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PREFACE

Part III: Elastic and Fluid Media

In the early 1950's the option structure was abandoned and a common core
curriculum was instituted for all electrical engineering students at M.I.T.
The objective of the core curriculum was then, and is now, to provide a
foundation in mathematics and science on which a student can build in his
professional growth, regardless of the many opportunities in electrical
engineering from which he may choose. In meeting this objective, core
curriculum subjects cannot serve the needs of any professional area with
respect to nomenclature, techniques, and problems unique to that area.
Specialization comes in elective subjects, graduate study, and professional
activities.

To be effective a core curriculum subject must be broad enough to be
germane to the many directions an electrical engineer may go professionally,
yet it must have adequate depth to be of lasting value. At the same time, the
subject must be related to the real world by examples of application. This
is true because students learn by seeing material in a familiar context, and
engineering students are motivated largely by the relevance of the material
to the realities of the world around them.

In the organization of the core curriculum in electrical engineering at
M.I.T. electromechanics is one major component. As our core curriculum
has evolved, there have been changes in emphasis and a broadening of the
topic. The basic text in electromechanics until 1954, when a new departure
was made, was Electric Machinery by Fitzgerald and Kingsley. This change
produced ElectromechanicalEnergy Conversion by White and Woodson,
which was used until 1961. At that time we started the revision that resulted
in the present book. During this period we went through many versions of
notes while teaching the material three semesters a year.

Our objective has always been to teach a subject that combines classical
mechanics with the fundamentals of electricity and magnetism. Thus the
subject offers the opportunity to teach both mechanics and electromagnetic
theory in a context vital to much of the electrical engineering community.

Our choice of material was to some extent determined by a desire to give
the student a breadth of background sufficient for further study of almost
any type of electromechanical interaction, whether in rotating machinery,
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plasma dynamics, the electromechanics of biological systems, or magneto-
elasticity. It was also chosen to achieve adequate depth while maintaining
suitable unity, but, most important, examples were chosen that could be
enlivened for the engineering student interested in the interplay of physical
reality and the analytical model. There were many examples from which to
choose, but only a few satisfied the requirement of being both mathe-
matically lucid and physically demonstrable, so that the student could "push
it or see it" and directly associate his observations with symbolic models.
Among the areas of electrical engineering, electromechanics excels in offering
the opportunity to establish that all-important "feel" for a physical phe-
nomenon. Properly selected electromechanical examples can be the basis for
discerning phenomena that are remote from human abilities to observe.

Before discussing how the material can be used to achieve these ends, a
review of the contents is in order. The student who uses this book is assumed
to have a background in electrostatics and magnetostatics. Consequently,
Chapter 1 and Appendix B are essentially a review to define our starting
point.

Chapter 2 is a generalization of the concepts of inductance and capacitance
that are necessary to the treatment of electromechanical systems; it also
provides a brief introduction to rigid-body mechanics. This treatment is
included because many curricula no longer cover mechanics, other than
particle mechanics in freshman physics. The basic ideas of Chapter 2 are
repeated in Chapter 3 to establish some properties of electromechanical
coupling in lumped-parameter systems and to obtain differential equations
that describe the dynamics of lumped-parameter systems.

Next, the techniques of Chapters 2 and 3 are used to study rotating
machines in Chapter 4. Physical models are defined, differential equations
are written, machine types are classified, and steady-state characteristics are
obtained and discussed. A separate chapter on rotating machines has been
included not only because of the technological importance of machines but
also because rotating machines are rich in examples of the kinds of phe-
nomena that can be found in lumped-parameter electromechanical systems.

Chapter 5 is devoted to the study, with examples, of the dynamic behavior
of lumped-parameter systems. Virtually all electromechanical systems are
mathematically nonlinear; nonetheless, linear incremental models are useful
for studying the stability of equilibria and the nature of the dynamical
behavior in the vicinity of an equilibrium. The second half of this chapter
develops the classic potential-well motions and loss-dominated dynamics in
the context of electromechanics. These studies of nonlinear dynamics afford
an opportunity to place linear models in perspective while forming further
insights on the physical significance of, for example, flux conservation and
state functions.

I
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Chapter 6 represents our first departure from lumped-parameter systems
into continuum systems with a discussion of how observers in relative motion
will define and measure field quantities and the related effects of material
motion on electromagnetic fields. It is our belief that dc rotating machines
are most easily understood in this context. Certainly they are a good demon-
stration of field transformations at work.

As part of any continuum electromechanics problem, one must know how
the electric and magnetic fields are influenced by excitations and motion. In
quasi-static systems the distribution of charge and current are controlled by
magnetic diffusion and charge relaxation, the subjects of Chapter 7. In
Chapter 7 simple examples isolate significant cases of magnetic diffusion or
charge relaxation, so that the physical processes involved can be better
understood.

Chapters 6 and 7 describe the electrical side of a continuum electro-
mechanical system with the material motion predetermined. The mechanical
side of the subject is undertaken in Chapter 8 in a study of force densities of
electric and magnetic origin. Because it is a useful concept in the analysis of
many systems, we introduce the Maxwell stress tensor. The study of useful
properties of tensors sets the stage for later use of mechanical stress tensors
in elastic and fluid media.

At this point the additional ingredient necessary to the study of continuum
electromechanics is the mechanical medium. In Chapter 9 we introduce
simple elastic continua-longitudinal motion of a thin rod and transverse
motion of wires and membranes. These models are used to study simple
continuum mechanical motions (nondispersive waves) as excited electro-
mechanically at boundaries.

Next, in Chapter 10 a string or membrane is coupled on a continuum
basis to electric and magnetic fields and the variety of resulting dynamic
behavior is studied. The unifying thread of this treatment is the dispersion
equation that relates complex frequency wo with complex wavenumber k.
Without material convection there can be simple nondispersive waves, cut
off or evanescent waves, absolute instabilities, and diffusion waves. The
effect of material convection on evanescent waves and oscillations and on
wave amplification are topics that make a strong connection with electron
beam and plasma dynamics. The method of characteristics is introduced as a
convenient tool in the study of wave propagation.

In Chapter 11 the concepts and techniques of Chapters 9 and 10 are
extended to three-dimensional systems. Strain displacement and stress-strain
relations are introduced, with tensor concepts, and simple electromechanical
examples of three-dimensional elasticity are given.

In Chapter 12 we turn to a different mechanical medium, a fluid. We
first study electromechanical interactions with inviscid, incompressible
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fluids to establish essential phenomena in the simplest context. It is here that
we introduce the basic notions of MHD energy conversion that can result
when a conducting fluid flows through a transverse magnetic field. We also
bring in electric-field interactions with fluids, in which ion drag phenomena
are used as an example. In addition to these basically conducting processes,
we treat the electromechanical consequences of polarization and magnetiza-
tion in fluids. We demonstrate how highly conducting fluids immersed in
magnetic fields can propagate Alfv6n waves.

In Chapter 13 we introduce compressibility to the fluid model. This can
have a marked effect on electromechanical behavior, as demonstrated with
the MHD conduction machine. With compressibility, a fluid will propagate
longitudinal disturbances (acoustic waves). A transverse magnetic field and
high electrical conductivity modify these disturbances to magnetoacoustic
waves.

Finally, in Chapter 14 we add viscosity to the fluid model and study the
consequences in electromechanical interactions with steady flow. Hartmann
flow demonstrates the effect of viscosity on the dc magnetohydrodynamic
machine.

