupling
of the magnetic diffusion mode on the wall with the surface Alfvén waves
propagating on the perfectly conducting column. However, in the limit where

the wall is highly resistive, a simple quadratic expression is obtained for

the damping effect of the wall on the surface waves. With the second term in

i

-4 -
the denominator small compared to the first, (c;-\,\:) ~ a‘— L/&t and

(8)

- pFa(0RYj) + B(w) + K =0

where an effective spring constant is

2 2 m .
= _/ﬁﬁ\t + Mo (—;(ﬂ- H{*% H‘;F"‘(“»n\) + Ao (Tk-f/t*eﬂ“)en(“.“) G_(@R)(9)
™ Fh\ (w)a) -Fm(ﬂ.a)

and an effective damping coefficient is
2
B = -4y (% Ht+ &Ho.) G-.(H'“)Gn (a,R) ,
(Fu (@) -F (a0 (=48
Thus, the frequencies (given by Eqg. 8) are
3'w _ -B ¥ ‘] Bz_(_fﬁ(olﬂ)ﬂ{ (11)
[~ % (o,R)]

Note that F_(O,R) < O, F (a,R) »0, F (@ ,a)-F_(R,a)> 0 and G (R,a)G (a,R) € O.
m m m m m m

(10)

Thus, the wall produces damping.
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Prob. 8.13.1 1In static equilibrium, the 6,2,¢)

radial stress balance becomes
[ { )
= =Sl +5 1
“Fm ﬁ-T;rn ‘K<¥ﬂ R (1)
so that the pressure jump under this
condition is
~tapg?_ Y ——
“-ﬂ-“ T oa eoEo (2) E°
In the region surrounding the column,
the electric field intensity takes the form

—-—

E=Eo¥‘;<—}+é , @=-v%

(3)

while inside the column the electric field is zero and the pressure is given

by . %(ut-W\O—QE)
¢

P= “b-\—P (T,G,'?:,t) = -\Tb -\-kﬂ.\ p(ﬂ e (4)

Electrical boundary conditions require that the perturbation potential vanish

as r becomes large and that the tangential electric field vanish on the

deformable surface of the column.

(e ¢

N
e, =-E°.§-,_

111

F’\xf-:\ =0 (5)

{

! R3O "3z =

r:R4S : :

E’og-*er Qg ez,‘

In terms of complex amplitudes, with Ez = 3% Q’
A A

&
§ - Eoi (6)
Stress balance in the radial direction at the interface requires that (with some
linearization) (Pg.l <o)
4
™ \ R 1
L N
a--R = 36, I E°(ﬂ+‘t) +ex| + (W), N

To linear terms, this becomes (Egs. (f) and (h), Table 7.6.2 for '_I‘—s)

A

GEIA AQ \( 2 ng A

B= GE:% - e 2% - & (1ot -@R)S ®
R n

Bulk relations representing the fields surrounding the column and the fluid

within are Eqg. (a) of Table 2.16.2 and (f) of Table 7.9.1
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Prob. 8.13.1(cont.)

Ao
ér= f (or)E (10)

8% = {(w-.U)~F.(0R)%, (1)

A
Recall that ‘\3,.'23'(4.0-&0)?, and it follows that Egs. 9,10 and 6 can be

substituted into the stress balance equation to obtain

2 A Za 2 o 2 g8
- (U 'ﬁU)/dE.(O;R)s - e‘f" s - €0Eo SM(Q'R)€—§1(\—|~\ - %K)§ (12)

If the amplitude is to be finite, the coefficients must equilibrate. The result

is the dispersion equation given with the problem.
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Problem 8.13.2

The equilibrium is static with the distribution of electric field

. : ()
intensity 1
—— IRET
E:: -—:L——- € > 1
ooaner | Lo D

and difference between equilibrium pressures

required to balance the electric surface force

density and surface ten31on

1
T,T.=1 ﬂ. 2/eu il eeolm

With the normal given by Eq. 8.17.18, the perturbation boundary conditions
require ﬁxﬂﬁﬂwat the interface.
A ~ A -
§‘_§"_§_1_[€ eﬂ-.—o (3)
4+t Q]* €€,

that the jump in normal D be zero,

~d
€25 - cey =0 (4)

and that the radial component of the stress equilibrium be satisfied

Ac ad €-€, $
-(p-¥ )(A_\-OQF(“)‘? Al o (e- “e-r) (n--szﬁ 0

In this last expression, it is assumed that Eq. (2) holds for the equilibrium
stress. On the surface of the solid perfectly conducting core,
Ae 2 e
- ' - 6
% =0 3 §§ =0 (6)
Mechanical bulk conditions require (from Eq. 8.12.25) (F(b,R) {0 for _>b
’ ~
A - kA
pSzo ;Pc{: —w{ﬂ‘:(b,ﬂbf &)
*
while electrical conditions in the respective regions require (Eq. 4.8.16)
AC - A A A A J
&er = NPT gel = eH(bR)E (1%0
‘7\ d nC AJ

Now, Egqs. (7) and (8) are respectively used to substitute for p )P ,e %8

in Eqs. (5) and (4) to make Egs. (3)-(5) become the three expressions

*,&\; (b, R)=-n/r 5 ¥(b,R) <0 Ser wOD
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Problem 8.13.2 (cont,)

& (nt) -£5(4,m)
R

(n+)
a7 ne

-3&(%,:&)

4R

- (G—éq
AvrRiee,

- o:b F( b,fs) -231(5".)_1_0\ -Q(mz:"L

@amyrce, B

The determinant of the coefficients gives the required dispersion

equation which can be solved for the inertial term to obtain

-co"‘/E‘(L,R):
@n)ym €€, X
9 (€-€) (n+0)§(b

e NG +‘.‘§3(n-n<mz>

R

() B € ¢ {- €5 (bR)R+€, ()]

The system will be stable if the quantity on the right is positive.

limit b < { R, this comes down to the requirement that for instability

T 53{2(6‘__&2 _ (.6_ -§(n+0n

or € €, ° -2—:\ 4+ (n+1)
(n-)(n +2)
T 3
{(-2— MCIOL -3(E-)
° Shenti 3
where °
qil

= Yand 'Re,

and it is clear from Eq. (11) that for cases of interest, the denominator

of Eq. (12) is positive.

} + (h-N(n+2) {0

€o
€

In the

~) >

-

~ o ~~
[Ye]

~~

=
E-en T .

=
o Gn S SE @

:
L
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Problem 8.13.2 (cont. )

The figure shows how the conditions for incipient instébility can be
calculated given e/e° . What is plotted is the right hand side of Eq. (2).
In the range where this function is posif:ive, it has an asymptote which
can be found by setting the denominator of Eq. (12) to zero
€ ) _ n 4+3n 42
(2), = =5
The asymptote in the horizontal direction is the limit of Eq. (12) as € 50—000

(13)

T'n = n+2 (14)
The curves are for the lowest mode numbers n = 2,3,4 and give an idea of
how higher modes would come into play. To use the curves, take G/G, =20
as an example. Then, it is clear that the first mode to become unstable is
n=é and that instability will occur as the charge is made to exceed about a
value such that T‘ = 6.5. Similarly, for €/€°=10, the first mode to become
unstable is n=3, and to make this happen, the value ofT must be T =9.6. The
higher order modes should be drawn in to make the story complete, but it
appears that as €/6° is reduced, the most critical mode number is increased,

as is also the value of T required to obtain the instability.
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(cont.)
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Problem 8.13.2
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Prob. 8.14.1 As in Sec. 8.14, the bulk coupling can be absorbed in the

pressure. This is because in the bulk the only external force is
F=-Vv& ¢ & = ?_}5 (1)
3
where %:Q %’.“R is uniform throughout the bulk of the drop. Thus,

the bulk force equation is the same as for no bulk coupling if p—bTTE Pt ‘}_i .

In terms of equilibrium and perturbation quantities,
A " (wt-m &)
M= Pl ¢ ?, & () + Re w(¥) R(Cos 8) Qa -
whereTY;Pb(r)-}aE’(r) and '?\' plays the role ﬁ in the mechanical
2
transfer relations. Note that from Gauss' Law, '§° = q‘(‘ /4 eo , and that
because the drop is in static equilibrium, C(T\—/AY':O and H is independent

of r. Thus, for a solid sphere of liquid, Eq. (i) of Table 7.9.1 becomes

Al
&b :éw/BF'h(O,R)—\}Y (3)

In the outside fluid, there is no charge density and this same transfer
relation becomes
A o ~a
P = Ewﬁ"‘ LN CR RN (4)
At each point in the bulk, where deformations leave the charge
distribution uniform, the perturbation electric field is governed by Laplace's

equation. Thus, Eq. (a) of Table 2.16.3 becomes

A
C
Al
S
e, = gK(O.R) ¢ (5)
Boundary conditions are written in terms of the surface displacement
Ao AL %
‘U‘* = —l/(‘ = —aw (6)
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Prob. 8.14.1 (cont.)

Because there is no surface force density (The permittivity is €, in each

region and there is no free surface charge density.)

D pl =T, )
r=RAY
This requires that

A [%"Y 1([01 =l ¢)

—ﬂ‘_\_& P 'a(wf {-IT q‘él.‘.ﬂe(“' Q&)P }-.-‘E (8)

Continuation of the linearization gives
-2¥%
T, ST, 98 = 25 ®
for the static equilibrium and
A
PR'_?‘_B ; ? +} @ -— —X—z(H‘IX(h‘)Z)? (10)

3€.
for the perturbation. In this last expression. Eq. (1) of Table 7.6.2

has been used to express the surface tension force density on the right.
That the potential is continuous at r=R is equivalent to the condi-
tion that P XJE[l=0 there. This requires that

[ c‘\- te to

| 1 oY -lbf —o> (e u+___3?§|5‘“— (11)

r 30 tsinb 26

lemeed fel  1¢f

where the second expression is the .P component of the

Zirst. It follows
from Eq. (11) that

181 «+SIEN =0 (12)

and finally, because | E.[ = O
2}

é“ - & =0 (13)

The second electrical condition requires that ¥ - il éu =0

which becomes

c + & ll=o0
ﬂ CoEo“ R‘bs ﬂe "'ﬂ . (14)
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Prob. 8.14.1 (cont.)

Linearization of the equilibrium term gives
E
Hévoﬂi + ﬂerﬂ‘:O (15)

3
Note that outside, B, = QA 3/36,\'1 while inside, E.= ed_“'/3 €, . Thus,

Eq. 15 becomes
A AQ " L
_l€ + 2y -2, =0 (16)
Equations 4 and 5, with Eq. 13, enter into Eq. 16 to give

—3—% + Hn(w,ﬂ)—gn(o,R)l&:O (17)
° al,

which is solved for & . This can then be inserted into Eq. 10, along

AQ A
with P and T given by Eqs. 2 and 3 and Eq. 6 to obtain the desired dis-

persion equation

wz lﬂxﬁ(wlﬂ) _/45}7“(0, )1 = :‘ﬁz (n~l)( r\+z) -3::;%0 (18)
| 3

€° [ ;h‘(wlR)“¥h(OlR)]
The functions Fh(ao,R)> o)Fn(o,R) ¢oand S;n(oo,R)—-fh(o,R) 2@n)/R so it follows

+

that the imposed field (second term on the right) is destabilizing, and that
the self-field (the third term on the right) is stabilizing. In spherical
geometry, the surface tension term is stabilizihg for all modes of interest,
n >4

All modes first become unstable (as Q is raised) as the term on the
right in Eq. 18 passes through zero. With ;E Q/%m’(s, this condition is

therefore (N # i)

Qz=—§—"Tz€.XR3(h+Z>(Zh+\) (19)

The n=0 mode is not allowed because of mass conservation. The n=1 mode,

which represents lateral translation, is marginally stable, in that it gives
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Prob. 8.14.1 (comnt.)

Ww=0 in Eq. 18. The n=1 mode has been excluded from Eq. 19. For N0,
CQZ is a monotonically increasing function of n in Eq. 19, so the first
unstable mode is n=2. Thus, the most critical displacement of the interfaces

have the three relative surface displacements shown in Table 2.16.3 for fl

The critical charge is

@ =/ 497 R Ye, = 7.3rr‘/eox R’

Note that this charge is slightly lower than the critical charge on a

perfectly conducting sphere drop (Rayleigh's limit, Eq. 8.13.11).

Prob. 8.14.2 The configuration is as shown in Fig. 8.14.2 of the text,

except that each region has its own uniform permittivity. This complica-
tion evidences itself in the linearization of the boundary conditionms,
which is somewhat more complicated because of the existence of a surface
force density due to the polarization.

The x-component of the condition of stress equilibrium for the
interface is in general

-lplin, +BT,511H6 + T, =0 (1)

This expression becomes

_sax _ ‘ € (e 2 At 2 A
-1-12,+T -3 “m el +1 Z(E°+ex)[\x=;b’(§§z )0

Note that E0=E°(x), so that there is a perturbation part of Ei evaluated
at the interface, namely 2F, AE,/J;. Thus, with the equilibrium part of

Eq. 2 cancelled out, the remaining part is
H?C(E"“?*S%(/«‘/’s)“(d %)+ 1€E, &, +1¢EE: B?-Xf%?-o 3

A
It is the bulk relations written in terms of W that are available, so
. , . . s A A A
this expression is now written using the definition p=W -a& . Also,

A@ofsz-annd ec(E,/sz'} » 80 Eq. 3 becomes

a(fa )T - 171 +1381+ JeE &, ]-¥KT=0 ©
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Prob. 8.14.2 (cont.)
The first of the two electrical boundary conditions is

nx1ED O:‘?ﬂﬁlh»ﬂE'ﬂj--—o (5)
X=%

and to linear terms this is

18] +1E1S =0 )

The second condition is

Sjc—tn\ zo>flee]+0€

-
-

dE 1\5 )

By Gauss Law, GAEo/c(x:“ and so this expression becomes
A A
feeci + Ig1% =0 ®

These three boundary conditions, Eqs. 4, 6 and 8, are three equations
cdae 34 gegd o
in the unknowns ? A\ ,§ . & ’@x ¢, . Four more relations are

provided by the electrical and mechanical bulk relations, Egqs. 12b, 13a,

14b and 15a, which are substituted into these boundary conditions to give

ar -

/b) —X?Q %a'(’ €°E°Pec€| kga A
'3 </:—w (/“cﬁkea-‘/ coth) -%54 6,ELethEl b4

I E.1 = ‘ |

I310 €. B cothBe abent |3

L 4L

This determinant reduces to the desired dispersion equation.
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Prob. 8.14.2 (cont.)

Lo ba et B = g (A-) T 1 v R,

<
+ (9= 90) _ 2(€,-€)(3E, cothBliq E cotlba) (10)
€ocothBa +€ cothRb €. coth Bo + €, cothBL

R (ea" ek‘;EaEL“
€a_+&.u\'\ %—L'\'eb +Q~\L|B°\

In the absence of convection, the first and second terms on the
right represent the respective effects of gravity and capillarity. The
third term on the right is an imposed field effect of the space charge,
due to the interaction of the space charge with fields.that could largely
be imposed by the electrodes. By contrast, the fourth term, which is also
due to the space-charge interaction, is proportional to the square of the
space-charge discontinuity at the interface, and can, therefore, be inter-
preted as a self-field term, where the interaction is between the space
charge and the field produced by the space charge. This term is present,
even if the electric field intensity at the interface were to vanish. The
fifth and sixth terms are clearly due to polarization, since they would not
be present if the permittivities were equal. In the absence of any space-
charge densities, only the sixth term would remain, which always tends to
destabilize the interface. However, by contrast with the example of
Sec. 8.10, the fifth term is one dﬁe to both the polarizability and the
space charge. That is, Ea and Eb include effects of the space-charge.

(See "Space-Charge Dynamics of Liquids", Phys. Fluids, 15 (1972), p. 1197.)
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Problem 8.15.1

Because the force density is a pure gradient, Equation 7.8.11 is
A
applicable. With B,, =/u°I/)“Y=_3_Y‘-)it follows that A = —(/‘oI/Dﬂ'ﬂ,QV-("/K)

so that £ = "3,A and Equation 7.8.11 becomes

p= 11 - K_Lk(r)+,aét (1)

Note that there are no self-fields giving rise to a perturbation field, as in
Section 8.14. There are also no surface currents, so the pressure jump at
the interface is equilibrated by the surface tension surface force density.

(2)
_“c.-—“’.‘a = _\%\

while the perturbation requires that

2
b \
°/“°T' (“*f =Y P, N —-:.D—-i._l ®
n ™6
Linearization of the first term on the left (ﬂ. (I-\—x) ~x) , substitution to

obtain complex amplitudes and use of the pressure-velocity relation for a

column of fluid from Table 7.9.1 then gives an expression that is homogeneous

%D(w,m) = 0 . Thus the dispersion equation, D(w,wm)=0 , is
2
-w/\:..\(o,ﬂ% _-_, (rowd) & 3T O
Tanm

(c) Recall from Section 2.17 that F (0,R) { 0 and that the m = 0 mode is
excluded because there is no z dependence. Surface tension therefore only
tends to stabilize. However, in the m = 1 mode (which is a pure translation
of the column) it has no effect and stability is determined by the electro-
mechanical term. It follows that the m = 1 mode is unstable if :S,I <0 .

2
Higher order modes become unstable for -TOI =(""‘ "I)AWY//I,R . Conversely,
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Problem 8.15.1 (cont)

all modes are stable if IOI>O. With Jo and I of the same sign, the
ix/u,ﬂ force density is radially inward. The uniform current density
fills regions of fluid extending outward providing an incremental increase
in the pressure (say at r = R) of the fluid at any fixed location. The
magnetic field is equivalent in its effect to a radially directed gravity

that is inward if J T 0

Problem 8.16.1 In static equilibrium

E& =-p= _TR > X20 (D
* M, +egax+LeB, 5 x<o0

In the bulk regions, where there is no electromechanical coupling, the

stress-velocity relations of Eq. 7.19.19 apply

S [RasR) (R [

- (2)
e -7 | £
S, (O-R) TR |

and the flux-potential relations, Eq. (a) of Table 2.16.1, show that
Ad 24
E, = k& 3
The crux of the interaction is represented by the perturbation boundary
conditions. Stress equilibrium in the x direction requires that
: . - AN, =0
ﬂ Sxé“na + DTxa Hna X"'v x (4)

A Al
With the use of Eq. (d) of Table 7.6.2 and § =Y /a'w, the linearized

version of this condition ié
. Ae ~d A2 2

ok SIS S NS O N
R (off) ~ e >

The stress equilibrium in the y direction requires that

ﬂ Sﬂi“ni + “T‘a;;“”é _‘(ﬂ_(v.a),,,a -0 (6)

and the linearized form of this condition is

z A€ ~A4q
e&e%—QEﬁ -S =o )

e X gx

(5)

i
0o
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Prob. 8.16.1 (cont.)

The tangential electric field must vanish on the interface, so

g
éé - ERS (8)

9 w °

and from this expression and Eq. 7, it follows that the latter condition

can be replaced with

g:x p )

Equations 2 and 3 combine with Eqs. 5 and 9 to give the homogeneous equations

itk pfwe R

(10)

§ (Y-8 (¥ +R) &:
Multiplie& out, the determinant becomes the desired dispeszi:on -equation.
2 2
: ~RY-¥(¥+R) | 2 %
@t 1RCY-R) = - (eREC-V.R -0q) (11)
. R(¥+RY | (e, af=p
With the use of the definition ¥ = @, 4+ awf/;) this expression becomes

_aw7(4RY uoN QY _ v (12)
4;;2(————“& +3—7—ﬁ>_pg+ . -€RE.

Now, in the limit of low viscosity, Q/ ¥ — 0 and Eq. 12 become

o' —jaRhw - (g + RV -€RE]) =0 (13)

which can be solved for 3.
4@ Riye " 2
@i V‘G’oj) + 5 ¢y +EVa-ehel) "

Note that in this limit, the rate of growth depends on viscosity, but the

field for incipience of instability does not.

In the high viscosity limit, ¥ % R +a'°"/°/§ 7£ and Eq. 12 become

2 X%
op| B ER)  w . .
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Prob. 8.16.1 (cont.)

Further expansion of the denominator reduces this expression to

%%ﬁ:;éw73 +p8 +BY, —e,RE (16)

Again, viscosity effects the rate of growth, but not the conditions for

incipience of instability.

Problem 8.16.2 In static equilibrium, there is no surface current, and

so the distribution of pressure is the same as if there were no imposed H.

-1, L X0
—'W°+/o%x 3 %<0

(1)

The perfectly conducting interface is to be modeled by its boundary conditioms.

The magnetic flux density normal to the interface is taken as continuous.
R-181=0 @)

With this understood, consider the consequences of flux conservation for a

surface of fixed identity in the interface (Eqs. 2.6.4 and 6.2.4).

A 2.1 = EEE R XV A = (3)
c_ﬁggn&o\ 3 + % (B )]h a= 0

S S
Linearized, and in view of Egq. 2, this condition becomes

HD NSty = W RV /e “
st 59

Bulk conditions in the regions to either side of the interface represent the
fluid and fields without a coupling. The stress-velocity conditions for the

lower half-space are Egs. 2.19.19.
A AL
&l [FC® ) [

§¢—7 J06-R)y  wR

ax
While the flux-potential relations for the magnetic fields, Eqs. (a) of

Table 2.16.1, reduce to
e

ad A A ad A A
Y PR LT T L A
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Prob. 8.16.2 (cont.)
Boundary conditions at the interface for the fields are the linearized versions

of Eqs., 2 and 4. For the fluid, stress balance in the x direction requires

% ‘f ‘(Jé -~ Su = (7

w N
where A:’ - a‘w % . Stress balance in the y direction requires

" "d
—S;‘ +auoH, \\.g=0 @)
-’ \‘ g-l (K ( R . (X Q) 9 P&eﬂ
M it (DR jo(s-8) |1 o

=0
. . Hz% e
%7("’&) 7(X+%)’a:)ﬂo ° 4

It follows that the required dispersion equation is
2 2 Z
[tk (RleRe (- &7 G-R)w=0 o
In the low viscosity limit, ¥ NX;'w(a/7 * “i&? 3vr g-l and therefore

the last term goes to zero as 7—-—-0 so that the equation factors into the
dispersion equations for two modes. The first, the transverse mode, is repre-
sented by the first term in brackets in Eq. 10, which can be solved to give the

dispersion equation for a gravity-capillary mode with no coupling to the

magnetic field.

“=qR +*649. (1)
/0

The second term in brackets becomes the dispersion equation for the mode

involving dilatations of the interface. 2/
= R
3 .47, = | Moo
w = w,_[ 3 +%_] = I ] (12)

l7¢”

2

If w)W,, then in the second term in brackets of Eq. 10, 7(K+Q)) )/a,Ho Q/;o
and the dispersion equation is as though there were no electromechanical
coupling. Thus, for < >4, the damping effect of viscosity is much as in

Problem 8.16.1. In the opposite extreme, if <LK &), , then the second term
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2
has 7(‘{1-&)((2/{.“’ B/&a and is approximated by the magnetic field term. In

this case, Eq. 10 is approximated by

Ny ' 2_3&2- = (13)
(o%.-\-‘&@ &7‘8-‘-37““_32/0[-{:% o 13

In the limit of very high Ho’ the last term is negligible and the remainder

of the equation can be used to approximate the damping effect of viscosity.

Certainly the model is not meaningful unless the magnetic diffusion
time based on the sheet thickness and the wavelength is small compared to
times of interest. Suggested by Eq. 6.10.2 in the limit d—eee is a typical

(N3 "
magnetic diffusion time QAT O /ﬂ » where a is the thickness of the perfectly

conducting layer.
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Prob. 8.16.3 A cross-section of the configuration is shown in the figure.

e A Ed -

b-L e EoaTi= gt
%

. {8)

In static equilibrium, the electric field intensity is
(v} x<K0

and in accordance with the stress balance shown in the figure, the mechanical

stress, Sxx’ reduces to simply the negative of the hydrodynamic pressure.

B A\
Sun— p= og % +-\5'€°E:--“'

Electrical bulk conditions reflecting the fact that E=-Y® where $

(2)

satisfies Laplace's equation both in the air-gap and in the liquid layer are
Egs. (b) from Table 2.16.1. Incorporated at the outset are the boundary
Ao A

c 5
conditions Q =0 and § =O, reflecting the fact that the upper and lower

electrodes are highly conducting.

éi = %u-l‘jﬁo. $ | (3)
e =_R uthRb &° (@)

The mechanical bulk conditions, reflecting mass conservation and force equilibrium

for the liquid, which has uniform mass density and viscosity, are Egs. 7.20.6.
At the outset, the boundary conditions at the lower electrode requiring that
both the tangential and normal liquid velocities be zero are incorporated in
A* A g
writing these expressions( 1},‘ =0, 1}‘3 = O}.
Ae ~ e ~e (5)
S, = 79\1& + 7‘3\31}1

XA
.e (6)

AQ e
S, = 7B + yARTLN



8.42
Prob. 8.16.3 (cont.)

Boundary conditions at the upper and lower electrodes have already been
included in writing the bulk relations. The conditions at the interface
remain to be written, and of course represent the electromechanical coupling.

Charge conservation for the interface, Eq. 23 of Table 2.10.1 and Gauss'law,

require that -
Eifi = -Vg- <GE{}) - Fi'ﬂ“'ﬁi“
32 ]

where by Gauss'law G'_"’ = n-Jeel.

(7)

Linearized and written in terms of the complex amplitudes, this requires that

46,8 - 88y = ke E W L o8 ®

The tangential electric field at the interface must be continuous. In linearized

form this requires that
le,l NEL (9)
% .
Because? '!}/aw and C = aki » this condition becomes

Q-Q-xE—o (10)

e
In general, the balance of pressure and viscous stresses (represented by Sij
of the Maxwell stress and of the surface tension surface force density, require

that
PR
“ S“H + ﬂ'ﬁ]lh + "‘;\5 — =0 (11)
With i=x (the x component of the stress balance) this expression requires that

to linear terms
: D?) u( ) 3?
- < (12)
HS“H + US,“‘U( D‘é +ﬂ n X ;\3
By virtue of the forsight in writing the equilibrium pressure, Eq. 2, the
equilibrium parts of Eq. 12 balance out. The perturbation part requires that
A
e
~ o9V ae ad 2.0 (13)
L _ S. +€E e; YR 3
) Ax ‘__"
¢ 44

Sl G5 Mm s O8 M0 R S8 OFr Oy @S
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Prob. 8.16.3 (cont.)

With i=y, (the shear component of the stress balance) Eq. ll requires that

D?) ( 3 ) (14
-3 -=J)J=0 )
n S%xn + HS%%“"( D% +n —l;x] + BT«“HO )'4 .
Observe that the equilibrium quantities HSM'[I‘: - '\ieoE: and §| T‘l‘)“ = '-‘—zGOE,
so that this expression reduces to

A e 2 A B ~
= $gx - eei;% I}f"'}% €oE¢;~§ =0 (15)

The combination of the bulk and boundary conditions, Egs. 3-6,8,10,13 and
AJ a "J 28 A AC A S
. , . . e e e e
15, comprise eight equations in the unknowns(ex, Cx , § ,& ’g‘*, S‘a” 1}‘ , \ﬂ% )

The dispersion equation will now be determined in two steps. First, consider

the "electrical" relations. With the use of Eqs. 3 and 4, Eqs. 8 and 10

become
- N A1l T ae]l
ol wthBa  ocReothBh +oRetfBb| |3 [ReE Y
¥ e 3 ¢ o°9
- (16)
Ae e
- oS
1 1 ¢ | B3
- _l.t- - -3 o
From these two expressions, it follows that
Ae A
~d SEE WV 4 _E_"_Ue('QCcoLQEE +0‘u(jEL)
§=3°21 " jo 3 (17)
joo (€, cith Bos € coth L) + o otk
ﬁé ~ i
In terms of Q_ ' Q‘ is easily written using Eq. 3.
The remaining two boundary conditions, the stress balance conditions of
AR A
Egs. 13 and 15 can now be written in terms of (7’3 X 'tﬂf) alone.
. ~e
My M, '
¥ (=0
‘&e (18)
l. N\z\ Mzz '3
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where

My=-jsR -3 -IE +EER ctlla cthlth (juc 4o)
jw(eaw”ca+€cot(ﬁ)>)+ acatl Bb

an-?pls*' é€:Etgwd£a
je (¢, wthBa ve oth Bb) v o thRL

-307P, - {6 E 4 {8eEL (jwe vs) wtfR)

i« (e, thRos € stdBRY) reathRb

R € E,
§0(€,cth Rou+ € cithBl) + o thRD

Mzz = "7P33 -

T he dispersion equation follows from Eq. 18 as
__M_u Mu - Mz My =0

Here, it is convenient to normalize variables such that

1

=———2“"§, , & =% » Py = b P
2
= kf , U :.‘:QOYE, 5 we =zw¥
peegf L USNE e
R=Rb = v=X¢&
and to define b? d
C: %uljgg+oodg ;R:M@;S"u‘\‘j%f‘

so that in Eq. 19,

,—“ﬂz%‘;Mn: - "3 -/1 “Q +Q.U KS(Awr +1)

Ja:o‘(‘C + A
&\Zzhm\z:" 13 +3§2Y‘URS
7 w*(‘C + R
b . = -Bio - UR $32UG2y R
M‘Ll \‘MZ\ "3|3 3 a w‘-C +R
€
_b =P - BUET
M2 = 7 Mz <33 3‘.‘.""C =

(19)

(20)

(21)

(22)

o ey v o &8 O P 9 8 S e v TP S OB O OF v =w
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Prob. 8.16.3 (cont.)

.If viscous stresses dominate those due to inertia, the Pij in these
expressions are independent of frequency. In the following, this approximation
of low-Reynolds number flow is understood. (Note that the dispersion equation
can be used if inertial effects are included simply by using Eq. 7.19.13 to
define the Pij' However, there is then a complex dependence of these terms
on the frequency, reflecting the fact that viscous diffusion occurs on time
scales of interest.)

With the use of Egs. 22, Eg. 19 becomes

{@‘*"’C +R)4eBi- e - ) +EQRS<3°—"’+‘3}{-_P,,(§‘="‘C+P=)-%Ugf}

(23)

H{PalerrC ) SURS] - (Bi3er YR Cam) s RUGavdr] <o

That this dispersion equation is in general cubic in iaJ reflects the coupling
it represents of the gravity-capillary-electrostatic waves, shcar waves
and the charge relaxation phenomena (the third root).

Consider the limit where charge relaxation is complete on time scales of
interest. Then the interface behaves as an equipotential,r — 0 , and Eq. 23

reduces to

39: @QS -~ - %z) i (24)
(j;h]?ga - .Eal‘fgl )

That there is only one mode is to be expected. Charge relaxation has been

eliminated (is instantaneous) and because there is no tangential electric field

- on the interface, the shear mode has as well. Because damping dominates inertia,

the gravity-capillary-electrostatic wave is over damped, or grows as a pure

exponential. Th;:actor (a (—;-A«w&\ 2& _ -%‘)(/va'z& _ BI> N
— = = N 2 4
Eﬁufﬁn —'Eas fi: - ; -3 %.(%IAW~Q J!é -'g "!% )

is positive, so the interface is unstable if

u>( +R%)/SR (26)
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In the opposite extreme, where the liquid is sufficiently insulating
that charge relaxation is negligible so that r > 1, Eq. 23 reduces to a

quadratic expression( Pa=- pSI) .

o.(a'w)1+\o(.3'w)+c,.—.o |
o=R Bt By be[(p R RptR(B E'é-"‘%l%,)- j“"’ Selic=Ba p+F-0hS]
€

The roots of this expression represent the gravity-capillary~-electrostatic
and shear modes. 1In this limit of a relatively insulating layer, there are
electrical shear stresses on the interface. 1In fact these dominate in the
transport of the surface charge.