To be successful a text must have a theme; the material must be inter-
related. Our philosophy has been to get into the subject where the student
is most comfortable, with lumped-parameter (circuit) concepts. Thus many
of the subtle approximations associated with quasi-statics are made naturally,
and the student is faced with the implications of what he has assumed only
after having become thoroughly familiar with the physical significance and
usefulness of his approximations. By the time he reaches Chapter 4 he will
have drawn a circle around at least a class of problems in which electro-
magnetic fields interact usefully with media in motion.

In dealing with physical and mathematical subjects, as we are here, in
which the job is incomplete unless the student sees the physical laws put to
work in some kind of physical embodiment, it is necessary for the thread of
continuity to be woven into the material in diverse and subtle ways. A
number of attempts have been made, to which we can add our early versions
of notes, to write texts with one obvious, pedagogically logical basis for
evolving the material; for example, it can be recognized that classes of
physical phenomena could be grouped according to the differential equation
that describes the pertinent dynamics. Thus we could treat magnetic diffusion,
diffusion waves on elastic continua, and viscous diffusion waves in one
chapter, even though the physical embodiments are entirely different.
Alternatively, we could devise a subject limited to certain technological
applications or cover superficially a wide range of basically unrelated topics
such as "energy conversion" under one heading. This was the preva-
lent approach in engineering education a decade or so ago, even at the
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undergraduate level. It seems clear to us that organizing material in a teach-
able and meaningful fashion is far more demanding than this. To confess our
own mistakes, our material went originally from the general to the specific; it
began with the relativistic form of Maxwell's equations, including the effects
of motion, and ended with lumped-parameter devices as special cases. Even
if this were a pedagogically tenable approach, which we found it was not,
what a bad example to set for students who should be learning to distinguish
between the essential and the superfluous! Ideas connected with the propaga-
tion of electromagnetic waves (relativistic ideas) must be included in the
curriculum, but their connection with media in motion should be made after
the student is aware of the first-order issues.

A meaningful presentation to engineers must interweave and interrelate
mathematical concepts, physical characteristics, the modeling process, and
the establishment of a physical "feel" for the world of reality. Our approach
is to come to grips with each of these goals as quickly as possible (let the
student "get wet" within the first two weeks) and then, while reinforcing what
he has learned, continually add something new. Thus, if one looks, he will
see the same ideas coming into the flow of material over and over again.

For the organization of this book one should look for many threads of
different types. We can list here only a few, in the hope that the subtle
reinforcing interplay of mathematical and physical threads will be made
evident. Probably the essential theme is Maxwell's equations and the ideas of
quasi-statics. The material introduced in Chapter I is completely abstract,
but it is reinforced in the first few chapters with material that is close to home
for the student. By the time he reaches Chapter 10 he will have learned that
waves exist which intimately involve electric and magnetic fields that are
altogether quasistatic. (This is something that comes as a surprise to many
late in life.) Lumped-parameter ideas are based on the integral forms of
Maxwell's equations, so that the dynamical effects found with lumped-

parameter time constants LIR and RC in Chapter 5 are easily associated with
the subjects of magnetic diffusion and charge relaxation. A close tie is made
between the "speed voltage" of Chapter 5 and the effects of motion on
magnetic fields, as described by field transformations in Chapters 6 to 14.
Constant flux dynamics of a lumped coil in Chapter 5 are strongly associated
with the dynamics of perfectly conducting continuous media; for example,
Alfv6n waves in Chapter 12.

Consider another thread of continuity. The book begins with the mathe-
matics of circuit theory. The machines of Chapter 4 are essentially circuits in
the sinusoidal steady state. In Chapter 5 we linearize to pursue lumped-
parameter ideas of stability and other transient responses and then proceed
to nonlinear dynamics, potential-well theory, and other approaches that
should form a part of any engineer's mathematical background. By the time

...... - ' . --
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the end of Chapter 10 is reached these ideas will have been carried into the
continuum with the addition of tensor concepts, simple cases of the method
of characteristics, and eigenvalue theory. The co-k plot and its implication
for all sorts of subjects in modern electrical engineering can be considered as
a mathematical or a physical objective. The ideas of stability introduced
with ordinary differential equations (exp st) in Chapter 5 evolve into the
continuum stability studies of Chapter 10 [expj(cot - kx)] and can be
regarded as a mathematical or a physical thread in our treatment. We could
list many other threads: witness the evolution of energy and thermodynamic
notions from Chapters 3 to 5, 5 to 8, and 8 to 13.

We hope that this book is not just one more in the mathematics of elec-
trical engineering or the technical aspects of rotating machines, transducers,
delay lines, MHD converters, and so on, but rather that it is the mathe-
matics, the physics, and, most of all, the engineering combined into one.

The material brought together here can be used in a variety of ways. It has
been used by Professors C. N. Weygandt and F. D. Ketterer at the University
of Pennsylvania for two subjects. The first restricts attention to Chapters
1 to 6 and Appendix B for a course in lumped-parameter electromechanics
that both supplants the traditional one on rotating machines in the electrical
engineering curriculum and gives the background required for further study
in a second term (elective) covering Chapter 7 and beyond. Professors C. D.
Hendricks and J. M. Crowley at the University of Illinois have used the
material to follow a format that covers up through Chapter 10 in one term
but omits much of the material in Chapter 7. Professor W. D. Getty at the
University of Michigan has used the material to follow a one-term subject in
lumped-parameter electromechanics taught from a different set of notes.
Thus he has been able to use the early chapters as a review and to get well
into the later chapters in a one-term subject.

At M.I.T. our curriculum seems always to be in a state of change. It is clear
that much of the material, Chapters 1 to 10, will be part of our required
(core) curriculum for the forseeable future, but the manner in which it is
packaged is continually changing. During the fall term, 1967, we covered
Chapters 1 to 10 in a one-semester subject taught to juniors and seniors.
The material from Chapters 4 and 6 on rotating machines was used selectively,
so that students had "a foot solidly in the door" on this important subject
but also that the coverage could retain an orientation toward the needs of all
the diverse areas found in electrical engineering today. We have found the
material useful as the basis for early graduate work and as a starting point
in several courses related to electromechanics.

Finally, to those who open this book and then close it with the benediction,
"good material but unteachable," we apologize because to them we have
not made our point. Perhaps not as presented here, but certainly as it is
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represented here, this material is rich in teaching possibilities. The demands
on the teacher to see the subject in its total context, especially the related
problems that lie between the lines, are significant. We have taught this
subject many times to undergraduates, yet each term has been more enjoyable
than the last. There are so many ways in which drama can be added to the
material, and we do not need to ask the students (bless them) when we have
been successful in doing so.

In developing this material we have found lecture demonstrations and
demonstration films to be most helpful, both for motivation and for develop-
ing understanding. We have learned that when we want a student to see a
particular phenomenon it is far better for us to do the experiment and let
the student focus his attention on what he should see rather than on the
wrong connections and blown fuses that result when he tries to do the
experiment himself. The most successful experiments are often the simplest-
those that give the student an opportunity to handle the apparatus himself.
Every student should "chop up some magnetic field lines" with a copper
"axe" or he will never really appreciate the subject. We have also found that
some of the more complex demonstrations that are difficult and expensive
to store and resurrect each semester come through very well in films. In
addition to our own short films, three films have been produced professionally
in connection with this material for the National Committee on Electrical
Engineering Films, under a grant from the National Science Foundation, by
the Education Development Center, Newton, Mass.

Synchronous Machines: ElectromechanicalDynamics by H. H. Woodson
Complex Waves I: Propagation, Evanescence and Instability by J. R.