To find the general solution of Eqg. 23, it is necessary to write it as
a cubic in jw

Qw)z +Pé@w§ + Ql(a‘“) +R=o

(28)

p';{ag,g;ca +BCIC (e +#)-kurg]4r(RAVE §

+BarClagR jhoraes)ioc(rn e §

Q= {P YC[(# +BYR- RUrS|+{RP -wC(/O-»B‘) B'QURS“QU&(.;%R].

+ [P, R-3E rvﬁs]lp R- Rrye, S’}/r C(RB,

R= {[f'é o Rl IRk ur@l}/f‘c” (P, P +B3)
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x
Prob 8.16.4 Because the solid is relatively T
conducting compared to the gas above, the [} TEo (e I‘3
equilibrium electric field is simply

- E.C, X >0

E=

o] x <0

In the solid, the equations of motion are- S

SR LIPSO }'" ey

ot® .
G (% 3% PRI (P AER OO
-p+

(3)

where

i =

It follows from Eq. 2b that

N
DX

so that the static x component of the force equation reduces to

=0 P §, =const=o (4)

2 T, ‘ X>0
;_E:-.Gs)ﬁx _(a%$ -{ * ’ (5)
I % Ty—28% 5 x<0
This expression, together with the condition that the interface be in stress
equilibrium, determines the equilibrium stress distribution
-—“'Q X>o (6)

>
- = 2
Sxx P /ng-\-ra +—.‘}'€°E° ; b )

In the gas above, the perturbation fields are represented by Laplace's equation,

and hence the transfer relations (a) of Table 2.16.1
Ao
é: -ud@a __._.‘___. §
1 |=® melien |y Q)
€. - ek o || @
b B

Perturbation deformations in the solid are described by the analogue transfer

relations .
Sxx g" N
-~ G A; J 2 _ wl
?’“ [ ] ?" where 8 = Y -a‘f (&)
S 17 3

gn ’
; A
SV_J 5% J

3

The interface is described in Eulerian coordinates by i(%‘ t) with this

variable related to the deformation of the interface as suggested by the figure.
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Prob. 8.16.4 (cont.) Boundary conditions on the fields in the gas recognize that

the electrode and the interface are each equipotentials.

A

[
¢ =o (9)
A J Ae
iﬁxé]=° 5> & = ES, (10)
xci '
Stress equilibrium for the interface is in general represented by

ﬂ 9‘3“"‘3 + n_‘—:a“nfo .- (i1 '

where i is either x or y. To linear terms, the X component requires that

- .- = 12
Sex * €E,En - 23570 (12)
where the equilibrium part balances out by virtue of the static equilibrium, Eq. 5..

The shear component of Eq. 11, i=y, becomes

d
(S3- 55+ (S-SR T (e

Because there is no electrical shear stress on the interface, a fact represented byl
Eq. 10, this expression reduces to '
e

ng =0 (14) '
In addition, the rigid bottom requires that

&5 -0, =0 as §

AR 2 e
The dispersion equation is now found by writing Eqs. 12 and 14 in terms of (i,,,ggt
Ae A
To this end, Eq. 8a is substituted for S” using Eas. 15 and e‘ is substituted

using Eq. 7b evaluated using Eqs. 9 and 10. This is the first of the two expressio'

. ) Gs P“-\-Elgecd’f\"a& E:"/Dg -G, p,; ? .

=0 (16) .

- G

S
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ne
The second expression is Eq. 14 evaluated using Eq. 8¢ for S,“with Eqs. 15.
It follows from Eq. 16 that the desired dispersion equation is
€ Etk cothfRa =P )
Pu Pss - Pss > Gy 4 - Rsp:n =0 an

where in general, Pij are defined with Eq. 7.19.13 ( ¥ defined with Eq. 8). 1In
R 2 w’-/ . .
the limit where % »? f Gs’ the Pij become those defined with Eq. 7.20.6.

With the assumption that perturbations having a given wavenumber, k, become

unstable by paésing into the right half jew plane through the origin, it is possible

to interprete the roots of Eq. 17 in the limit @W-»0 as giving the value of

2
COE‘,/GS required for instability.

P Pﬁ: P - €oEt__Q coth R -2 (18)
P13 Gs , Cs

In particular, this expression becomes

| 4
i"__E'l’ T 2. [ 3 sinh (;?ab)&%ﬁ{sml—. a%b-%':]-\z(ﬁg)
Gs Cs 4 snh (286y-BE[ kb - (R 1) )

so that the function on the right depends on kb and a/b. In general, a graphical

(19)

solution would give the most critical value of kb. Here, the short-wave limit of

Eq. 19 is taken, where it becomes

€E, = G,/ (20)
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Problem 8.18.1 For the linear distribution of charge density, the equation

3 7e +D? X . Thus, the upper uniform charge density must have value
of (34/4)7_ while the lower one must have magnitude of é‘/4)? Evaluation

gives

- 3 o - A (1)
9o ‘;e+4oqeé 5 = §e+4t>9tec{
The associated equilibrium electric field follows from Gauss' Law and the

condition that the potential at x=0 is V . A _
E= _o-\--%—()“—'), 7‘>2 (2)
x

Eo+§—(x-é') xed

and the condition that the °potential be V at x¥=0 and be 0 at x=d.

4 )
_ - g.d N )
Vo = SE*&X'E° S S vl ?
With the use of Egqs. 1, this expression becomes
v, . &
E = 2 - —P%, (4)

° d [6E,

Similar to Eqs. 1 are those for the mass densities in the layer model.

- 2 . = 4
ppar et s A TR ®
For the two layer model, the dispersion equation is Eq. 8.14.25, which

evaluated using Eqs. 1, 4 and 5, becomes

D
In terms of the normalization given with Eq. 8.18.2, this expression becomes

° V"D D...
"(a*_ﬁ-)u«cﬂ Iw?ct f].‘. Sl—-—;a-—_: 3;]%?;:‘ (2

wieh ehe musbers Dy/loyel =1, ¥y ./w.,\=',%=t,o€-=o e §= 1,

Eq. 7 gives 0 =0.349. The weak gradient approximation represented by Eq.
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Prob. 8.18.1(cont.)

8.18.10 gives for comparison &« = 0.303 while the numerical result representing
the "exact" model, Fig. 8.18.2, gives a frequency that is somewhat higher
than the weak gradient result but still lower than the layer model result,
about 0.31. The layer model is clearly useful for estimating the frequency
or growth rate of the dominant mode.
In the long-wave limit, £ << | » the weak-gradient imposed field
result, Eq. 8.18.10, becomes
e BN ®

n* :
In the same approximation it is appropriate to set S=0 in Eq. 7, which becomes

4
o — @.5‘{[ (9

where OO~ 0 . Thus the layer model gives a freql.lency that is wN@ =Ll times
that of the imposed-field weak gradient model.

In the short-wave limit, g »71, the layer model predicts that the
frequency increases with &“ . This is in contrast to the dependence
typified by Fig. 8.18.4 at short wavelengths with a smoothly inhomogeneous
layer. This inadequacy of the layer model is to be expected, because it
presumes that the structure of the discontinuity between layers is always
sharp no matter how fine the scale of the surface perturbation. In fact,
at short enough wavelengths, systems of miscible fluids will have an
interface that is smoothly inhomogeneous because of molecular diffusion.

To describe higher order modes in the smoothly inhomogeneous system
for wavenumbers that are not extremely short, more layers should be used.
Presumably, for each interface, there is an additional pair of modes
introduced. Of course, the modes are not identified with a single inter-
face but rather involve the self-consistent deformation of all interfaces.

The situation is formally similar to that introduced in Sec. 5.15.
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Problem 8.18.2 The basic equations for the magnetizable but insulating
inhomogeneous fluid are
- T
— VU= - - I
/o( + BBz -vp-pg (- L Wk &Y
vV =0 _ (2)

vyd?:o (3)

- (4)
vxh =o
o (5)
-A =0
DX

(6)

|») =0
24

where {4 = W (» )(_ + h.
A
In view of Eq. 4, \’\=-V‘7U . This means that ) -Jéaw and for the

present purposes it is more convenient to use ﬁz as a scalar "potential"

A \ ~ A A
hx=-.3'—(t-abhi ",\-\‘3:%1‘1{ M

2
With the definitions,uyaa()k)-\-/u' and ﬂ=/30‘) +F’ » Egs. 5 and 6 link the

perturbations in properties to the fluid displacement

R LN = (8)
T o 4

Thus, with the use of Eq. 8a and Eqs. 7, the linearized version of Eq. 3 is
A 2 . Qz A 2 _ [ 2
D(/‘AD\‘Q:&/“,«&.%L—;- W.(Duu), o R = By +R, (9)

and this represents the magnetic field, given the mechanical deformation.

To represent the mechanics, Eq. 2 is written in terms of complex amplitudes.

and, with the use of Eq. 8b, the x component of Eq. 1 is written in the
linearized form

[« *90%u+i M D] 3, +k W (O, )oY, -JwHﬁ(D/uﬁ)Fzzng;) o
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Prob. 8.18.2(cont.)

Similarly, the y and z components of Eq. 1 become

jood, = 14,7 -1 WL Om a2
5 B N W (D )22 (13)
JeVT (R P TG T

With the objective of making Qka scalar function representing the mechanics,’
these last two expressions are solved for Gy anf Gz and substituted into

Eq. 10.

" X, g 5
(% O Vs =a% P --k P H,;(D/“ﬂ) » (14)

A
This expression is then solved for p, and the derivative taken with respect

to x. This derivative can then be used to eliminate the pressure from Eq. 1l.

ol eB)]- Ko 413, 43 ¥ Ha (a2 0 ()

»

T\~
-9 D/’a +'§(D/“A)D<“\A) =-3 D/’*
Equations 9 and 15 comprise the desired relations.

In an imposed field approximation where HS=H° = constant and the
properties have the profiles /a, .--,o,_exp(sx and/uﬁz/l, expax, Egs. 9 and 15

become

D L L

| Lk, - v@a’\.}o‘ﬂ }—&x=o a7

T
where L':". t)1 i—(&D 'R

For these constant coefficient equations, solutions take the form _gxg ¥ X

2
and L "'Xz +@X -& . From Eqs. 16 and 17 it follows that
2pl 2 3
N ?""/V.L + B Ey Ho3 Hm = 0
w T v (18)
[ w /m
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Solution for L results in ‘

Y *
L:o.ib,a:ﬂ;éc}. [(%a@f) (ﬁ% kf )] (19)

From the definition of L, the Y's representing the x dependence follow as

: i1
=Bty ez ((§)+ B ratb]® 20

In terms of these ¥ 's,

a ~Bx . CX ~ -CK & C.x ~C.X
b= e* [Ae +Ae ’ +A e +A4 l (21)

' The corresponding ﬂ; is written in terms of these same coefficients with the

help of Eq. 17
A Cx A -C

‘QEHﬁ[AC + Ae +£\____ Aqe ]e & @

oth atr b o-b
Thus, the four boundary conditions require that
i C,.,Q -CJ cy -c. R Tr/‘ T
¢ e e e A,
| l ! A
1
A" =0 (23)
C+R -Ql c.X ..C-g ” -
e € ¢ < Ax
P ot b a-§& a-b A
\ | L | A
L <+ % arbs a-b a-bJL 4

This determinant is easily reduced by first subtracting the second and fourth

columns from the first and third respectively and then expanding by minors.

willeis) al(en) 225 = 0 2

B‘L
Thus, eigenmodes are C_\’Q =4h‘“ and C_ﬂ:er . The eigenfrequencies follow

from Eqs. 19 and 20.

R R, h, o e - %FEZ : K,
Ko e K,

For perturbations with peaks and valleys running perpendicular to the imposed

()8 @

fields, the magnetic field stiffens the fluid. Internal electromechanical waves



8.55
Prob. 8.18.2(cont.)

propagate along the lines of magnetic field intensity. If the fluid were
confined between parallel plates in the x-z planes, so that the fluid were
indeed forced to undergo only two dimensional motions, the field could be
used to balance a heavy fluid on top of a light one.... to prevent the grav-
itational form of Rayleigh-Taylor instability. However, for perturbations
with hills and valleys running parallel to the imposed field, the magnetic
field remains undisturbed, and there is no magnetic restoring force to pre-
vent the instability. The role of the magnetic field, here in the context
of an internal coupling, is similar to that for the hydromagnetic system
described in Sec. 8.12 where interchange modes of instability for a surface
coupled system were found.

The electric polarization analogue to this configuration might be as
shown in Fig. 8.11.1, but with a smooth distribution of € and /9 in the x

direction.

Problem 8.18.3 Starting with Eqs. 9 and 15 from Prob. 8.18.2, multiply

the first by Iﬁ: and integrate from 0 to {

g 3 A,
Sﬁibkaoﬁz)c\*-g%%\%\?{&-jEz(o,a,)u B
0o 009

Integration of the first term by parts and use of the boundary conditions

A
on ha gives integrals on the left that are posltlve definite.

R
R ~¥ .

1= a'ZJ—Iq s LF Slﬂﬂlbh HP"/“/"M’ ]Ax I SH (D/“A)v‘ R A" (3)

# o
and 1ntegrate.

I E . ¥
Xﬂ’ oA (0% )dx - & {0‘1”‘ (et &{X LY, dxs 3’5 }L‘D/uﬂ_l& l"zfl“’o(")
0

In summary

Now, multiply Eq. 15 from Prob 8.18.2 by

4

(4 0
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Prob. 8.18.3(cont.)
N
Integration of the first term by parts and the boundary conditions on

gives 1 X g
2 AR N
/JA_D‘? D" Ax -& {4,,.1’ V Ax+ —/Y'vl 3‘% \-\/SD/J‘& hzc‘)ﬁo
0 o o
and this expression takes the form

L S (falov\+&,oﬂ\v\ Jx /L7 &/\f\ﬂ\&x ®

[
Multiplication of Eq. 3 by Eq. 6 results in yet another positive definite

quantity 2
Ry
T,I,-T5 = R% T\ 7)
ot c?
and this expression can be solved for the frequency
3 2 A
- RR AT + T, (8)

Iz,
Because the terms on the right are real, it follows that either the
eigenfrequencies are real or they represent modes that grow and decay
without oscillation. Thus, the search for eigenfrequencies in the general

case can be restricted to the real and imaginary axes of the s plane.

Note that a sufficient condition for stability is A{ 2 O , because

that insures that I3 is positive definite.

nwuumun-nnmmnn-unn--n
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Prob. 9.3.1 (a) With aPl/én =0 and Txy=0’ Eq. (a) reduces to U= v+(v V‘M—)
Thus, the velocity profile is seen to be linear in x. (b) With 1}6:'\) =0

and Tyx=0’ Eq. (a) becomes

v(x)-—-?‘?_;g[( ) ]A

and the velocity profile is seen to be parabolic. The peak velocity

is at the center of the channel, where it is = (&787))?73% . The volume

rate of flow follows as

3 ’
6= waﬁvd(—%g;ggi—;-(%)- L] = e Y

Hence, the desired relation of volume rate of flow and the difference

between outlet pressure and inlet pressure, &P , is

Q =-WA be
! ::7< ) 792.['\’

x
Prob. 9.3.2 - The control volume is as shown >x _.'3
with hybrid pressure p' acting on the longi- f
tudinal surfaces (which have height x) and ]| X
shear stresses acting on transverse surface. P'(‘Q) '(%“Jg)
With the assumption that these surface stresses l - I
represent all of the forces (that there is no | 7%(0) +\ (o)1
acceleration), the force equilibrium is repre- é ‘44.4.4

sented by

/ , Ay
[ s di-e'tslx= (75 ¥ Ty dy- (9324, ()4

Divided by dy, this expression becomes Eq. (5)
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Prob. 9.3.3 Unlike the other fully developed flows in Table 9.3.1,

this one involves an acceleration. The Navier-Stokes equation is
- - - = I =
(B VT +vp =v(,o%-v)+7v U +V-T (1)

With v = v(r) IQ, continuity is automatically satisfied, V-3 =0. The

radial component of Eq. 1 is

P
Y af = %(f)'ﬁ-‘?) + () (2)

It is always possible to find a scalar 8(1‘) such that F; = -Dg/b\“
2
and to define a scalar T(r) such that T = - 869/9)4!‘. Then, Eq. (2)

reduces to
S%—O gp'Ep+’T(r)+£(r)-—ﬁ§.F (3)

The 8 component of Eq. (1) is best written so that the viscous shear
stress is evident. Thus, the viscous term is written as the divergence

of the viscous stress tensor, so that the 8 component of Eq. (1) becomes

1P _ 2 v
v 55 = S (e tTee) v (T, +T) @

where

v

_rre = 7‘(%—;<-€-) ‘ ’ (5)-

Multiplication of Eq. (4) by r2 makes it possible to write the right hand

side as a perfect differential.

)P v (6)
39 é\- I ( +Tre)1
Then, because the flow is reentrant, DP7)9=O and Eq. (6) can be integrated.
2 d /v
Gl T v v ()= )

a second integration of Eq. (7) divided by r3 gives

A A\
[T (Gara-blp) o
3
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Prob. 9.3.3 (cont.)

o
The coefficient C is determined in terms of the velocity 1* on the

outer surface by evaluating Eq. (8) on the outer boundary and solving

for C. q "erA 1} v@
C= ‘”+7< - (9

]l

This can now be introduced into Eq. (8) to give the desired velocity

distribution, Eq. (b) of Table 9.2.1.

Prob. 9.3.4 With Tr6=0’ Eq. (b) of Table 9.2.1 becomes

L . e 1)
v= 4 _ A [1} (1@ r 1}‘3<—'-——-] (
The viscous (s/tsress ?ol>lows as
> 8 (2)
7 ;Y‘( ) jY‘ ﬁ)(:’t}ﬁ_ :2'3:()

Substituting 1} dﬂ and 1)5 , at the inner surface where r —ﬁ this
B Y

becomes
v

K

The torque on the inner cylinder is its area multiplied by the lever-arm

(-O-L Q) (3)

5 and the stress Tre'

T=Gmwae)g(T, 6)_-4ﬂ@>W7d (4)

(25 (-0
A
Note that in the limit where the outer cylinder is far away, this becomes

T=-4me vy (0 -0)) C®

a

(b) Expand the term multiplying v
-1

in Eq. (1) letting r = ﬁ*\-?l, v < R

4
so that r g(l//g -Y"/Az) . In the term multiplying v8 |, expand Y= &-¥ ’

so that r-l=(|/d. +Y”/dz) . Thus, Eq. (1) becomes

Ry J‘-“———[v“alé\:' +0420]

(A-3) (d+B) (6)
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Prob. 9.3.4(cont.)

The term out in front becomes approximately d/(d-ﬂ)a .
Thus, with the identification e x , . A-X and OG-@->4 the

velocity profile becomes
o/ X X -
#= v (3)+ 070 - %) @

which is the plane Couette flow profile (Prob. 9.2.1).

Prob. 9.3.5 With the assumption v = v(r)iz, continuity is automatically

satisfied and the radial component of the Navier Stokes equation becomes

=2 () +F(0) 3 Fos -‘al_‘i: v

so that the radial force density is balanced by the pressure in such a way

that p' is independent of r, where p'S P—/aa-? + E .

" Multiplied by r, the longitudinal component of the Navier Stokes equation

is

Do’
v =D /T D (¢ 22 (2)
o2 ;Y‘(T '3") ¥ 7 s (T QY) _

This expression is integrated to obtain

M At 2 s
-_'5-3%_(“‘ -ﬁ)=f—rzr-ﬂ_r{i+7 *%—ﬂ(%}] (3)

A second integration of this expression multiplied by r leads to the

velocity v(r)

A} _ . A .
L2 |46 (B | Tardea T R0 )

in terms of the constant (DU‘/)“)@ To replace this constant with the
velocity evaluated on the outer boundary, Eq. (4) is evaluated at the

outer boundary, r = & , where 1}:-‘15“ and that expression solved for (bv'/ér)a
Substitution of the resulting expression into Eq. (4) gives an expression

that can be solved for the velocity profile in terms of ‘l}d and 'I/‘/: Eq. (c)

of Table 9.2.1.
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Prob. 9.3.6 This problem is probably more easily solved directly

than by taking the limit of Eq. (c). However, it is instructive to take
d

the limit. Note that 'I'zr=0, v =0 and d=R. But, so long as 1}'8 is

2
finite, the term ﬂL(f/ﬂ)/j.,(d/ﬂ) goes to zero as 4—+0. Moreover,

Do & Il f8) () = S o [ () ()] _
(e B L () =dm(6)]

so that the required circular Couette flow has a parabola as its profile

o (o
v 4—7;1(T"R>

(b) The volume rate of flow follows from Eq. (2)

R
4,
= \Va d :-—E-'Réf_z—;“_ 4bp
Q, S Travs = 87R_)'(-
o

where Ap is the pressure at the outlet minus that at the inlet.

Prob. 9.4.1 Equation 5.14.11 gives the surface force density in the

form

(T =c(egqr- 6501)_35__ =1, h)
: | + Sg

Thus, the interface tends to move in the positive y direction if the upper
region (the one nearest the electrode) is insulating and the lower one is

filled with semi-insulating liquid and if S_ is greater than zero, which

E

it is if the wave travels in the y direction and the interface moves at
a phase velocity less than that of the wave.

For purposes of the fluid mechanics analysis, the coordinate origin
for x is moved to the bottom of the tank. Then, Eq. (a) of Table 9.3.1
is applicable with vp =0 and vd = U (the unknown surface velocity). There
are no internal force densities in the y direction, so Tyx=0. In this

expression, there are two unknowns, U and ;1’733 . These are determined
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Prob. 9.4.1 (cont.)

by the stress balance at the interface, which requires that

AV —
p 2% = 1, (2)
IX L _,
and the condition that mass be conserved.
b
S 1}% dx=0 (3)
o .

These require that
7 b vl .
- > (4)
3 r =

LR B B
NEFRIEY
and it follows that U= b1, /*7 and OP /33—3-\- /35

>
2

so that the required velocity profile, Eq. (a) of Table 9.3.1 is

J = bTo 35.(32‘. _3)
Prob. 9.4.2 The time average electric surface force
density is found by adapting Eq. 5.14.11. That 60,0- < l'a>
—_— ¢

4 - ' l
configuration models the upper region and the infinite — ]
half space if it is turned upside down and 2 ¢, G-—»a, . = ° S - o’

. % L

E.—~€, €,—~+€, , Ta—* G , g ,— 0 and b —» @, Then,

(T =-LeltllKeo S
| Ty s

where
SEE w’T’ (\-EE
Y. = Gco'\'k%a-»éo
€ T coth Ra (&>0)

K = { sinh Rafe coth Ra + €, Lo coth Qaz}

Note that for [l >|PCU|, the electric surface force density is negative.
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Prob. 9.4.2 (cont.)
With x defined as shown to the right, Eq. (a) of
Table 9.3.1 is adapted to the flow in the upper section
ol —
by setting 1} :U,‘l}ﬁ:o'b—»r.\ and | =

so that

'v(;«)=U%‘:+§;%§[ X1

From this, the viscous shear stress follows as

SR e sl o

Thus, shear stress equilibrium at the interface requires that

(2)

(3p7dy = (p'-P)/4) @, 0w
<>, = S, (x=e)= 2T a(p-d) @ @y,

Thus,
a PR
='7’< z——g?(————“olp) (5)
and Eq. 2 becomes

= & ______(P" ) X 0~ E [ r/x X
U(x) [7<T‘3 29 4 Sl 27} [(‘: ‘Z] ©
It is the volume rate of flow that is in common to the upper and lower
regions. For the upper region
Q, = S'D(*)Ax = E’”<T‘&>; -(P-p)o )
A 7 £ 3
In the 1 ion, wh - b, VP= - - ,
n e lower region, where A 5 I 7} = I T‘éx -0
Eq. (a) of Table 9.3.1 becomes ( p. ™ P' and Pz ~ P" )

b o XN 8
E;<P1P)[<_\;.>_%] ®

Thus, in the lower region, the volume rate of flow is

l

]
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Prob. 9.4.2 (cont.)
b

3
Q = X’t}(ﬂéx = -5 (p'-P) 9)
v YN

Because Qv in the upper and lower sections must sum to zero, it follows

from Eqs. 7 and 9 that 2

E(_:_P_z- %-7<T‘@>3‘ - Co <T‘&>t1

A o3 B 4o + b (10)
39 124

This expression is then substituted into Eq. 5 to obtain the surface

velocity, U.

& 3&+b

U=7[4a +b’]<T> (v

Note that because <?Y;Q is negative (if the imposed traveling wave of potential
travels to the right with a velocity greater than that of the fluid in that same
direction) the actual velocity of the interface is to the left, as illustrated

in Fig. 9.4.2b.

Prob. 9.4.3 It is assumed that the magnetic skin depth is very short
compared to the depth b of the liquid. Thus, it is appropriate to model
the electromechanical coupling by a surface force density acting at the
interface of the liquid. First, what is the magnetic field distribution
under the assumption that 1}1(<CJ/& » S0 that there is no effect of the
liquid motion on the field? 1In the air gap, Eqs. (a) of Table 6.5.1 with

0 =0 show that

Aa l Ao
Hx A7 c oth Ba sinh fa H‘)
A% |= T3 b (1)
e TR cothfal| H,
tn

while in the liquid, Eq. 6.8.5 becomes
AC
AC
He =5 (4R Hy @

Boundary conditions are
A Q

N LS Ac A
sz -Ko,/uoHﬁ =/MH" )H‘}: H‘} (3)
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Prob. 9.4.3 (cont.)

Thus, it follows that

QK /{s.nhﬁa -%S +3(c6“|nﬁm+|ﬂ$/‘j} @

It follows from Eq. 6.8.10 that the time

average surface force density is

QeI o

Under the assumption that the interface remains flat, shear stress balance
at the interface requires that 2
) “
7[37}]_1/‘}@; | K. | (6)
X PN {(—-LEE )-\-(cdkﬁa-\- %5&)?_}

The fully developed flow, Eq. (a) from Table 9.3. 1, is used with the bulk

d .
shear stress set equal to zero and v =0. That there is no net volume rate

of flow is represented by

2= 5 de )
4 VY
So, in terms of the "to be determined" surface velocity, the profile is
— x _
’95—3(15 3>(> ®)

The surface velocity can now be determined by using this expression to

evaluate the shear stress balance of Eq. 6.

713)‘] __Z.'l} (9

Thus, the required surface velocity is

= uRsh | Kl ()
167 sowBal (LR34 s (cothbas 1852 7]

Note that ﬁ;ﬂ/ﬂ, € { 1, this expression is closely approximated by

e_ ur3s IR
v /7@7 cosh® Ra (1)
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Prob. 9.4.3 (cont.)

This result could have been obtained more simply by approximating HZ?CO in

Eq. 1 and ignoring Eq. 2. That is, the fields in the gap could be approxi-

mated as being those for a perfectly conducting fluid.

Prob. 9.4.4 This problem is the same as Problem 9.4.3 except that

the uniform magnetic surface force density is given by Eq. 8 from

Solution 6.9.2. Thus, shear stress equilibrium for the interface

requires that

SR =4 1S g

ey
Using the velocity profile, Eq. 8 from Solution 9.4.3, to evaluate Eq. 1
results in
A 2
dz/uo{’\Hlig (2)
¢ °l @ !

/6%

Prob. 9.5.1 With the skin depth short compared to both the layer

thickness and the wavelength, the magnetic fields are related by Eqs. 6.8.5.

In the configuration of Table 9.3.1, the origin of the exponential decay is

the upper surface, so the solution is translated to x= 4

and written as
P A

o . a
- (+3)(x-8)/3  2d . o
Hy= Hy e ™ ; Be= 5 (1-3)8u ¥ H, (1)
It follows that the time~average magnetic shear stress is

~al Ad X AP B :(X“A)/S
= LGB = L s BT

This distribution can now be substituted into Eq. (a) of Table 9.3.1 to

(2)

obtain the given velocity profile. (b) For 3/8= 0.1 , the magnetically

induced part of this profile is as sketched in the figure.
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Prob. 9.5.1 (cont.)

Prob. 9.5.2 Boundary conditions at

the inner and outer wall are
A0 A AL
He:—I&D;HB:O

Thus, from Eq. b of Table 6.5.1, the

complex amplitudes of the vector

potential are

(1)

A= uFa(bax)K, o A= uCu(b,aX)K,

A
In terms of these amplitudes, the distribution of A(r) is given by

Eq. 6.5.10. 1In turn, the magnetic field components needed to evaluate

the shear stress are now determined.

A

fi=- 4 44 =50 A" B ) 399 - 3. GYON o]

o A 13n RN G- N ¥ T G o]

1 v ! ¥
B -
n i
d
N _
A E .
B .
2 P )
0 ] ] | i
o 2 4 .6 .8 |
BRI 5 78))—
(2)
A (3)
[ Ha %) I (38) = 3. (3 ¥0) W (§¥)]
| BuG¥8) T (1)~ Hon (33) 3. D) .
4
(5)

and the velocity profile given by Eq. b of Table 9.3.1 can be evaluated.
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Prob. 9.5.2 (cont.)

d a8
Because there are rigid walls at r=a and r=b, Y =0 and V' =0.

TR RV a(v ) JT«»&\» 7J"Erc;\. ©
7

b

The evaluation of these 1ntegrals is conveniently carried out numerically,
as is the determination of the volume rate of flow Qv For a length /Q in

the z direction,
o

szﬂ Svér (7
b

a
Prob. 9.5.3 With the no slip boundary conditions on the flow, U} =0 and

L .
'\9 =0, Eq. (c) of Table 9.3.1 gives the velocity profile as

W')=:,,‘7§E](r ) (of L‘)M“)] XT drs ;}&{; g [ de @
71°¢

To evaluate this expression, it is necessary to determine the magnetic stress

distribution. To this end, Eq. 6.5.15 gives

=A [ HGY T (¥0)-T,Gub) e W, G¥o)]
[ H GIDT, (3¥0) =3, (¥ W, (3¥a) ] | 2)
+ N3G YR) e Hu(g¥n)-B o) s 3, ()]
ehere L3, (3% Hi(5ud)-1,(3¥) 3, (330)]

-4k A

and because \—\%: (l/r)BA/;r, H_ follows as
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Prob. 9.5.3 (cont.)

A LA GIILE)-T, GYIW (¥0]
[H, GYHT, )T, GR W, (9 ]

(4)
'3

+ A S (38=) H,(gKr)— H‘(a‘b’c.)l',( a‘Kﬂ]
[3, GEIHGIR-HG¥3, (530

Here, Eq. 2.16.26d has been used to simplify the expressions.

Boundary conditions consistent with the excitation and infinitely

permeable inner and outer regions are
A A A
iy =K 1 iy =0 ®
2 - B | T

Thus, the transfer relations f of Table 6.5.1 give the complex amplitudes

needed to evaluate Eqs. (3) and (4).
o Ao Al A
Az‘%‘" ASF(E)Q)X)K =A= %(BaX)M (6)

and the required magnetic shear stress follows as

Toe = 5 & B,

(7

The volume rate of flow

gradient and magnetic pressure

(XX NG O e
is related to the axial pressure ;)

/u;Ki by integrating Eq. (1).