Melcher
Complex Waves II: Instability, Convection and Amplification by J. R.

Melcher

An additional film is in the early stages of production. Other films that
are useful have been produced by the Education Development Center for
the National Committee on Fluid Mechanics Films and for the College
Physics Film Program. Of particular interest, from the former series, is
Magnetohydrodynamicsby Arthur Shercliff.

A book like this can be produced only with plenty of assistance. We
gratefully acknowledge the help we received from many directions and hope
we have forgotten no one after seven years of work. First of all we want
to acknowledge our students with whom we worked as the material developed.
They are the one most essential ingredient in an effort of this sort. Next we
want to thank Dr. S. I. Freedman, Professor H. H. Richardson, and Dr.
C. V. Smith, Jr., for their assistance in framing worthwhile approaches to
several of our key topics. In seven years we have had the help of many able
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teachers in presenting this material to students. Their discussions and advice
have been most useful. In this category we want particularly to mention
Professors H. A. Haus, P. L. Penfield, D. C. White, G. L. Wilson, R. Gal-
lager, and E. Pierson and Doctors J. Reynolds, W. H. Heiser, and A. Kusko.
Professor Ketterer, who has taught this material at M.I.T. and the University
of Pennsylvania, Professors C. D. Hendricks and J. M. Crowley, who have
taught it at M.I.T. and the University of Illinois, and Professor W. D. Getty,
who has taught it at M.I.T. and the University of Michigan, have been most
generous with their comments. Messrs. Edmund Devitt, John Dressier, and
Dr. Kent Edwards have checked the correctness of many of the mathematical
treatments. Such a task as typing a manuscript repeatedly is enough to try
the patience of anyone. Our young ladies of the keyboard, Miss M. A. Daly,
Mrs. D. S. Figgins, Mrs. B. S. Morton, Mrs. E. M. Holmes, and Mrs. M.
Mazroff, have been gentle and kind with us.

A lengthy undertaking of this sort can be successful only when it has the
backing of a sympathetic administration. This work was started with the
helpful support of Professor P. Elias, who was then head of the Department
of Electrical Engineering at M.I.T. It was finished with the active encourage-
ment of Professor L. D. Smullin, who is presently head of the Department.

Finally, and most sincerely, we want to acknowledge the perseverance of
our families during this effort. Our wives, Blanche S. Woodson and Janet D.
Melcher, have been particularly tolerant of the demands of this work.

This book appears in three separately bound, consecutively paged parts
that can be used individually or in any combination. Flexibility is ensured
by including with each part a complete Table of Contents and Index. In
addition, for convenient reference, Parts II and III are supplemented by brief
appendices which summarize the relevant material from the preceding chap-
ters. Part III, Chapters 11 to 14, introduces three-dimensional elasticity and
fluid dynamics while emphasizing important electromechanical phenomena
involving these mechanical models.

H. H. Woodson
J. R. Melcher

Cambridge, Massachusetts
January 1968
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Chapter 11

INTRODUCTION TO THE

ELECTROMECHANICS OF

ELASTIC MEDIA

11.0 INTRODUCTION

Most electromechanical effects and devices involving deformable solid
media are best understood in terms of specific models. Elastic membranes and
wires are examples of simple one-dimensional and two-dimensional models
that can be developed without recourse to a more general theory of elasticity*.
Any particular analysis can be developed in this way, and if our objective were
to understand specific examples this would be our approach. A more general
description of elastic media serves the purpose of giving a larger picture,
with the specific examples placed in perspective. Our objective in this chapter
is this larger picture. At the same time, examples which emphasize that
special models still play an essential role are developed from the general
theory.

The material of this chapter is, of course, relevant to the dynamics of a
variety of electromechanical interactions with elastic solids. In particular, it
relates to areas of electromechanics such as physical acoustics, the micro-
wave electromechanics of crystals, and the development of electromechanical
distributed circuits.

The one-dimensional example of a rod subject to longitudinal motions
introduced in Section 9.1* illustrates the essential steps required to find the
equations of motion for an elastic continuum. First, an equation expressing
force equilibrium for a small volume of material is written in terms of the
material displacement and the mechanical stresses. Then the stresses are
related to the strain, hence to the displacement, by means of the stress-strain
relations. The first step, which can be completed without regard to the

* See Chapter 9 or Table 9.2, Appendix G.
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elastic properties of the material, is given in the next section. The second step,
for isotropic media, is found in Section 11.2. In Section 11.5 we introduce
enough of the properties of anisotropic materials to consider certain illustra-
tive examples.

11.1 FORCE EQUILIBRIUM

Our first objective is to write an equation that expresses force equilibrium
for an element ofmaterial. A small cube of the material, centered at (x1 , xs, xz),
is shown in Fig. 11.1.1. To write Newton's law we must know the instan-
taneous acceleration of the material at this point. The particles of matter
found at (xz, x2, 3) have a displacement from their unstressed position
given by

8(x - 61, •2- 62, 3 s-63, t) (11.1.1)

This is true because 6(a, b, c, t) is defined as the displacement of the particle
with an unstressed position (a, b, c).* As pointed out in Section 9.1, dis-
placements are small in many important situations. If we limit ourselves to
small displacements, (11.1.1) can be expanded about the position (x1, x,, x3)
to give

8(0 - 61,x2 - 62, x 3 - 63, t)

as as as
= 6(x2,,X23 t) 1-a 1 -L8 +• . (11.1.2)

ax, ax2 aX3

Fig. 11.1.1 Element of material with volume V centered at the position (x1, x, x,). The
grain of material at the center of the cube has the unstressed position (X, - 61 , z 2 - 62
X3 - 63).

* A function such as 8, which follows the motion of a particular particle, is said to be
written in Lagrangian coordinates. The coordinates indicate the particle under consideration.

6(xl -
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If the displacement and its derivatives are small, we can approximate the
displacement of the material at the center of the element (Fig. 11.1.1) by the
first term on the right, which is the displacement evaluated at the center of
the element. Newton's law for the small cube of Fig. 11.1.1 is then

a2S
P = F. (11.1.3)

Because we ignore products of perturbation quantities, the mass density p is a
constant in this expression. In an elastic solid there is always a force density
F due to mechanical stresses imposed on the cube by the surrounding
material. In the presence of electric or magnetic fields an additional contribu-
tion to F is made by forces of electrical origin. In the next section we develop
the relation between elastic stresses and the displacement 6 (for homogeneous
media) as a stress tensor, and in Chapter 8 it was found that forces due to
free charges or free currents could be written as the divergence of a stress
tensor*. Hence we can write (11.1.3) as

a 2 ,m aTMn
P -= _, (11.1.4)

where it is understood that the stress tensor T,,, is due to mechanical (elastic)
interactions and (if they are present in the problem) electrical interactions.

11.2 EQUATIONS OF MOTION FOR ISOTROPIC MEDIA

From (11.1.4) it is apparent that to formulate the equations of motion for
an elastic medium it is necessary to make a connection between the applied
stresses and the resulting deformations. It was shown in Section 9.1 that for a
simple, one-dimensional problem this could be done by introducing the strain,
which has a simple relationship both with the deformation of the material
and the applied stresses. In the section that follows we consider how the
strain gives a description of material deformation, hence the relation between
the strain and the displacement of the material. Then in Section 11.2.2 a
description is given of the relation between the stress and strain.