<N

Q,= 51)\. amede @

b

Prob. 9.6.1 The stress tensor consistent with the force density F i is
- o}

a
Tyx=Fox' Then, Eq. (a) of Table 9.3.1 with v = 0 and v8= 0, as well as

Dp'/é.ar.o , reflecting the fact that the flow is reentrant, gives the

e U= OGN WS 99 W

- = =

‘- —« ﬁ ~ .r

(\ 4
" s s
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Prob. 9.6.1 (cont.)

velocity profile
E S

v= -+ \FExdx’s 2 F 4 =Fobl - X (l)
750 75 ©= 2R

For the transient solution, the appropriate plane flow equation is

/aév F, + 73_;_7.} 2

X2
The particular solution given by Eq. 1 can be subtracted from the total

solution with the result that Eq. 2 becomes

DV LY, (3)
3t 7;x=‘°

Solutions to this expression of the form V(X)exp s, t must satisfy the

equation a

[ LA 2
?kg_)\{_;-‘ + \6,‘ V“: 0 where \6” = "ﬂ'%"‘ (4)

The particular solution already satisfies the boundary conditions. So must

the homogeneous solution. Thus, to satisfy boundary conditions U(qt):o,v(A,t)--D :

TN

-0,;21% Ve aim (¥, %) ot A (5)
n=/t

To satisfy the initial conditioms, '1% (x,o):]%“.‘-\v ﬂh(x'o)go and so

Lad A
. Q,t z
E(R’Vn,om(\&,,ﬁ)e :“EA X(l_z}_> ()
-_ A o
n=i 24 A
Multiplication by sin (muwx/4) and integration from x=0 to x= & serves to
evaluate the Fourier coefficients Thus, the transient solution is
- 7(nll’5‘]t
— el - I- a
1}(x,'t)" )(| A) ’ )Am (ﬂé)c P (7
“)’S 7.3

Although it is the viscous diffusion time that determines how long

is required for the fully developed flow to be established, the viscosity is
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Prob. 9.6.1 (cont.)

not‘involved in determining how quickly the bulk of the fluid will respond.
Because the force is distributed throughout the bulk, it is the fluid inertia
that determines the degree to which the fluid will in general respond. This
can be seen by taking the limit of Eq. 7 where times are short compared to
the viscous diffusion time and the exponential can be approximated by the

2
first two terms in the series expansion. Then, for (74?)<WT/AW t< < 1,
oo

2 F, [—Cmn¥y .
19(x,-t)—'[ ;z — )W"‘L"]t | ®
(

n=l

which is what would be expected by simply equating the mass times accelera-

tion of the fluid to the applied force.

Prob. 9.6.2 The general procedure for finding the temporal transient
outlined with Prob. 9.6.2 makes clear what is required here. If the
profile is to remain invariant, then the fully developed flow must have
the same profi.: as the transient or homogeneous part at any instant.
The homogeneous response takes the form of Eq. 5 from the solution to

Prob. 9.6.1. TFor the fully developed flow to have the same profile

requires
2
F, (2N .
= n (| — ny )
1’:{4 —7(\”) (Ax (1)
where the coefficient has been adjusted so that the steady force equation

is satisfied with the force density given by
- anm (NI (2)
FD - FV\ ( Fay x)

The velocity temporal transient is then the sum of the fully developed and
the homogeneous solutions, with the coéfficient in front of the latter

adjusted to make v(x,0)=0.

-



X -,
N \ s .
Y s
k i H

9.16
Prob. 9.6.2 (cont.)
kX A‘nt kA
-3 F A . n — ' = - 21
1’ —_ (‘-ET ﬁ“ﬂ*‘j; X-( | € ) B fln = _;l ( =~ (3)

7 n /a
Thus, if the force distribution is the same as any one of the eigenmodes,

the resulting velocity profile will remain invariant.

Prob. 9.7.1 The boundary layer equations again take the similarity form

of Eqs. 17. However, the boundary conditions are

1,(0,4)= 09 H0)=0 ;R (04)=Ug(0)=-2 ;% (@4)=0 (@) >0 (D
where U now denotes the velocity in the y direction adjacent to the plate.
The resulting distributions of f, g and h are shown in Fig. P9.7.1. The

condition as ?—900 is obtained by iterating with h(0) to obtain h(0Q) =

Thus, the viscous shear stress at the boundary is (Eq. 19)
\ U 2
S (O,g)=zv7 (2= h(o)= @
yr 74
and it follows that the total force on a length L of the plate is

L ——
R

o
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Prob. 9.7.2 What is expected is that the similarity parameter, $>, is essentially

‘ 4
i '.YL ___\\{c_:__x 1)
Te 7T
where ’7; is the time required for a fluid element at the interface to reach

the position y. Because the interfacial velocity is not uniform, this time

must be found. In Eulerian coordinates, the interfacial velocity is given by Eq.

2 A

BRT O DRI b PR PT A @
Y, = Ky ,K—(/,7) *

For a particle having the position y, it follows that

dy - RyP o %} - 1R 44 3)

9.7.28.

44 3
and integrat%;n-%}ves T, 2 ék
J.%Jé‘aﬂ{g‘“ » T.=33/1 %)

ives 53

Substitution into Eq. 1 then |
Y -3
)*l‘v‘ _ | 2@z ( °é) x4 )
Ty 3 /

In the definition of the similarity parameter, Eq. 25, the numerical factor has

been set equal to unity.

as e

. N .
: ,
K ’ 3

.y ..
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Prob. 9.7.3 Similarity parameter and function are assumed to take

the forms given by Eq. 23. The stress equilibrium at the interface,

Syx(x=0) = -T(y), requires that
an "
“To R e
Toytapelay™
(48
. R -
so that mt2n=k and 7C. C, =:Y;/GL . Substitution into Eq. 14 shows

(1)

that for the similarity solution to be valid, 2m+2n-1 = m+3n or m=nt+l.
Thus, it follows that n=(R-1)/3 and = (R4+2)/3 . 1f (7//.av)(c| lc) = -1,
the boundary layer equation then reduces to

{"ﬁ. (:%-n)(g')‘_‘_mﬁ":o (2)
which is equivazi’Lent to the given system of first order equations. The only
boundary condition that appears to be different from those of Eq. 27 is on
the interfacial shear stress. However, with the parameters as defined,

Eq. 1 reduces to simply \1(0)=-1.

Prob. 9.7.4 (a) In the liquid volume, the potential must satisfy Laplace's
equation, which it does. It also satisfies the boundary condition imposed

on the potential by the lower electrodes. At the upper interface, the
electric field is E = \/b%/l:, which satisfies the condition that there

be no normal electric field (and hence current density) at the interface.

(b) With the given potential at x=a, the x directed electric field is the
potential difference divided by the spacing: Ex= [—\/blf/::b".;.\/a%z;);’ 1/0\
Thus, the surface force density is T:E,Ean':(G,VA/QUo.)(Va-V;)93. (c) With

the identification -To/ap“;y(QV“/pL‘a)(\(‘-\Oand k=3, the surface force density takes

the form assumed in Prob. 9.7.3.
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Prob. 9.8.1 First, determine the electric fields and hence the

surface force density. The applied potential

can be written in the complex notation as 1 (<)
-8 Y4

§§=&a\é°.(€a l3.+ Ca %) so that the desired ”o. N

standing wave solution is the superposition V\: ((:;

of two traveling wave solutions with ampli-

of
tudes §+=V,/2. Boundary conditions are

$=0, 38 -0l =L @
And bulk transfer relations are (Eqs. (a), Table 2.16.1)
&) [ehas o
== ~ (2)
! Eij " e i s?n‘h Ao C°’”‘/—‘»°~_ _@JJ
[E¢] [ —cothpgb ?‘—"L;Z-bﬂ ’ie‘
~§1 =0 ~ (3)

_;‘__ coth b
L L swmha@b “ _1_@J

It follows that

@e: \/° Oy

(&)
o S‘NH(&L (0~°~ '\'an\-\(@,q +G—b C.o+|'l (3&)
where then :
4 3° e
~e ~e x ~e
E,=48% € B = S ;&Ex:&& Sa (5)
coth B coth @ o

~ re
Now, observe that Ex and § are real and even in @ while EZ is imaginary

and odd in ,3 . Thus, the surface force density reduces to
\%—— KEX‘*—GBE)‘*’)éEE‘* Qn\n aﬁlé (6)
and evaluation gives _\-:& = 1, sn Ry

2 k3
1, = ya Y, o (emcl - €,0;) (7
3 5inh'@b (03 Aanhga + Ty coth@bY coth ga

-’ - - a

- { .-‘

- _ - ‘
) < n A
i A
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Prob. 9.8.1 (cont.)
The mechanical boundary conditions consistent with the assumption that gravity

holds the interface flat are

3:=O’&;:0)1}j=0)a:= o, &:: {i: , &froj’v; =0 (8)
Stress equilibrium for the interface requires that
T, + Sy, - S, =0 o
% 9 94X
In terms of the complex amplitudes, this requires
e
i'}l; + é:.x?. B ngi =0 (10)

With the use of the transfer relations from Sec. 7.20 for cellular creep

flow, Eqs. 7.20.6, this expression becomes

~d
.‘..-T o \) _
—332 + (7.; P44 - 75P:<>3>7y3+_ =0 L
and it follows that the velocity complex amplitudes are
nd T.
1? } = ¢ a 2_( o F)\:)
7"'-PQ4— 75 32

The actual interfacial velocity can now be stated

(12)

~ _'ﬂ ~ . | 2
1}%._.5%(1%* i 63@‘3>: _T, Sin Ry TS
70 Paq * s Py

where, from Eq. 7.20.6,

Pk . [—'& sinh 4g8a —ﬁa] 843
4 [ sink? zeo- (36 |
L S.'\I sinh 4gb -ﬂb]g@

P 7 [ sink'2nb-(zaL) ]

Note that P44 and P, are positive. Thus, -

33

+

7
the coefficient of sin 28y is positive — % < P 7 -
4 N
and circulations are as sketched and as would G a .é s
A

be expected in view of the sign of O and Ez

at the interface.
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Prob. 9.8.1 (cont.)

Charge conservation, including the effect of charge convection at the interface,

is represented by the boundary condition

d
. T, o'E = [(6 E QBE:)'J%]=O (14)
The convection term will be negligible if
€ " 15
U,R <1 (15)

where €/cr is the longest time constant formed from e&)eband Ta T
(A more careful comparison of terms would give a more specific combination
of € 's and o 's in forming this time constant.) The velocity is itself a
function of three lengths, 2W/8 , a and b. With the assumption that ga
and /gb are of the order of unity, the velocity given by Eqs. 13 and 7 is
typically e(a V,)’-/Zé and it follows that Eq. 15 takes the form of a

condition on the ratio of the charge relaxation time to the electroviscous

time.

€ /7  ¢¢1 ' (16)

Effects of inertia are negligible if the inertial and viscous force densities
bare the relationship

l/ovvvl«'plvvl?f’%ui 17
With the velocity again taken as being o£7the order of € ((3V:)/€z3, this
condition results in the requirement that the ratio of the viscous diffusion

time to the electroviscous time be small.

- <<t (18)
7(3 @Y,y €

- O =

i '
. b
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Prob. 9.9.1 The flow is fully developed, so E;v‘s(,‘)fg

Thus, inertial terms in the Navier-Stoke's

equation are absent. The x and y components of 0 2 22
e o
that equation therefore become 4
S
ﬁ ° SR
7 b + 0 (E = U wmoHy) 4, H, (2)

Because Ez is independent of x, this expression is written in the form

44 M) U, =(2B L 3
_&_xbz—g;_(/lo o) 5_(5%_0-/.,“,,)7 (3)

so that what is on the right is independent of x. Solutions to this expression
that are appropriate for the infinite half space are exponentials. The growing
exponential is excluded, so the homogeneous solution is exp -¥x where X-—/I,HV

The particular solution is (“—E‘i'o'/‘oH Fg}/]‘(/‘o o\ The combination of

these that makes v =0 at the wall where x=0 is

= (om, M, E, Qﬁ)( ) @
o*(mH.Y o
Thus, the boundary layer has a thickness that is approximately Y .

Prob. 9.14.1 There is no electromechanical coupling, so & =0 and Eq. 3

becomes p= —(0%(:(—%) . Thus, Eq. 5 becomes p+/«?%x ={0‘3? and in turn
. » 1 % _
B dds (%% +"%g) Y3y =© )
Because /] = f—_—;—_ ,» Eq. 9 is
é _ W» O 2
3+ 3D - @
In the steady state, Eq. 2 shows that
(§ - 2)1}.2 ﬁwv"o 3)
while Eq. 1 gives
2 2 \ ‘
[ [ =< 0V
Combined, these express1ons show that

'H-z(’? 15‘3,) +{a%'§‘-_€/pwﬂ +/a§‘% (5)

The plot of this function with the bottom elevation - (y) as a parameter is
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Prob. 9.14.1 (cont.)
shown in the
figure. The
Flow condi-
tions
establish the
vertical line
along which

the transi-

/
. 7
tion must 0
e vy
evolve. //__f f ?
Ve

Given the 7
//
bottom ele- /
/
vation and ,/
/7
hence the 1 2
F—- Eﬂoqb*V°%€;> k’ »
particular curve, Fig. 89.14.1

the local depth follows from the intersection with the vertical line. If
the flow is initiated above the minimum in H( € ), the flow enters sub-
critical, whereas if it enters below the minimum ( i‘(ﬁl), the flow enters

supercritical. This can be seen by evaluating
AH_O > (5. - :_?;7}; (8)
and observ1ng that the cr1t1ca1 depth in ;Ee figure comes at
(£.-2) Voo
lw Va(3-3)

Consider three types of conservative transitions caused by having a

€))

\(

positive bump in the bottom. For a flow initiated at A, the depth decreases
where :: increases and then returns to its entrance value, as shown in
Fig. 2a. For flow entering with depth at B, the reverse is true. The

depth increases where the bump occurs. These situations are distinguished

- . s
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Prob. 9.14.1 (cont.)

by what the entrance depth is relative to the critical depth, given by

Eq. (9). 1If the entrance depth EiL is greater than critical, (ic;-EZ),
then it follows from Eq. 9 that the entrance velocity, ﬁw )is less than
the gravity wave velocity&3(€£:E3for the critical depth. A third possi-
bility is that a flow initiated at A reaches the point of tangency between

the vertical line and the head curve. Eqs. 3 and 8 combine to show that

V= {oG-T) (10)

Then, critical conditions prevail

at the peak of the bump and the flow

can continue into the suberitical

regime, as sketched in Fig. 2¢. A

similar super-subcritical transition

is also possible. (See Rouse, H.,

Elementary Mechanics of Fluids,

Fig. $9.14.2

John Wiley & Sons, N.Y. (1946), p. 139.

Prob. 9.14.2 The normalized mass conservation and momentum equations are

Mo 3 L, (L
% Ty

IN(3% . 3% 1 3%\, _ _ @
(G o3z AR )R -

oV Y wd3Y L dp _ ¢)
521*1}"3#*' *3Sy T3y T°

Thus, to zero order in (d[l)z, the vertical force equation reduces to a
static equilibrium; p = -/% (X —f) . The remaining two expressions then
comprise the fundamental equations. Observe that these expressions in them-
selves do not require that vy=vy(y,t). In fact, the quasi-one-dimensional
model allows rotational flows. However, if it is specified that the flow

is irrotational to begin with, then it follows from Kelvin's Theorem on
vorticity that the flow remains irrotational. This is a result of the

expressions above, but is best seen in general. The condition of irrota-
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Prob. 9.14.2 (cont.)
tionality in dimensionless form is
2
<fi:) ;]%‘ = Eilil (&)
70y S X

and hence the quasi-one-dimensional space-rate expansion, to zero order,

requires that vy=vy(y,t). Thus, Egs. 1 and 2 become the fundamental laws

for the quasi-one-~dimensional model

Y

B; +.__él " X (5)
EACHERY | o Vu ..E (6)
st ¥ 43,

with the requirements that p is determlned by the transverse static

equilibrium and vy=vy(y,t).