11.2.1 Strain-Displacement Relations

Two types of material deformation corresponding to the action of normal
and shear stresses on the material, are possible. These are illustrated two-
dimensionally in Fig. 11.2.1, in which the points A, B, and C represent tagged
grains of material that, when strained, move from A to A', B to B', and C to
C'. Note that in the unstrained condition the lines joining the tagged points
are parallel to the coordinate axes. Because the effects considered are linear,

* See Sec. 8.2 or Appendix G.
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x1 x1

C'

C ~- (xl + Ax3, X2)

A' B'

A (xl, x2) 1 X

II (x1, xs+ & )
I I x,

C'

_-C 1• 0 + AX1, x)

a A' B'

-- A B
(1, x2) 2, x+
I I >

22 X2 +X 2  x2 X2 AX 2

(a) (b)

Fig. 11.2.1 (a) Strain produced by normal stresses; (b) strain produced by shear stresses.

the deformations can be considered separately and then superimposed. We
shall shortly develop the strain from a formal point of view, and this will
make the superposition principle more apparent. At first our development is
more intuitive.

In Fig. 11.2.1a the deformation has lengthened the distances AB and AC
to the distances A'B' and A'C', whereas in Fig. 11.2.1b these lengths have
remained constant but the angles between the sides of the cube of material
have changed. The first of the two types of deformation is a generalization
of the kind of strain considered in Section 9.1 (the thin elastic rod); that is,
we can define a normal strain in each of the axis directions as an elongation
per unit length. In the xz-direction this is

S= lim 1( + A zX, x,) - 61 (xz, X2 ) - a6 1e,, = lim - , (11.2.1)
AI--0 Ax 1  ax1

where 8(xz, X2 , x,, t) is the material displacement at the point x1 , X2, x, as
discussed in Section 11.1. Similarly,

e22 =a2 (11.2.2)
x 2X

e33 = (11.2.3)
ax,

In the second kind of deformation (Fig. 11.2.1b) the sides of the cube keep
their original length but are deflected with respect to each other to an angle
different from the original 900. This strain is caused by the shear stresses
(T12, T31 , etc.) and can be visualized by placing the covers of a book under
shear, as shown in Fig. 11.2.2. (The significance of the stress components is
discussed in Section 8.2 and Appendix G.)

z1 + •x1

x!

__
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The shear-strains, like the normal strains, are defined functions. They are
defined as one half the tangent of the change in angle between the originally
perpendicular sides of the cube (Fig. 11.2.1b) in the limit in which the cube
becomes very small. Hence in the diagram of Fig. 11.2.1 b the strain resulting
from a change in angle with respect to the xz and x, axes is designated e,2.

In terms of the angles defined in Fig. 11.2.1b the strain e,2 is

e,2 = lim I tan [o + f] (11.2.4)

Note that a positive shear strain signifies that the angle between the originally
perpendicular lines is less than 900.

In Chapter 9, Example 9.1.1 was used to illustrate that the deformations
commonly encountered in elastic solids are very small. For this reason the
angles of deflection due to shear stresses are also commonly small and the
tangent function in (11.2.4) can be approximated by the argument (a + fl).
For the same reason the angles cc and f can in turn be approximated by their
tangents to write

[6,(x1 + Ax 1, X2) - 62(X1, 2)1

Ax1

[61 (x 1 , x.2 + Ax 2) - 6l(X1 , X 2)] (11.2.5)

Ax 2

(11.2.4) then becomes

el.2 = lira I 6(Xl + Ax1, X2) - 62(X1 )] [A+ 1(AX, X2 + AX2) - b1(Xl, XA)],
I i 2( Ax 2 Ax 2  f,

AX-o0 (11.2.6)

Fig. 11.2.2 Simple situation in which shear stresses result in a shear strain (the angle
of deflection).

_ 1-·-1·-··1~1-----·1^-·11111_·--
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and in the limit we obtain a point relation between the component of strain
e1 2 and the displacements:

e1 2 - + - ; (11.2.7)
2 8. ax)

that is, e12 is evaluated at the unstressed position A. In the process of taking
the limit in which Ax1 -- 0 and Ax 2 -- 0 all of the approximations in going
from (11.2.4) to (11.2.7) become exact except the one requiring small angular
deflections, which remains the basic limitation of the theory.

A two-dimensional picture of shear strain has been used so far because it
is easily visualized. A three-dimensional description of the strain follows
by considering the deflections between the other two pairs of axes, with the
results

e 13 - - + Lb, (11.2.8)

2 ax, ax,

The last three expressions make it evident that e, = eji, as would be expected
from the definition of the shear strain. Altogether, we have defined nine
components of the strain, which are presumably sufficient to describe the
distortions of the material in the vicinity of a point xl, x2, x, related to the
stress. We can summarize all the strain components with the expression

ea - 2-L-, + .6j (11.2.10)

Note that ei, is a Lagrangian variable in that it is evaluated at the unstressed
position of a grain of material (A in Fig. 11.2.1). As discussed in Section 11.1,
because the deflections are small it will not be necessary to distinguish between
the strain evaluated at the unstressed position of the material and the strain
evaluated at the stressed position of the material.

11.2.1a A Formal Derivation

Our remarks about the strain have so far been aimed at establishing the
physical significance of each of the nine components. We have not shown in
a formal way that the components ei, are sufficient to describe the relative
distortions of the material caused by the stresses (although eij does include
all possible space derivatives of 6). To do so we must consider a general
material deformation rather than the two particular forms shown in Fig.
11.2.1. The reasoning used now parallels that of the preceding discussion
in that we again consider the relative positions of grains of matter.
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X2

Fig. 11.2.3 Displacement of grains of matter in the unstressed positions A and B and
final separation As.

Figure 11.2.3 shows two grains of material in the unstrained positions
A and B. When the material is subjected to stress, these grains move to the
new positions C and D. We are interested in that part of the material dis-
tortion that is produced by the stress. Hence we are not interested (when we
define the strain) in a uniform translation of the material, or, as we shall see
momentarily, we are not interested in uniform rotations of the material. The
strain is defined to describe the stretching of the material between the points
A and B; hence attention is given to the distance between the points originally
at A ahd B, as they are distorted to points C and D. At first the relative dis-
placement is Ar, whereas after the stress is applied the relative displacement
is As, as shown in Fig. 11.2.3.

The coordinate of the material at A is r. By taking Ar (Ar = Axii1 +

Axi,2 + Ax3i,) to be small it is possible to find the separation As between
the points in the strained positions C and D. First, vector addition of the
displacement components shown in Fig. 11.2.3 gives

As = Ar + 8(B) - 8(A), (11.2.11)

which becomes approximately (writing the ith component)*

As, = AzX + 6,(x1 + Ax 1, X2 + Ax2 , x8 + Ax8, t) - bi(x 1, 4, x8 , t)

SAx; + Ax + - Ax 2 + Ax,
ax, aX2 ax,8x82

Ai; + - Axk. (11.2.12)

* See Appendix G for index notation.

I____i·l_ __ ___ _I_

11.2.1



Introduction to the Electromechanics of Elastic Media

Now, if the quantity (8a/,faxs)Ax,, is both added to and subtracted from
this equation, we obtain

As, = A; + 2 Ax,, + 2 + A,. (11.2.13)
2\ax,, 2 8, ax

Here we have an expression for the ith component of the directed distance
As between the points A and B after the material has been subjected to stress.
This distance is written as a function of the initial distance Ar and the
displacement 8 of the material in the vicinity of A. Note that in (11.2.13)
the derivatives of 8 are evaluated at the unstressed position A.