Prob. 9.14.3 With gravity ignored, the pressure is uniform over the liquid

cross-section. This means that it is the same pressure that appears in the
normal stress balance for each of the interfaces. 2
z

L (Vay V

Lle-ed(2) =-p= S(€-6) (= 1)

2 ) 3% °
It follows that the interfacial positions are related.

B3, = oS, (2)

Within a constant associated with the fluid in the neighborhood of the origin,

the cross—-sectional area is then

=T ( )‘*'-“s (:rr> = _(H- >§: | (3)

or essentially represented by the variable ?;'. Mass conservation, Eq. 9.13.9,

gives ?-?—. . -—’ (vg ) o

dt (4)
Because the pressure is uniform throughout, Eq. 9.13.3 is simply the force
balance equation for the interface (either ome).
z
p=-k(e-e) e (5)
~ dil

Thus, the force equation, Eq. 9.13.4, becomes the second equation of motionm.

o Va (6)
f(b >+ (€- 6) z(?zv)bil o

3

- - -
- B N Il i
. h . ! !

-
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Prob. 9.16.1 Substitution of Eq. 8 for T in Eq. 2 gives

-¥
vA \ I3 z
—_— LY =cC -L J (1)
R «voA.J * =z PV, * °

Manipulation then results in

(%)(_ﬁ_) {\ + vaT['f (%) ]} @

kS
A xPnS* ¥R -)Mo (3
2¢,T, T 2CRY, zc,M° 2c,, M = )'—

where use has been made of the relations \6; CP/CV and R=c_-c_ and it follows
p Vv

Note that

that Eq. 2 is i

(—-— (.A.J {l +(K-|3M =1 - (—u }‘-K (4)

so that the required relation, Eq. 9, results

Prob. 9.16.2 The derivative of Eq. 9.16. 9 that is required to be zero is

d (AR __(_J){.m DUATRED ]K/" “’ (1)
|

A(v/v, — -
]t
+ M, { |+ (K—n)_’*,g_-;[g -(%) ]}

This expression can be factored and written as

) i
C&(A/F\o :(“_{_){I 4 (¥- - M, [(_(-d)]} .
T (3/,) T\ -
2 =1
YU\ pmE ¥-i) ¥
{-—! +<—17°)M.,[' + ’_*"53[1 ) ]] }
By definition, the Mach number is
oz
M =Z — ! o = ) (3)
JEE? ) JKKTL
Thus,
M _ v -To
T uo\r—l: )
Through the use of Eq. 9.16.8, this expre581on becomes
|+ (%- ,)M [l, z ]\ (5)

Substitution of the quantlty on the left for the group on the right as it
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Prob. 9.16.2 (cont.)

appears in Eq. 2 reduces the latter expression to |
-

4 2 .
A(H/Ao) ( ){l‘i‘(xl)M [‘_(__ Ki (—l-«\vM) '
Thus, the derivative is zero at M = 1. l
Prob. 9.16.3 Eqs. (c) and (e) require that l
d L2
() = - & (37) R |
so that the force'equation becomes
dp _ du o _od (L)) = pc d @ \
'gg"‘fﬂj‘é—/‘ag—z(z ) R vy i
In view of the mechanical equation of state, Eq. (d), this relation becomes
d% =T PR \_y/oe\z( ) (f P‘\‘o-) (3)

P Az

With the respective derivatives placed on opposite 81des of the equation,

this expression becomes

¥de - d (4)
: - &

and hence integration results in the desired isentropic equation of state.

= <.,/§ ).X (5)
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Prob. 9.17.1 Equations (a)-(e) of Table 9.15.1 with F and EJ provided

by Eqs.5, 7 and 8 are the starting relations
Fv/q =/aa1yoAa
dut | do - _ gur'()-
f”’-&-i +d% = (l ]{)

pd (T aivY) = —o v (- K)K

P-_- /0R—Y
That the Mach number remains constant requires that
2 [
WERT = M

and differentiation of this relation shows that

204V =¥ RMdT .

Substitute for /9 in Eqs. 2 and 3 using Eq. 4. Then multiply Eq. 2 by -K

and add to Eq. 3 to obtain

2 d C
L (-RGEW-KE + S8 o,

In view of the constraint from Eq. 5, the first term can be expressed as

a function of T

_ 1z IRM.1dT dp _
L]+ (1-R) [Sx-Keg-=o0

2 T AR
Then, division by p and rearrangement gives
d.f[]: = féfi
T P
where
¥ l 2
= 1 - Ls-OM: (1R -
°"1§(x-:)1' = (5-1) )]
Hence, d
£=(T)
Po T

In turn, it follows from Eq. 4 that

—_ 4=l
£.= (=)

(1)

(2)

(3)

(4)

(4)

(5)

(6)

)]

(8)

(9

(10)
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Prob. 9.171 (cont.)

The velocity is already determined as a function of T by Eq. 4.

=
4 \jl (11)
v, T
Finally, the area follows from Eq. 1 and.-these last two relations.
- d-3
A _ (.._"_.) (12)

The key to now finding all of the variables is T(z), which is now found

by substituting Eq. 11 into the energy equation, Eq. 3
o -3/2

(T2 T) (=2 C-REK - w

This expression can be integrated to provide the temperature evolution with z.

R R Y6 3) SRR N RS

— (14)
. (T, +4 ¥ 2,

-]

Given this expression for T(z), the other variables follow from Eqs. 9-12.
The specific entropy is also now evaluated. Equation 7.23.12 is evaluated

using Eqs. 9 and 10 to obtain -
S - 5o e vl [E)

Note that CVY_OL-X(d'I)]r Cp—"LR.

-

,‘
|
. . -

- R -

3 R
\ . B
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Prob. 9.17.2 First arrange the conservation equations as given.

Conservation of mass, Eq. (a) of Table 9.15.1, is

£§5Q¢UF“>: f\(k’i 4.ﬂ_Jf) (41) Af‘ -0 (1)

Conservation of momentum is Eq. (b) of that table with F given by Eq. 9.17.4.

/ow% 4 %% - o B(E+VU®) )

Conservation of energy is Eq. (c), JE expféssed using Eq. 9.17.5.

d Coey 3
Ve (T +5vY) = -0E(E4vB) )
Because ‘6=CP/CV sy R=Ce-Cy , and M‘=v‘/x R , this expression becomes

32 3 I (4)
B A

The mechanical equation of state becomes

. p ,Vde v dT
P=pRT =& * o T )
Finally, from the definition of M2
zf / !
Y
¥ Z_ bﬁT MZ T v

Arranged in matrix form, Eqs. 1,2,4,5 and 6 are the expression summarized in
the problem statement.
The matrix is inverted by using Cramer's rule. As a check in carrying out

this inversion, the determinant of the matrix is

Dt = (I-MOM P ™
¥-1

Integration of this system of first order equations is straightforward if
conditions at the inlet are given. (Numerical integration can be carried out using
standard packages such as the Fortran IV IMSL Integration Package DEVREK.)

As suggested by the discussion in Sec. 9.16, whether the flow is "super-critical"
or "sub-critical" will play a role in determining cause and effect and hence in
establishing the appropriate boundary conditions. When the channel is fitted into
a system,_it is in general necessary to meet conditions at the downstream end.
This could be done by using one or more of the upstream conditions as interation
;ariables. This technique is familiar from the integration of boundary layer

equations in Sec. 9.7.
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Prob. 9.17.2 (cont.)

If the channel is to be designed to have a given distribution of one of
the variables on the left, with the channel area to be so determined, these
expressions should be rewritten with that variable on the right andlﬂt/h on

the left. For example, if the mach number is a given function of z, then the

_ , . ,
last expression can be solved for H,/A as a function of (N‘) / M , cB(E+UB)

and CE (E -H)B) - The other expressions can be written in terms of these same

variables by substituting for A'/H with this expression.

/
Prob. 9.17.3 From Prob. 9.17.2, A =0 , reduces the transition equations

to | I=c(E r+uw)].

.- _ e -
£ -1 - (¥-1)

° P TP

% sl 0] “sz(i"). I8

_1_}_.1 = ——I—-; 4 X - (1)
|- P fvp

T’ 2

T -m (Y- -(K")((Mz“) ET

<_"‘_‘;) M-NEZ (¥ma) (X))
\.M J L P K?‘]} 4L J

2
(a) For subsonic and supersonic generator operation, M§ { ana IRY>O

while EJ3< 0O . Eq. la gives iﬁ:G(E +UB)1

£ olaser (K}')‘Eh-;’l‘)pv (F-5go @

Eq. 1b can be written as

P = _;f_lxsswvf((-l)(ﬂ@*ﬁﬂ 22 (3)
P (1-)pt = =L JpIn(F0MIT¢,
T (1-mY)pV o 3

- G

-, G aE
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Prob. 9.17.3 (cont.)

Except for sign, Eq. lc is the same as Eq. la, so

3 S
52 0 )

Eq. 1d is

T LS80S IszB +(KM2-05_1
T pY(1-m¥) ¥

_—CU’” (&?—_32_2 < O (5)
T i) ¥

and finally, Eq. le is

<M > __3;___- Bw}[M"(K—l)-}z]-\- E @m+) (¥-1)
/\I\t (\- 7‘) pVv ¥

- _3 {(31}+E)(K—|)MZ+ZB15+E(_§-_Q}
(1-8) p¥ ¥

{(Bv»fﬁ)(t( DA +2(BU+E)—E,__§*_).$ ©

(|—M)P

SR - %;I(?S—DMZ*&] - Z)’E___,_(gh)} %0

(i-m")p ¥

With JIBY O, the force is retarding the flow and it "might be expected"
that the gas would slow down and that the ma density would increase. What
has been found is that for subsonic flow, the velocity increases while the
mass density pressure and temperature decrease. From Eq. (6), it also
follows that the Mach number decreases. That is, as the gas velocity goes
up and the sonic velocity goes down (the temperature goes down) the critical
sonic condition AA1= | is approached.

For supersonic flow, all conditions are reversed. The velocity

decreases with increasing z while the pressure, density and temperature
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Prob. 9.17.3 (cont.)

increase. However, because the Mach number is now decreasing with increas-

ing z, the flow again approaches the critical sonic conditionm.

(b) 1In the "accelerator" mode, ES)O and JRO . For the discussion,

take B as positive so that ¢ < O , which means that

EyuB <o D E (-8 -

Note that this means that EJ is automatically greater than zero. Note that

this leaves unclear the signs of the right-hand sides of Eqs. 2-6. Consider
a section of the channel where the voltage is uniformly distributed with z.

Then E is constant and the dependence on J of the right-hand sides of

Eqs. 2-6 can be sketched as shown in the figure. In sketching Eq. 3,

it is necessary to recognize that VB =‘—&\_— -E so that Eq. 3 is also

f = -1 3° - 21 _
NP

M <L N&)i
N A \ ~
\\ ’ Y //
~ // > \t\ - —v
AN s T
:S:.?_E ’ ‘
¥ b ™
P S
o F ok (¥+1)
- _ Z
Eraam Y1G-nme2] M

- @GR .
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Prob. 9.17.3 (cont.)

By way of illustrating the significance of these sketches, consider the
dependence ofTI/T on & . If at some location in the duct _o_%?z <JT o>
then the temperature is increasing with z if the flow is subsoiic and
decreasing if it is supersonic. The opposite is true if J < C\'E./b’/\'\z

(Remember that E is negative.)

Prob. 9.18.1 The mechanical equation of state is Eq. (d) of Table 9.15.1

p= ﬁ R\ (1)
The objective is now to eliminate 17‘, € and P from Eqs. 9.18.21 and

9.18.22. Substitution of the former into the latter gives

CP A% _—Ie 2

Now, with T eliminated by use of Eq. 1, this becomes

R %( > -0 (3

Because R = Cp ~Cv , (Eq. 7.22.13) and ¥ = Ce/Cv so
CP/R - \6/()'-0 , it follows that Eq. 3 can be written as

dp -Y¥dp (4)
P

Integration from the "d" state to the state of interest gives the first of

the desired expressions

. N
LlE)-¥E ()5 £

The second relation is simply a statement of Eq. 1 diviced by FJ on the

left and /JA \'(Tc\ on the right.
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Prob. 9.18.2 Because the channel is designed to make the temperature

constant, it follows from the mechanical equation of state (Eq. 9.18.13)

that
p=pRT > £ = £ )
17| A4
At the same time, it has been shown that the transition is ad1abat1c, so
Eq. 9.18.23 holds.

P - .
E_(ﬁz) Y21

Thus, it follows that both the temperature and mass density must also be

(2)

constant

P=F 5 P>/ )
In turn, Eq. 9.18.10, which expresses mass conservation, becomes

vA = 4A, (4)
and Eq. 9.18.20 can be used to show that the charge density is constant

(5)
/61 F\& 1%4
So, with the relation E "-A§/A%, Eq. 9.18.9 is (Gauss' Law)

- > (6)
In view of the isothermal condltlon, Eq. 9.18.22 requires that
2
R i vl T 9
4 Ay Yy

The required relation of the velocity to the area is gotten from Eq. 3.

v = A F\A

(8)
and substitution of thlS relation into Eq. 7 gives the required expression

for Q in terms of the area.

Ef-l"'% (\ _ AJ)/&F\U&( + 8y

9

Substitution of this expression into Eq. 5 gives the differential equation

for the area dependence on z that must be used to secure a constant temperature.

[.\ _ﬁ_[\-o N % /“1(94
€(F\A/41’43

Ai‘ (o
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Prob. 9.18.2 (cont.)

-
Multiplication of Eq. 10 by df /éi— results in an expression that

can be written as
A2 2 .
al
|

dEAY g0 Ao an

Cii 2\d#% N
(Note that this approach is motivated by a similar one taken in dealing
with potential-well motions.) To evaluate the constant of integration for

-l

Eq. 10, note from the derivative of Eq. 9 that E is proportional to J R /c(i

E--”‘J @Aa R clf‘\ (12)

X

Thus, conditions at the outlet are

A=A, )dﬁ o of 2=4 (13

and Eq. 12 becomes

21Ny A R 0. AL

Ty ﬂ“ = - d (14)
The second integration proceeds by writing Eq. 14 as

%%: =t \}z_ﬁzﬂm (i?\—:\‘) (15)

and introducing as a new parameter )
-{ -1 -{ %
"2=’Q“<Jf?:')=> d(A)=2xAqe dx (16)
d
Then, Eq. 15 is

o . 2
+.___SZ X

edx= |dz = -2 (an
X z
This expression can be written as (ch0051ng tPe - sign)
2 2
x /44
Fye = (f- 2)( ) (18)

2e/ﬂ o Uy
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Prob. 9.18.2 (cont.)

where 2 R
-% g y
Fx)y=e | Cex (19)
and Eq. 5 has been used to write /‘cl:I /AAVSI .
Eq. 12 and Eq. 14 evaluated at the entrance give
2
X | =2 nl z < AJ
—— ) — = A \ (20)
( ) B A, = RA (R,
% s Ay

while from Eq. 4 Ao L A . Because = 2 this expression
d c( / °

therefore becomes the desired one.

N
3 e/i}; = ( ) (21)

Finally, the terminal voltage follows from Eq. 9 as
_ _oa xRS A AL
V—EA‘E.—EﬂAE_(A)“]L‘:—“ (22)

Thus, the electrical power out is

Yi= "idj/ﬁ A,_\I(%%)Z-l] (23)

The area ratio HJ/A follows from Eq. 20 and can be substituted into
Eq. 22, written using the facts that /% > > 1& _1} A, /AJ as
I_Y‘ (GE /Z)/((oo]’o /Z) so that (AA/A.,) ¢xe Y‘]

VI=%A L, .,(A")K }:72,[1\‘,(:5_16}__&:)0_ e““) (26)

Thus, it is clear that the maximum power that can be extracted

( .Lz. G,,E:. —-—7@) is the kinetic power 'l)oﬂo (“i /o '\fq,,z)

‘I
1
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Prob. 9.18.3 With the understanding that the duct geometry is given, so that

¢
?/f is known, the electrical relations are, Eq. 9.18.8

AT (e + 1)+ 2w §ET =0

or with primes indicating derivatives,

(1)

A% (8 ) +4258 (LEW)%E(bEw)nc-ﬁe +20 B0

Eq. 9.18.9

(‘i £) + 25
(d

which is eo
3 / y,
TE +287E + F
The mechanical relations are * °
d 2
< W =
s (Pw¥)=o

which can be written as

(01’;??, +ﬂ‘l},§z+‘0’7}?l_—_

Eq. 9.18.11

va'+ P -/ € =
Eq. 9.18.12

Pvc;r'+(p#‘v'—/’&E(LE+v)_i§_ﬁz= o
and Eq. 9.18.13 R

P(—KW _/,RT =0

Alithough redundant, the Mach relation is
2

M= Y
X TK'T’

which is equlvalent to

_zwy T

¥RT TRT*

With the definition

_ % NS | A o
az|-2 0+ o)+ l/[1+ 225

=0

Eqs. 6,7,8,2,4,9 and 11 are respectively written in the ordfarly form

(3)

(4)

(5)

(6)

(7

(8)

(9

(10)

(11)

(12)



Prob. 9.18.3 (cont.)

[ o

we
M) o
u o
o o
0 -1

-2 o

o o i o Mvrw
°© ©° o o el
o o o O ’r?‘r
29 (b-n-Z?)E 0 o (——-H
o | | c o E://Ei
o o 1 o|lf?
o o o |/

(13)
-2%/%
AE/p
| (G5 e]
~2(bEw +&§)§{
Q

o

o

o

L
C

In the inversion of these equations, the determinant of the coefficients is
2
Det = (M-1)(-V)

Thus, the required relations are

$/u ] _2%/%
‘/

’ , d I E/p

T/

‘ -\ (be 25
G | B
E7E ¢’

2 (bE+v+SBEY (L
il S ( )
M,z/Mz
S
- | I - | o
MY [-ME-1)-1] MY | o
NG (e (Y- o
A‘a‘E | - | I
0 ) ) 0
ﬁw} -t l o
_[M‘(g-.‘),uz} [Nf‘ér—u)n} -(N\ZKH) o

( - M) (- b+20:

(14)

(15)

g

(@)

O

o

M=)
0

0
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Prob. 9.18.4 In the limit of no convection, the appropriate laws
represent Gauss, charge conservation and the terminal current. These

are Egqs. 9.18.8, 9.18.9 and 9.18.10.

O (1)

é_%_(/‘LET'?er 2w 6% E) z
a—é(iE) /bd(i )=/:L€. 2

eO

(3)
I= /o,;l: Eo'ﬂi +zn?6; s, :/GOLE;W?: +21r?,<S;E,

This last expression serves to determine the entrance charge density,
given the terminal current I.
/ - I"Z“?oG}E
"0- 2
bE, X,

Using this expression, it is possible to evaluate the integration constant

(4)

needed to integrate Eq. 1. Thus, that expression shows that
/ - X —ZT\'OEEoi
e =
bt, w¥g°

Substitution of this expression (of how the charge density thins out as the

(5)

channel expands) into Eq. 2 gives a differential equation for the channel

radius.

EA§+ZO‘E11’§" 8 _ T -2nc; E%
(T -27a; e, %) &t T lerw

This expression can be written so as to make it clear that it can be

(6)

integrated.
[ »Eos -
L LI-Z5 (-2%)

S =2 2MGEL/T , § =5/5,

4 = e bELNS/T L 2=zl

Thus, integration from the entrance, where 2 =o and g: ?o s gives

where
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Prob. 9.18.4 (cont.) .
LA +0-29 -(-5)-4]0-285 - (1-F]
3 (-ZD) - (1-E)] =2

Given a normalized radius § , this expression can be used to find the

associated normalized position z , with the normalized wall conductivity, EZ,

as a dimensionless parameter.

Prob. 9.19.1 It is clear from the energy equation, Eq. 9.16.2, that

because the velocity decreases (as it by definition does in a diffuser),
then the temperature must increase. The temperature is related to the

pressure by the mechanical equation of state, Eq. (d) of Table 9.15.1.

p=p,RT .;i = 4;-:_?‘—_- (1)

In the diffuser, the transition is also adiabatic, so Eq. 9.16.3 also

X
P _ /P (2)
&= &

These equations can be combined to eliminate the mass density.

@-0/¥

f_) - (3
Po T

o]
Because X‘)j » it follows that because the temperature increases, so

applies

does the pressure.
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Prob. 9.19.2 The fundamental equation representing components in the

cycle is Eq. 9.19.7

J&3dv= %,ﬂa(nﬁ-;a-o)-ﬁéa ®
v s

In the heat-exchanger the gas is ra"ised in temperature and entropy
as it passes from (- § . Here, the electrical power input represented
by the left side of Eq. 1 is replaced by a thermal power input. Thus, with
the understanding that the vaporized water leaves the heat exchanger at f

with negligible kinetic energy,

thermal energy input/unit time { .
T (2)

mass/unit time

In representing the turbine, it is assumed that the vapor expansion that
turns the thermal energy into kinetic energy occurs within the turbine and

that the gas has negligible kinetic energy as it leaves the turbine

turbine power output - -VI _ H(} _ H'F

= 3
mass/unit time A(o\). T T (3)

Heat rejected in the condensor, 3—* h , 1s taken as lost. The
power required to raise the pressure of the condensed liquid, from h—u» ¢

is (assuming perfect pumping efficiency)

pump power in H ¢ H3
mass/unit time

(4)
Combining these relations and recognizing that the electrical power output
is 7 times the turbine shaft power gives

electrical power output - pumping power

Z(-ud 4 ui)- (Hy-n3) ©
Ht - Hf

thermal power in
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Prob. 9.19.2 (cont.)
‘Now, let the heat input (-—» 4 be that rejected in € —» &
of the MHD or EHD system of Fig. 9.19.1.
To describe the combined systems, let /\7\.‘. and /\7\_s represent the

mass rates of flow in the topping and steam cycles respectively. The effi-

ciency of the overall system is then

electrical power out of topping cycle - compressor power

7‘ + electrical power out of steam cycle - pump power

heat power into topping cycle

6)
ML -HE) = (b - MY+ AJOE- 1) 7,- (E-W0)
M'l'(HT_HT>

Because the heat rejected by the topping cycle from €-®& is equal to

that into the steam cycle,
far (RS -n3)= (K] - Hr)
N __/Y_\_i _ H.‘. _ A (7)

M H—H

and it follows that Eq. (6) can also be written as

- [(45-15) - (W3- W >1+H(—4%H[<& 187~ (W]

¢ . (8)

H'\’ H’T

With the requirement that 73:-:1 , and again using Eq. 7 to reintroduce

< o
N /M1, » Eq. 8 can be written as
o b e h
me(Hy-He) = Mo (Hy - 13
M (S - WD)

(9)

This efficiency expression takes the form of Eq. 9.19.13.
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10.1
Prob. 10.2.1 (a) 1In one dimension, Eq. 10.2.2 is simply

T _ o 1)
dx? -

The motion has no effect because v is perpendicular to the heat flux.
This expression is integrated twice from x=0 to an arbitrary location, x.
Multiplied by —kT, the constant from the first integration is the heat flux

_ s .
at x=0, 11. The second 1nte°ration has T? as a constant of integration.

T-= - ( fq((x)a "d 1;_’\ + T8 @

Evaluation of this expression at x=0 where T = ‘r gives a relation that can

Hence,

be solved for -T1B . Substitution of 'P” back into Eq. 2, gives the desired

temperature distribution.
/,

A x,
I R T I N
T= &Tj J‘PJ(X }d x"dx +T{$— _)g_(—\—(-'\_-\-"')_'_z% go ffbé(x )dx"dx' (3)

(b) The heat flux is gotten from Eq. 3 by evaluatlng

T=-R Jﬂ(,«)c{x + T(—rﬁ I )_ f [d?(x")éx"clx (4)

o
At the respective boundarles, this expression becomes x’

T I&(x’)dx + 'r(‘]‘/z )—-‘ ‘(‘NX")({ “dx’ ()

Té= b (i) -5 J%cx"ux"csx' ©

Prob. 10.3.1 In Eq. 10.3.20, the transient heat flux at the surfaces is
Ao 2 A

zero, so T =T =0,

- | 1rAdN ih

—eoth¥a —— |IT 1§
mh a A
T )3, /8., "

. ap| Elriny, Rigif,-R,U
—=! C_O'H'\XTA Ta es |[(-E) t &d'a(__o v )1
sinhY A i T

. o

These expressions are inverted to find the dynamic part of the surface

temperatures o
- Aqﬂ - ‘. T
0 (-9 co*thA _':_|_
N\ (D3 /Y ke
VA CRAY) |
T KT —coth¥ a (-')‘
B T Sinhy A ]
- - T
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10.2
Prob. 10.3.2 (a) The EQS elec- [R5 zol '(Ut'a'ﬂ
_Re & e
trical dissipation density is o
-, . CS e U
¢, =cE'E =cEE ety

( \p\a iﬂ e'éfu‘)t.'-&‘:&\.
= & (Wt =By - A Cot-R) Ay —olwie
- W[P\e E(X)é “ %):\ = % Y. E_ c3< t &El? E’Oca(wt @g)]z

] (L

a 2 =z J(w,t-R,
.—.-‘icr[F_~ fReE-Eca<‘ 4)

Thus, in Eq. 10.3.6

::..L -'-‘-.-’-‘—#’ ! 4 = -1 £
= +TE-E P = L oE -
The specific EA(x) follows from
A Ad A
$ex) = & eimhBx  _ &% sinh @(x-8) .
s-nh Aa sinh Ra
so that A
A
= _ _dé=
E = -Gl +afB
- [_Pééd cosh @x + B@ cos h B(x- b)}
sinh Ro sinh Ba (4)
ot
A . Aﬁ . -
+‘E Sll'l"\gx - Sl"\\’\ %(K—O)
) [é sinh és 2 sinh &0 JL
Thus,

§°=“zso‘-f:¢ Q{IQ(Q Jeosh Rx (Q Q § ﬁ )cosh Bx cosh@(x-»)
+ 3¢ §“ cosh R(x-8Y]

+[§ E sinh® B x - ('Qd@ @ Qa>5m\s%x sink B(x-8) (3
+ 808 s-nhfé()“é)]}
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Prob. 10.5.1 Perturbation of Eqs. 16-18 with subscript o indicating

the stationary state and time dependence, exp st, gives the relations

s+(1+5) Qo Too i 1]
X
“0o sx0) T || T |20 w0

Thus, the characteristic equation for the natural frequencies is

Z("“ sz ¥)+('*0 R,
+ S [ +|] 4 I + P 2o+ ] o

+i(l+$)1+ O, + QT R 4+RIT,, (k=0

To discover the conditions for incipience of overstability, note that it

i.
=)

takes place as a root to Eq. 2 passes from the left to the right half s
plane. Thus, at incipience, §=igg. Because the coefficients in Eq. 2
are real, it can then be divided into real and imaginary parts, each of
which can be solved for the frequency. With the use of Eqs. 23, it then

follows that

= {<|+s)+<';“ w“-(,fﬁ)]%}

St = ZXR&’-%)H/[_Z_(_‘_‘;ﬁ_\. I

The critical Ra is found by setting these expressions equal to each other.
The associated frequency of oscillation then follows by substituting that

critical Ra into either Eq. 3 or 4.
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Prob. 10.5.2 With heating from the left, the thermal source term enters

,

in the x component of the thermal equation rather than the y component.
Written in terms of the rotor temperature, the torque equation is unaltered.

Thus, in normalized form, the model is represented by

i}=—ﬂ—\—;-"‘}(l+ﬂli v

k

Ve — &)
- A—-— = -0 + . \ x

R oat

In the steady state, Eq. 2 gives Ty in terms of T  and ), and this sub-

stituted into Eq. 1 gives TX as a function of ﬂ Finally, T_ Ny,

substituted into the torque equation, gives

Q = - $(1)R. @
(1+4) + Q2

The graphical solution to this expression is shown in Fig. P10.5.2. Note

that for Te >0 and d >0 the negative rotation is consistent with the left
half of the rotor being heated and hence rising the right half being cooled

and hence falling.




10.6
Prob. 10.6.1 (a) To prove the exchange of stabilities holds, multiply
AR A
Eq. 8 by % and the complex conjugate of Eq. 9 by | and add. (The

~
objective here is to obtain terms involving quadratic functions of -U& and

~

T that can be manipulated into positive definite integrals.) Then, inte-

grate over the normalized cross-section.

{
- A A A
‘g{ﬁgf[ﬁsz (Efz’ﬁ})-+~tf]'bL +-T%A“f%_T-Laf-.(t;i.ﬁ?)]—r”}¢1x=:o (L
T™
°

The second-derivative terms in this expression are integrated by parts

to obtain {
AR A 1 4 A 2 2(f A~ 2 Apgp A 1 l A 2
2 5103,] - {joda dx- Bl 134 1 ' ] - 1004
p'rM o - F?r“ ema 0 %5
(2)
2 ‘A 2 A | { -z 2 A 2
+Raﬁ /')'*S‘T\AK -TOT +[[IDT\ +g‘T‘ ]c‘x =0
Boundary conditions eliminate the terms evaluated at the surfaces. With
the definition of positive definite integrals
i A 2 1. A 2
T,z (Ioulds 5 T, =51—r\ dx
i 0 (€Y
! 2 2 ! 2 T
- ~ A 2 _ A A 2
L= [R1a5 R —_rqzj[mns 1] dx
o
The remaining terms in Eq. 2 reduce to °
» 2 Q?
~%" 12 —_-Et T A RC‘W\%I3 + Rc\q _-‘—-4 =0 (ﬁ)
TAM
Now, let s= 9_{43‘3 » where & and & are real. Then, Eq. 4 divides into
real and imaginary parts. The imaginary part is
2
) —
o T + QRLR T=0 )

™
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10.7

Prob. 10.6.1 (cont.)

It follows that if Ram) 0, then & =0. This is the desired proof. Note
that if the heavy fluid is on the bottom (Ram < 0) the eigenfrequencies
can be complex. This is evident from Eq. 17.
(b) Equations 8 and 9 show that with 5=0"
A 2 z

¥R + R, _R =0 ()
which has the four roots ﬂf& , pa Xb evaluated with & =0. The steps
to find the eigenvalues of Ram are now the same as used to deduce Eq. 15,
except that _4 =0 throughout. Note that Eq. 15 is unusually simple, in
that in the section it is an equation for &« . It was only because of
the simple nature of the boundary conditions that it could be solved for
\6&_ and Kb directly. 1In any case, the X’s are the same here, éh‘l’? s
and Eq. 6 can be evaluated to obtain the criticality condition, Eq. 18,
for each of the modes.

Prob. 10.6.2 Equation 10.6.14 takes the form

A o
T, T ’

[’“ia] C = }‘;: (1
i) |

~
In terms of these same coefficients —r‘ « = TQ , it follows from

Eq. 10.6.10 that the normalized heat flux is
A
_ﬁ =-)% —/\:-n .QX"X (2)
X n
n=\

and from Eq. 11 that the normalized pressure is

A \6‘“7\
P =ZBHT|-| C
=i

(3)
_ Ro\mPTM.w[(,J (}( &)Th
Bn - K a
2 d
Evaluation of these last two expressions at X = 4 where T’x = T‘x
A A
and /F; = Isd and at X = 0O where sz x(.': and {3 = “5(3 gives
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Prob. 10.6.2 (cont.)