In writing (11.2.13), we have divided the expression for the relative posi-
tions of A and B into a part that is due to a pure (rigid body) rotation of the
material in the vicinity of A and a part resulting because of the material
distortions produced by the applied stress. We have already agreed that a
pure translation, and similarly a pure rotation, involve no strain deformation
in the material. The bracketed part of the second term on the right in (11.2.13)
is one component of the vector V x 8. Hence it describes a rotation of the
material about the unstressed position A. This may be verified by defining a
rotation vector 92 in terms of the components of 5.

1 aL8,a Ia,I, a9 = i- +_ +il. (11.2.14)
2 ax2 ax) 2 ax3 ax. 2 ax, ax2)

Then the second term in (11.2.13) can be written in terms of 92 as

- AzXA,= (2 x Ar). (11.2.15)

This is not obvious unless one substitutes (11.2.14) into (11.2.15).
Without specifying the direction of S2, we can conclude from (11.2.15)

that since 92 x Ar is perpendicular to Ar the relative displacement repre-
sented by this term is also perpendicular to Ar. In Fig. 11.2.4 the stressed and
unstressed positions of the material are shown in the case in which the
contribution of the last term in (11.2.13) is zero. The material initially at
points A and B undergoes a uniform translation and then, because 52 is
perpendicular to Adr, a rigid body rotation.

It is apparently the last term in (11.2.13) that represents a distortion of the
material and therefore should be defined as the strain. This is, of course,
consistent with our definition of the strain ei, in the preceding section (11.2.10).
In view of this definition, (11.2.13) provides an expression for the relative
positions of two material particles with the initial relative positions Ar.

As i = Ax i + (2 x Ar), + eil Ax. (11.2.16)
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X2

Fig. 11.2.4 Displacements of grains of matter in the undeformed positions A and B and
deformed positions C and D. This material has suffered a uniform translation and a rigid
body rotation.

The strain ei is evaluated at the unstressed position of the material. As
mentioned in Section 11.2.1, however, we commit a negligible error by
evaluating it at the stressed position of the material.

The strain has been defined in such a way that it has the transformation
properties of a tensor. This purely mathematical fact is shown in the next
section.

11.2.1b The Strain as a Tensor

We can confirm that the components eil form a tensor by using the fact
that the displacement 8 is a vector. Our discussion here parallels that given
in Section 8.2.2 in which we used the transformation properties of the vector
traction r to show that the stress was a tensor. In a similar way we begin
here with the transformation of S to a primed coordinate system:

-'= afj 3 . (11.2.17)

A discussion of this vector transformation and the direction cosines ail was
given in Section 8.2.2 and is summarized in Appendix G.

It follows from (11.2.17) that since components of ail are not functions
of xz

a6" az, xk aal- = a,,- a . (11.2.18)
axt ax; ax; ax

The position vector r = x i, + xji + xz2i is also transformed from a primed
coordinate system by an equation in the form of [see (8.2.18) and (8.2.19)]

(11.2.19)

11.2.1

2X = aj2,;
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from this expression it follows that
ak a k 

(11.2.20)
ax,

and (11.2.18) becomes

ailaiana, (11.2.21)
axi a;k

The steps leading to this equation can be repeated with the indices i and j
reversed.

The strain e$, in the primed coordinate system is by definition

el., = ax a)-(11.2.22)

The first derivative on the right in this expression is replaced by (11.2.21),
whereas the second derivative is replaced by (11.2.21), with i and j reversed:

==( aiai- + asa 6 1 (11.2.23)

We are required to sum over the indices I and k, and so these indices can be
reversed in the second term on the right-hand side of this expression, which
then becomes the desired transformation equation for ei2:

ei' = aikailekl. (11.2.24)

This expression for the transformation of the strain is the same as that found
in Section 8.2.2 for the transformation of the stress T,,; for example, the
expressions for the components of stress in a cylindrical coordinate system,
as derived in Example 8.2.5, could also be used here by replacing T, -- e-.

11.2.2 Stress-Strain Relations

Our objective in defining the strain was to provide a function of the material
displacements 6 that could be directly related to the stress. The relations
between the components of strain and stress depend on material properties.
A particular stress-strain relation was discussed in Section 9.1, in which the
modulus of elasticity was introduced as an experimentally determined con-
stant of proportionality between a one-dimensional normal stress and strain*.
In this section we generalize this simple stress-strain relation to three-
dimensional isotropic solids but again confine ourselves to those solids that
can be modeled by an algebraically linear dependence of strain on the stress.
This is not unduly restrictive because virtually all elastic media of interest to
us are represented adequately by this model. In any case the stress-strain
relations are ultimately empirical. Therefore it is reasonable to propose
several simple experiments that lead to an understanding of them.

* See Table 9.2, Appendix G.



Equations of Motion for Isotropic Media
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T __________________

T22z

-T22

(b)

al

S11 X
(c)

Fig. 11.2.5 (a)Deformations of a block due to a uniform normal stress T,,; (b) deforma-
tions identical to (a) produced by a uniform normal stress --T2; (c) displacement and
normal strain in the xl-direction for both (a) and (b).

First, the effect of applying a normal stress to a block of material is con-
sidered. In Fig. 11.2.5 two ways of applying a normal stress are shown. Both
can result in the same deformation of the material. A normal stress T,, is
applied to the xz-surfaces of the block in Fig. 11.2.5a; the result is elongation
of the block in the xl-direction. If no stresses are applied to the x2 (or x8)-
surfaces, there is, in addition, a contraction of the material in the x2 (and
x3)-directions. This "necking down" of the material is familiar to anyone
who has observed what happens when a rubber band is stretched.

Figure 11.2.5b shows the same deformation of the bar as in Fig. 11.2.5a,
except that the stress is now compressional and normal to the xg-surfaces.
Here the material is "squeezed out" in the xz-directions by the stress T2,,
which also reduces the thickness of the block. The x,-displacement 6,(x,)
of the block in each situation is shown in Fig. 11.2.5c. We see that ex is

T11

T11
"

11.2.2

-3 X

X1
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uniform over the length of the bar. In Fig. 11.2.5 the block is assumed to be
constrained so that there are no displacements in the xz-direction. Of course,
in three-dimensional displacements a stress Txl could also produce dis-
placements in the x3-direction and a stress Te3 could produce displacements
in the xx-direction.

To account for this experiment two constants E and v are defined such that

1
el = [T11 - v(T 22 + T33)]. (11.2.25)

E

This equation provides that a negative T2, can produce the same strain ell
as a positive T.,. The xz-direction is equivalent to the x2-direction in our
experiment, hence T3 enters in (11.2.25) in the same way as T2,.

Because the material is isotropic, we can make the same arguments for
the other components of the strain and write

1
e2 = [T22 - v(T33 + T 1)], (11.2.26)

E

1
e3a = - [T33 - v(T 1l + T22)]. (11.2.27)

E

As pointed out in Chapter 9, E is called the modulus of elasticity, or
Young's modulus, and (11.2.25) reduces to the stress-strain relation for a thin
rod by setting T,2 = T,3 = 0. We comment further on the significance of this
approximation in Section 11.4. The constant v,which accounts for the
necking down of the material in Fig. 11.2.5a, is called Poisson's ratio.
Materials that are isotropic, hence could possibly be modeled by (11.2.25) to
(11.2.27), are usually a conglomeration of minute crystals. Although each
individual crystal is not isotropic, the conglomeration is isotropic on a
macroscale. The physical properties of such materials are extremely difficult
to predict. For this reason E and v may be regarded as experimentally
determined constants.

xl

Fig. 11.2.6 Hypothetical situation in which a normal strain results from a shear stress.
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X1

X1
X2

X3

Fig. 11.2.7 Hypothetical situation in which a shear strain results from a normal stress.

In writing (11.2.25) to (11.2.27), we have not only assumed that the material
is isotropic but that the normal strains do not depend on the shear stresses.
A simple mental experiment shows that these assumptions are the same.
Suppose a situation occurs in which normal strain results from a shear
stress, as shown in Fig. 11.2.6. A rotation of the coordinates makes it evident
that the same stress would give a very different strain, a result that contradicts
our assumption of an isotropic material (a material with properties that do
not depend on the orientation of the coordinates relative to the material).

This same kind of isotropy argument can be used to show that shear
strains cannot depend on normal stresses. Now the conjecture is that we have
shear strains that result from normal stresses, as shown in Fig. 11.2.7. Again,
a rotation of the coordinate system as shown requires that the same normal
stress produce the opposite shear strain.

Physical intuition tells us that each shear strain should be proportional
to the corresponding shear stress. As an example, Fig. 11.2.8 shows a block
of material subject to the shear stresses Ta,and Ta,. The change in angle

x3 T13

TTal

-Xi

Fig. 11.2.8 The shear strain e,3 results from the shear stresses Tls and T31.

11.2.2
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between the originally perpendicular sides of the block is in direct proportion
to the applied stress. Hence

e,i = -, i j, (11.2.28)
2G

where G is an experimentally determined constant called the shear modulus.
In drawing Fig. 11.2.8 we have assumed that T,1 = T,1, for otherwise there
would be a net torque on the material. This assumption is implicit in (11.2.8),
for we have already shown that ei, = e,, (11.2.10).

Given the stress, we can use (11.2.25) to (11.2.28) to find any component
of the strain. If, however, we made independent measurements of v, E, and
G, we would be expending more effort than necessary, since, in fact, these
constants are related. An example illustrates this point.

Example 11.2.1. Figure 11.2.9 shows a cube of material that is subject to the shear
stresses T 12 = T21 = To in the x 2,x2, x-coordinate system. It is clear from this diagram
that the components of the stress, viewed from the x", x 2 , x-coordinate system, are not in

1

x1

Fig. 11.2.9 A simple example of a pure shear in the xj frame which transforms into a pure
tension and compression in the x' frame.

shear but in tension and compression. It is because of this fact that E, v, and G are not
independent constants. A calculation of the strain e., viewed in the ax-frame serves to
illustrate this point.

The x'-coordinates of a point in space can be found from the xj-coordinates by the
transformation xi = ajzj (Section 8.2.2 or Appendix G), in which

ai, = 1 1 . (a)

0 0 1

Xi

x•
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We are given that the material supports the stress

0 To 01

Ti = 00 , (b)

0 00

hence from (11.2.28) that the material undergoes the strain

el =13 (c)

The advantage of writing the stress and strain as tensors is that their components can be
found in the x'-frame by means of the transformations T1i = a= ait T, and ei = aikaJlekj.
Hence from the last three equations it follows that

-L 0 0

e= t• 0 To 0 (d)

0 0 0

and

T'j = 0 -To 0, (e)

L0 o00

or, as we suspected, thecomponents of the stressand strain arepurely diagonal. Because the
material is isotropic, the stress-strain relations must hold, regardless of the coordinate
system; that is, (11.2.25) to (11.2.28) must also hold for e ' and T ,, and it follows from the
above equations that

Tr 1-- = (T, + PTo) (f)
2G E

or
E

G ---- (g)
2(1 + v)

This result is important, for it indicates that there are only two independent constants
necessary to define the stress-strain relations for an isotropic material; for example, given
the modulus of elasticity E and Poisson's ratio )', the shear modulus G can be found from
(g).

Characteristic values of v and G are given in Table 11.2.1.

1·_I __ _ _
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Table 11.2.1 Shear Modulus and Poisson's Ratio for Various Materials*

Material G-units of 1010 N/m2 v

Aluminum (pure and alloy) 2.55-3.65 0.32-0.34
Brass (60-70% Cu, 40-30 % Zn) 3.6-4.1 0.33-0.36
Copper 4.0-4.6 0.33-0.36
Iron, cast (2.7-3.6% C) 3.6-5.6 0.21-0.30
Steel (carbon and low alloy) 7.6-8.2 0.26-0.29
Stainless steel (18 %Cr, 8% Ni) 7.3 0.30
Titanium (pure and alloy) 4.1 0.34
Glass 2.6-3.2 0.21-0.27

* See Table 9.1 Appendix G for references and values of E, p, and VE-p.

11.2.3 Summary of Equations

We shall be occupied with electromechanical problems in which the stress
T2, and the displacement 6b are the important variables. Therefore it is
desirable to eliminate the strain as a variable from (11.2.25) through (11.2.28).

For the off-diagonal terms this leads directly to the stress as a function of
the displacement, but for the diagonal terms three simultaneous conditions
on the components Tj, T,2 , and T:3 result:

1 861
en -- [T11 - x(TZ2+ T33a)

E ax,

1 a6s
e2. = - [T,2 - v(Tl33 + TI)] - ,

E 8ax2
(11.2.29)

I a63
ea = - [T33 - A(T11 + T22) ax3E ax,

These equations can be solved for Tn, T,22 , and T33 in terms of the deriva-
tives of 5 to provide the diagonal terms in the expression (remember, we
sum on a subscript that appears twice),

2G +2 L6k

ax, axk

G~lf±±f!~1)

X2 a1)

86, 8r,2G - + -
ax., axk

G( ab, + a62

G +(A+f63)

ax;, x6

ax, ax)
2G + ;M

ax" ax,

Tj = (11.2.30)
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where (g) of Example 11.2.1 has been used to reduce the number of constants
to two and A is an elastic constant given by

YE
S= (11.2.31)

(1 + v)(1 - 2v)

The off-diagonal terms in 11.2.30 are given by (11.2.28). The parameter A
has been introduced purely for convenience and is sometimes called the
Lam6 constant.

The expression for the stress in terms of the displacements, given by
(11.2.30), can be summarized in a compact form by using the Kronecker delta
function introduced in Section 8.1.

Tij = G(a L + + 2bj- (11.2.32)

Remember that 68, = 0 for i #j [the off-diagonal terms in (11.2.30)],
whereas i6, = 1 if i =j [the diagonal terms in (11.2.30)].

If there are no other forces acting on the elastic material besides the force
arising from the elastic stresses given by (11.2.32), we shall have completed
the task of finding the equations of motion for the material; that is, the stress
given by (11.2.32) can be substituted into the force equation (11.1.4) to provide
one vector equation for 6. In this equation the force density of elastic origin
is F, = aT,,1axj. It is often more convenient to write the force density in
vector notation. The following manipulations illustrate the use of tensor
notation.

First, we simply write out the tensor divergence of (11.2.32):

T ' a2b, 2__,X a2_b
F, = - = G + a a +  A k (11.2.33)

ax, x, ax x, ax, 3ax, ax,
The first term on the right will be recognized as G V28, the second is the ith
component of G V(V - 8) and the last has value only when i = j so that it is
the ith component of ) V(V. 8 ). Hence we can write (in vector notation)

F = G V62 + (G + A) V(V . 6). (11.2.34)

It must be remembered that V8S is a vector Laplacian defined by V28 =
V(V - 8) - V x (V x 8), so that (11.2.34) can also be written

F = (2G + A) V(V.8) - GV x (V x 8). (11.2.35)

This is a useful form of the force density because the material displacements
leading to V . 8 and V x 8 are easily visualized. We defer this point until
Section 11.4.