A o -

X

where (note that B, = E,.'% R.= "R, Y BJ= B, 2 Bq = -BB')

.Tl -
T
- N.,] A
M s,
T
[

i Yu ~¥a
X, e Y. e
- Y. Yo

¥a. Ya
B, ¢ -B.<
L Bk - -Bk

-Y,

-Y,
%)

Bbeb

B,

Thus, the required transfer relations are

- g

3

T%; 02 —4>—

So - -

C.=

“

[ A o7

=
T
= 1] o

4] )

- g

L1t
iy
3,
“B.e

-B,

(4)

(5)

(6)

(7

The matrix (:di is therefore determined in two steps. First, Eq. 10.6.14

is inverted to

obtain
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Prob. 10.6.2 (cont.)

{

/\A:a = [4-(5-&) sinh¥y sih\—\\/g,]-‘

(8)

-

o -
2b sinh Yb -2k s:nhxbe -2 sinhY, Zs.'nhx&e-\‘“

Ya 3.
-2.b sin‘nX‘, 2b S‘"h\(be 2 sinh Yb -Zs:thbe

%

-2a s:h‘qx,‘ 2o Sih\ﬂxa e- 2 Sih\'lxa -25;.4.(“&-"

b ¥
205wk Y, -2a0 sinhBa@ o ik Y, 2sinkYe®

Finally, Eq. 7 is evaluated using Eqs. 5 and 8.

—| Y]
C‘:é = [(b-a) s:hhxas:nhh’h][c‘.a.]

where

[C£3]=

[ IO&XB S‘I"h\‘qws\"xb “a‘b sznkxb- [‘(Qsm\nx\’cos\:x,, [sz:nhxa
- b¥, sinhY, co>h¥&1 T s‘nh\nb’ul =¥, sinh¥,cosh¥, | -X“s'mhn]

[0.7b sinh ¥ LbY, sinh¥y cosh¥s 1, sinhY, - [¥, sinh ¥ cosh¥,
bY,sin \11&1 - o?dbs'.n\-\‘(aco shb’,’] {psin h‘b’a] - “5;nh‘o'b¢:osh‘(4

[bBusink¥ycosh¥e  [-bB, sinh¥yt [ sinh¥,cohbi  [& sink¥y-
-QBbs:nthCD‘sth] qu sin\'lxe..l —-B&S'.h‘vxbcoshxul Ebs‘.nh(&]

[Eﬁus‘mkxh [O‘Bb SRn\-\\(ac os\-lxb {-Bﬁsanhxb [Bas-‘hh\lbcoshro.
_Q_Bbsin\ﬂfal -b BQCothksinthl +By sinhY, ] -Bysinh¥,cosh¥, ]

-
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Prob. 10.6.3 (a) To the force equation, Eq. 4, is added the viscous force

L -
density, 7V V. Operating on this with [-curl(curl)], then addsto Eq. 7,

A
7V4’ 7}& . In terms of complex amplitudes, the result is

[7(01-&‘)1-3@0(0‘—3‘3—0‘(/40 H) D], = —apgh T

Normalized as suggested, this results in the first of the two given equations.

The second is the thermal equation, Eq. 3, unaltered but normalized.
(b) The two equations in (vX,T) make it possible to determine

the six possible solutions exp ¥x.

(=R -42 (¥ ) - T [ B -3l s B =0

R 7 (2)
The six roots comprise the solution
T=) T.e (3)

R=1

The velocity follows from the second of the given equations

6 : x
8 Lo 04T,

To find the transfer relations, the pressure is gotten from the x

component of the force equation, which becomes
A . 2 F':) ~ A

pp= -2 + R(S-ROID + RepT ®

Thus, in terms :f the six coefficients,
T 2 ? 2 ¥, X
6= -—q ~ e - -B )|+ . —ﬁi ke
o) {laonog- B~ (-8 mep R N
B=i R

For two-dimensional motions where vz=0, the continuity equation suffices

"~
to find vy in terms of Hence,

v

X

A | A

% = 5 P ™
99
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Prob. 10.6.3 (cont.)

From Eqs. 6 and 7, the stress components can be written as

A A A
= - 4 (8)
S, =-b +270%
A r ) a 9)
= K, - % W
and the thermal flux is similarly written in terms of the amplitudes -—T;.
T =_QTDT (10)

These last three relations, respectively evaluated at the d and A& surfaces

/
provide the stresses and thermal fluxes in terms of the —ﬁés.
[ At T B 7

6:4>Jr1ﬂ;4’urb;4t

2ol
Sat=TA (11)
09 - P
Sy 0
Aad
T
S8
T L
By evaluating Eqs. 3, 4 and 7 at the respective surfaces, relations are obtained
[~ M
I
I3 A
e Bg
Ao .
RN ES (12)
An “1 4
', -
T &
A0
|+, e,

Inversion of these relations gives the amplitudes —ré in terms of the

velocities and temperature. Hence,

-Ad_,
E )
g’i -1 ?; (13)
o= LAllB] e
T T
Ap .Y
L X i ]
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Prob. 10.7.1 (a) The imposed electric field follows from Gauss'

integral law and the requirement that the integral of E from r=R to r=a be V.

}-Vzn‘e

E= e T O (__) W

o
The voltage V can be constrained, or the cy11nder allowed to charge up, in
which case the cylinder potential relative to that at r=a is V. Conservation

of ions in the quasi-stationary state is Eq. 10.7.4 expressed in cylindrical

coordinates.

vr( LRV V éﬂ) 2)

2'\16“"

One integration, with the constant evaluated in terms of the current i to

the cylinder, gives

2w, Si.é- = 3

The particular solution is —COC/L) » while the homogeneous solution follows

from
Séﬁ: b gclr )
£ 2eme K, ) ¥
Thus, with the hbmogeneous solution weighted to make /aCaJ::/ao , the
charge density distribution is the sum of the homogeneous and particular
solutions,

(s SEY(E) - £ v

b2
where f = 7/ZTT€°%T.
(b) The current follows from réquiring that at the surface

of the cylinder, r=R, the charge density vanish.

. |
= /ﬁg}_ (6)

< 1@

With the voltage imposed, this expression is completed by using Eq. 1b.
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10.13

Prob. 10.7.1 (cont.)

(c) With the cylinder free to charge up, the charging rate

is deteminet'l by A) )
= ;

This expre551on can be 1ntegrated by wrltlng it in the form

ﬁ’——ét -_-J R) “147\ (8)
(S

[o]
By defining ° %5 2 (a/rﬂ this becomes

)

_____;ic( = 3) , 32 +%} _(9)
Cé) . 22 3

/Q\T GO%T)/,&‘(Q,/R> this takes the

o
By defining )Dg-é- = (

~—4P

normalized form
3

2
t - ) + b + ) + (10)
11 -2 331
where
t = tlT, M= &b
> = 2
Prob. 10.7.2 Because there is no equilibrium current in the x direction,

E-NK, 42 .
b N o ey
For the unipolar charge distribution, Gauss' law requires that
€eE
A =P 2
Substitution for (0 using Eq. 2 in Eq. 1 gives an expression that can

be integrated once by writing it in the form

£ (FPE-K, 58 =0 @

As x-»0 , E—»0O and there is no charge density, so AE/A;(—’ 0. Thus,
the quantity in brackets in Eq. 3 is zero, and a further integration can be

performed E, o

de _o b [y - @)
B %X,

E X
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Prob. 10.7.2 (cont.)

It follows that the desired electric field distribution'is
X
E=E/(-7) (5)
where ,QAE ZK*/on .

The charge distribution follows from Eq. 2

/‘9=—€E /<' /4 | N

...? 4
The Einstein relation shows that /Ql 2-(8T/‘~7')/E 2 (asxi0 )/’0 =5

Prob. 10.8.1 (a) The appropriate solution to Eq. 8 is simply

—§ — C.os\'\(x‘%)
cosh(A/2)

Evaluated at the midplane, this gives

T_=~S/cosh(as2) @)

(b) Symmetry demands that the slope of the potential vanish

%
I

~
=
~

at the midplane.. If the potential there is called § » evaluation of the term

in brackets from Eq 9 at the midplane gives -cosh § , and it follows that
( >_Cosh§_——c=>s\—\'§ @

so that instead of Eq. 10, the expression for the potential is that given

in the problem.

(c¢) Evaluation of the integral expression at the midplane

gives §e.

_ 4@ (%)
s\/Z(CO'::\-| B-coshd,

In principal, an iterative evaluation of this integral can be used to determine

8
2

Qc and hence the potential distribution. However, the integrand is singular
at the end point of the integration, so the integration in the vicinity of

this end point is carried out analytically. In the neighborhood of gc)(’.oskg'z

Cosh § +sinh i(&_&c)and the integrand of Eq. 4 is approximated by
e T\ L "2

' \

P

& (cosh B-cosh )= —'ﬁ—{ sinh @;(&-ﬁﬂf

With the numerical integration ending at §c+ 88 , short of §‘ , the

remainder of the integral is taken analytically.
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Prob. 10.8.1 (cont.)

§+A§ § +08

L 2(3 §‘ ( } ©®
w |lsinh 8 M &= (?.:ﬁ" BAa vy )
3. 5
Thus, the expression to be evaluated numerically is

¢ +20d - 5 y
- dd - r( & © )
=\2 [(— z

2 -g\/Z(cosk§—Cos\-\§¢)\ Sinh @.)

where g‘ and 6§ are negative quantities and S is a positive number.
At least to obtain a rough approximation, Eq. 7 can be repeatedly evaluated
with i‘altered to make A the prescribed value. For &A/z =1 ,§ = -3 the

distribution is shown in Fig. P10.8.1 and §_=1.

AX

Fig. P10.8.1. Potential distribution over
half of distance between parallel boundaries
having zeta potentials §-=.3.
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program Zeta_Potentials

integer istep, imid
real*4 delta,delx,phi(9999),phic,phierr,zeta,perror
common istep,delta,delx,phi,phic,phierr,zeta

call input
delx delta/real (istep-1)

imid 1 + istep/2
phic = 0.0
continue

CALCULATE THE VALUE OF PHIc
do 4 i=1,imid-1

phi(i+l) = phi(i) + delx * sqrt(2*(cosh(phi(i))-cosh(phic)))
continue

DETERMINE IF THE UNCERTAINTY IN PHIc IS LESS THAN THE ERROR

- perror = (phi(imid)-phic)/(phic + 1.0e~06)

if (abs(perror) .gt.abs(phierr)) then
phic = phi(imid)
goto 3

endif

PREPARE AND SEND THE DATA TO THE OUTPUT FILE
do 5 i=1,imid-1
phi(istep-i+1)=phi(i)
continue
call output
STOP ’GOOD BYE’
END -

SUBROUTINE INPUT

integer istep

real*4 delta,delx,phi(9999),phic,phierr, zeta
common istep,delta,delx,phi,phic,phierr, zeta

INPUT THE NECESSARY PARAMETERS FOR THE PLOT

write(*,*) ’Enter the zeta potential:’
read(*,*,err=8) zeta

write(*,*) ’‘Enter the normalized distance:’
read(*, *,err=9) delta

write(*,*) ’‘Enter the (odd) number of steps across the layer:’
read(*,*,err=10) istep

write(*,*) ’Enter the error fraction for the midplane phi:’
read(*,*,err=11) phierr

phi(1) = - zeta

RETURN

END

Courtesy of Andrew Washabaugh. Used with permission.



FbUTINE OUTPUT

Jea1*4 delta,delx,phi(9999) ,phic,phierr, zeta,x
common 1step,delta delx,phl,phlc,phlerr zeta

WRITE THE DESIRED DATA TO AN OUTPUT FILE, READY FOR ENABLE TO PLOT
open(unit=6,file=’e:zeta.out’,status="new’)

write(6,*) ’‘The potential parameters are’

write(6,9500) istep,delta,phic,zeta,phierr

9500 format(’ Steps= '/, ’,’,15,/,’ Delta= ‘', ’,’,F10.4,/,

& * Phi c= ’, ’,’,F10.4,/,’ Zeta= ‘', ’,’,Fl10.4,/,
' & , ! Error= ‘', ’,’, F10.4)
: write(6,*) ’ X position Phi(x)
. do 100 i=1,istep
l X = real(i-1) * delx

write(6,9510) x,phi(i)
100 continue -

9510 format(’ /,F10.5,’,’,F10.5)
close(unit=6)
RETURN

' END

Courtesy of Andrew Washabaugh. Used with permission.
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Prob. 11.17.6 (cont.)
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See, Briggs, R.J., Electron-Stream Interaction With Plasmas, M.I.T. Press (1964)

pp 32-34 and 42-44. .
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Prob. 10.9.1 (a) 1In using Eq. (a) of Table 9.3.1, the double layer is

assumed to be inside the boundaries. (This is by contrast with the use made
of this expression in the text, where the electrokinetics was represented by
a slip boundary condition at the walls, and there was no interaction in the

bulk of the fluid.) Thus, 1}d= o,vlﬂ:o and T = cE Aﬁ/clx . Because the

potential has the same value on each of the walls, the last integral is zero.

ST Ax-g %@iax- ¢E,[B() -Bal]=0 W

and the next to last 1ntegra1 becomes

j‘-r dx = €E,|8(x)-&(0)]= eE%Imwf%l @)
Thus, the velocity profile is a superposition of the parabolic pressure
driven flow and the potential distribution biased by the zeta potential so
that it makes no contribution at either of the boundaries.

(b) If the Debye iength is short compared to the channel
width, then @ =0 over most of the channel, Thus, Eqs. 1 and 2 inserted
into Eq. (a) of Table 9.3.1 give the profile, Eq. 10.9.5.

(c) Division of Eq. (a) of Table 9.3.1 evaluated using
Eqs. 1 and 2 by GE.’Q‘.T/?7 gives the desired normalized form. For example,
if S“ »3 and A =2, the electrokinetic contribution to the velocity profile

is as shown in Fig. P10.8.1.

Prob. 10.9.2 (a) To find Syx’ note that from Eq. (a) of Table 9.3.1

with the wall velocities taken as €SE3 /7

2 ’ 2
"x=€§753+-§5%%[(—’,§—)—%1 (1)

Thus, the stress is

= ,2Y _ 899 (2x
S'a*_ 73-;9 = 2 3g V& |> (2)

This expression, evaluated at x=0, combines with Egs. 10.9.11 and 10.9.12
to give the required expression.

(b) TUnder open circuit conditions, where the wall currents
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Prob., 10.9.2 (cont.)

due to the external stress are returned in the bulk of the fluid and where
the generated voltage also gives rise to a negative slip velocity that tends
to decrease Ey’ the generated potential is gotten by setting i in the given

equation equal to zero and solving for Ey and hence v.

= ((Sae/y) ap )
[Aﬁ” + grﬁ.,S‘G de ]
7 (&T/3)
Prob. 10.10.1 In Eq. 10.9.12, what is (5 € SD/;) E%compared to %: S‘ax?

To approximate the latter, note that ~ (4/R » where from Eq. 10.10.10,
yx d

2
U is at most (6 S/?)Eo . Thus, the stress term is of the order of SDQS/R
and this is small compared to the surface current driven by the electric

field if R>> 3¢

Prob. 10.10.2 With the particle constrained and the fluid motionless at

infinity, U=0 in Eq. 10.10.9. Hence, with the use of Eq. 10.10.7, that

expression gives the force.

_ MRESE,
-Fi— l + Js (v
TR

The particle is pulled in the same direction as the liquid in the diffuse
part of the double layer. For a positive charge, the fluid flows from
south to north over the 