The elastic forces, represented by (11.2.35), are held in dynamical equilib-
rium by other forces that act on the material. As pointed out in Section 11.1,

_q__ · _~_I -- ·- *·Y~-·-·ll~-~·ll---·-

11.2.3



Introduction to the Electromechanics of Elastic Media

Table 11.2.2 Equations Which Describe the Motions of Isotropic Perfectly
Elastic Media

Force equation

826d T..
S t + (Fex) iP at2 axi

a28
p = (2G + A)V(V . 6) - GV x (V x 5) + Fex

Stress equation

Ti = 2Geij + MiAekk

T . = G L-i + -- i + A6

Strain equation

e,, =5 +

" 2G

Relationsamong constants

vEA-=
(I + v)(1 - 2v)

E
2(1+v)

(tensor form) (11.1.4)

(vector form) (11.2.35)

(Hooke's law)

(stress-displacement)

(strain-displacement)

(Hooke's law)

(11.2.32)

(11.2.32)

(11.2.10)

(11.2.28)
(11.2.29)

(11.2.31)

(g) of Example 11.2.1

one of these forces (per unit volume) is an inertial force. In addition, there
may be force densities produced by gravity or electromagnetic fields. The
last two externally produced forces are called Fex in the summary of equations
given in Table 11.2.2. Other basic equations and relations of elasticity are
shown in Table 11.2.2; equation numbers indicate their places in the text.

11.3 ELECTROMECHANICAL BOUNDARY CONDITIONS

Electromechanical coupling with elastic media often occurs through
boundary conditions. One-dimensional illustrations of this type of problem
were given in Sections 9.1.2. and 9.2.2, in which the boundary condition
entered as the requirement of equilibrium for a mechanical terminal pair.
In these examples the boundary condition related the stress and displacement
at a given point in space. In this section we consider the more general three-
dimensional situation.



Electromechanical Boundary Conditions

Boundary conditions are required to describe solutions for the stress and
displacement in a region in which material properties undergo abrupt
changes. We have made general comments about boundary conditions in
connection with the magnetic and electric field equations (Section 6.2)*. We
have assumed that the field equations hold in the region of the discontinuity
and performed integrations of these equations over the appropriate volumes
or surfaces to provide the required "jump" conditions on the fields. Although
the displacement vector and stress, like the electric and magnetic fields, are
defined by differential equations that can be integrated through an abrupt
change in material properties, the analogy is not complete. We were able to
assume that Maxwell's equations applied throughout all the volume of
interest. The equations of elasticity, however, apply only to a region occupied
by an elastic solid and not, for example, to an adjoining region filled with
fluid. Hence the boundary conditions resulting from an integration of (11.2.35)
over a volume enclosing a section of the interface between two elastic materials
are restricted to problems involving just elastic materials. Actually, the situa-
tion is not so complicated because a variety of physical problems is modeled
by equations in the form of (11.1.4), if we are willing to recognize the stress
T,,. as the total stress acting on the material. Because in writing this equation
there are no implications regarding the relationship between Tm, and the
material motions, we can use (11.1.4) to write a boundary condition of some
generality.

In Section 11.1 it was pointed out that because the displacements 8 are
small no distinction need be made between the Lagrangian and Eulerian
representations. We find it convenient here to view the equations of motion
as though they were written in Lagrangian coordinates, that is, as though

(x 1, X2 , x 3) denoted the unstrained position of the particle that is instan-
taneously displaced from (x,, x2, x3) by the amount 8(x1 , x 2, x3). We can
define a surface in three dimensions by the equations

x = a(u, v),

x2 = b(u, v), (11.3.1)

xa = c(u, v),
where (u, v) are parameters, each pair of which defines a particular point on
the boundary. When the boundary deforms, due to a material strain, particles
on the boundary are then found at the position

x1 = a + 6•(a, b, c, t),
X2 = b + 62(a, b, c, t), (11.3.2)
x3 = c + 6,(a, b, c, t).

Hence the motion of a particular particle on the boundary in the unstrained
position (a, b, c) is defined by (11.3.2). We now consider the situation in
* See Table 6.1, Appendix G.

·__I~ ·_·_··
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which elastic media [regions (1) and (2) in Fig. 11.3.1] are joined along the
boundary defined by (11.3.2). It is clear that if the boundary is to be well
defined one of our boundary conditions is

S(2)(a, b, c, t) = 8(1)(a, b, c, t). (11.3.3)

This condition can also be considered a necessary consequence of ourequations
of motion, for if the displacement is not a continuous function the strain,
hence the stress (which depends on rates of change of the displacement with
respect to position), becomes singular at the boundary.

We are now in a position to integrate (11.1.4) over a small volume that
includes the boundary.

pfP dV = 'T dV. (11.3.4)

The volume V is fixed with its center at the position (a, b, c), as shown in
Fig. 11.3.1. The integration is carried out over the Lagrangian variables
(,xX, xz, s). Hence the time derivative and space integration on the left side
of (11.3.4) can be reversed in order. The integral of the divergence of a stress
tensor over a volume (see Section 8.1 or Appendix G) can be converted to a
surface integral, and (11.3.4) becomes [variations in p with time are of the
same order as 8, hence are second order in (11.3.4)]

at p, dV = Tinj da. (11.3.5)

We consider the situation in which the dimensions of the surfaces A
(shown in Fig. 11.3.1) are small compared with the radius of curvature of the
boundary but large compared with the thickness A of the volume element

Region (1) Instantaneous position

Fig. 11.3.1 Unstrained and strained (instantaneous) interface between regions (1) and (2).
A small volume V, with normal n, encloses a section of the interface. Note that an integration
over the volume centered at (a, b, c, 0) is an integration over a volume that remains
centered on the moving interface.
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Then, if p and &are finite, the volume integral of (11.3.5) vanishes as A--0.
Sometimes physical situations can be described by an elastic medium,
bounded by a heavy layer of material. In these cases the effect of the layer
of material is approximated by including a surface mass density p,. Mathe-
matically, the surface mass density is a singularity in the mass density p in
the same way that the surface charge density is a singularity in the charge
density (Section 6.2.2). Then the integral over the volume retains a finite
value, and as A--0 (11.3.5) can be approximated as

p a = [T•"' - T¶,P]n;, on the boundary, (11.3.6)

where we have divided through by the area A and assumed that the stresses
are always finite.

The boundary condition used in Section 9.1.2 was a special case of (11.3.6),
in which the stresses Ti, were in part due to the elastic strains and in part to
a force of electric origin. The condition of (11.3.5) is the continuum-
mechanical extension of the requirement used in Chapter 2 that the sum of
all forces applied to a mechanical node must be equal to the inertial force
associated with that node. The right-hand side of (11.3.6) is the net traction
(force per unit area), whereas the left side is an inertial force per unit area.

11.4 WAVES IN ISOTROPIC ELASTIC MEDIA

This section is devoted to establishing a picture of the kinds of dynamical
behavior that can be expected in dealing with elastic materials. To this end,
we extend the notions introduced in Chapter 9 and recognize that the vibra-
tions of continuous media in three dimensions can also be understood in
terms of waves and normal modes. We have already used simple elastic
models in Chapters 9 and 10 to illustrate transverse and longitudinal motions
in one and two dimensions (the thin rod and membrane). We now consider
these motions in three dimensions.

11.4.1 Waves in Infinite Media

In the absence of externally applied forces Fex the motions of an elastic
material are described by (11.2.35), written as

a"2
p . == (2G + A2)V(V - 6)- GV x (Vx 8) (11.4.1)

This equation is in a particularly convenient form because it makes it possible
to distinguish between two essentially different kinds of material displace-
ment. If we take the divergence of (11.4.1), the time and space derivatives can

11.4.1
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be permuted to obtain

P = (2G + 2) V2
1, (11.4.2)at,

where
P=V.8

and where use has been made of the identity V - (V x A) = 0. In the same
way the curl of (11.4.1) gives*

a2C
pt2 G VC, (11.4.3)

where C = V x 6 and use has been made of the identity V x (Vf) = 0.
The scalar function ip and vector function C represent kinds of displacement
that are analogous to the field intensities E and H used to formulate Maxwell's
equations. The function ipcan be thought of as a source of the displacement
6 in the same sense as the charge density p, is a source of the electric dis-
placement D [see (1.1.12)]t. Hence the displacements represented by yphave
the same character as the electric displacement that originates or terminates
on the charge p,. An intuitive example is shown in Fig. 11.4.1. In a region
in which ipis found to be positive the material displacements tend to diverge.
Similarly, the material converges toward regions in which 1P is negative (just
as electric lines of force end on negative charge).

Deformations that can be represented by the function ipare referred to as
dilatational, for they represent outward or inward displacements of the
material that lead to a change in the volume occupied by the material.

In a similar way Ccan be thought of as a "current" that gives rise to a dis-
placement 8 in the same way as an electrical current gives rise to a magnetic
field H [see (Eq. 1.1.1)] t. The material displacements tend to follow circular
paths about the vector C, as shown in Fig. 11.4.2.

+++ -

- + +

"iee C

Fig. 11.4.1 Dilatational displacements 8 Fig. 11.4.2 Curl displacements represented
represented by the source function ip. by C. The material tends to circulate about

the vector field C.
* V x (VX C) = V(V. C) - V2 C

t Table 1.2, Appendix G.
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The components of C and the function yV satisfy equations of the same form.
Equations 11.4.2 and 11.4.3 are three-dimensional forms of the wave equation.
The essential feature emphasized by these equations [illustrated one-
dimensionally by (9.1.13) to (9.1.15)] is the propagating nature of the solu-
tions. Dilatational motions apparently propagate more rapidly than the
rotational motions. The wave dynamics are most easily seen by considering
two one-dimensional special cases.

Example 11.4.1. Consider a one-dimensional dilatational motion that depends on
x, = x. Then a/8X2 = a/2ax = 0 and (11.4.2) becomes

a2V a~2 ' (a)

where

a = (2G + A

A discussion of solutions to this wave equation was given in Section 9.1.1. To obtain a
physical picture of the mechanics we consider a solution that is sinusoidal in space and time.

V = O s in ,t - •I (b)

This solution can be justified by direct substitution into (a) and can be thought of as a
wave propagating with the phase velocity a. in the x-direction.

Within an arbitrary constant that would be determined by the boundary conditions, the
actual displacements follow from y = V. S.

6 =Y-a, cos - (c)

At a given instant these displacements appear as shown in Fig. 11.4.3. Note that the
material is displaced out of the regions of positive i and into regions of negative v'. We can
imagine painting equidistant parallel lines in the unstressed material. Then a wave prop-
agating perpendicular to these lines would distort their relative positions as shown in
Fig. 11.4.3b. The material density is increased where the lines are closest together and where
W is negative. Points of constant phase in the density distribution propagate to the right
with the phase velocity a,. Longitudinal waves of this kind are referred to as compressional,
acoustic, or dilatational. Actually, they are a close relative of the compressional waves on a
thin rod, encountered in Section 9.1.1. If the expressions for . and G given in Tables 11.2.2
and 11.4.1 are used to write a, as a function of E and Y (Poisson's ratio), we obtain

where

N(v) = + - 2)
(1 + v)(1 2,J

Measured values of v are given in Table 11.2.1 and can be seen to fall between about 0.2
and 0.5. The function N(v) in this range is shown in Fig. 11.4.4 and is greater than 1.

___I_ __I~
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(b)

Fig. 11.4.3 Instantaneous view of the displacements 6 and source function yVfor a one-
dimensional dilatational wave: (a) relative distributions of 6 and r; (b) exaggerated appear-
ance of originally equidistant lines painted on the material. Lines compressed together
indicate a compression of the material.

0.2 0.4 0.6

Fig. 11.4.4 The function N(v), where v is Poisson's ratio. Plane dilatational waves propa-

gate with the velocity a, = (VE/p)N, whereas waves on a thin rod have the velocity
V'E/p. Hence N is the ratio of a, to the acoustic velocity on a thin rod.
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Remember that Poisson's ratio entered in the stress-strain relations because a longitudinal
stress could lead to transverse displacements (Fig. 11.2.5). By assuming that the material
motions were one-dimensional in nature, we have required that there be no transverse
displacements. This means that there is a transverse stress (T2. or T3a) that can be computed
from (11.2.26) and (11.2.27) with e22 = e3a = 0; for example,

ri(l + v)
T22, = 1 Ti. (e)

This stress tends to constrain the material from the sides and, through Poisson's ratio, to
stiffen the material to longitudinal deformations. For this reason we have found a phase
velocity ac that always exceeds the velocity of waves on a thin rod V/Elp. In the thin rod
the transverse stresses are zero because of the free surfaces on the rod and longitudinal
motions are not affected by Poisson's ratio. We see now that there are actually transverse
material displacements on a thin rod. This point is discussed further in Section 11.4.2a,
where we define the conditions under which a thin rod model can be used.

Dilatational waves involve normal stresses and normal strains. By contrast
the rotational motions constitute a shearing of the medium. The next example
illustrates these shear deformations in a one-dimensional case.

Example 11.4.2. In one dimension (x1 = x) the rotational equations (11.4.3) become

a2Ct a2C2=a (a)

at2 a, 2 (b)

where a, = V/Gp and because a/ax2 = /ax = 0, C, = 0. By definition, the components
C2 and C3 are related to the displacement by

a Cx ax,

Once again, the equations of motion (a) and (b) are wave equations. Now, however, the
phase velocity as of the waves is less than the compressional wave velocity a, in Example
11.4.1 and the corresponding material deformations are altogether different. The component
C2 represents displacements in the x3-direction. Similarly, C3 represents transverse motions
of the elastic material in the x2-direction. Because the stresses and strains are in shear rather
than compression, transverse waves of this kind are referred to as shear waves or waves of
distortion.

If we assume that the boundary conditions are such that only C a is excited, a traveling
wave solution to (b) appears as shown in Fig. 11.4.5. In this figure the material displaces
in the x3-direction or in a direction that is perpendicular to both C3 and the direction of
propagation. Note that material tends to rotate about the vector C (Fig. 11.4.2) and that the
local material density does not change as it did in the dilatational waves.

In this section we have seen that in an infinite medium we can separate
rotational or shearing deformations from dilatational motions. Except in a
few simple cases, elastic materials deform in such a way that both shearing

11.4.1
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a5 CO62 = !. cos W(t - )

C3 = Co sin w(t - )

Fig. 11.4.5 Traveling shear wave, showing the spacial relation between material dis-
placements 62 and the rotational vector component C3. Note that material tends to "rotate"
about the vector C3i6,as shown in Fig. 11.4.2.

and dilatation are present. This is true because both types of motion must be
present to satisfy boundary conditions.

A simple case in which the one-dimensional dilatational motions predicted
by (11.4.2) are an exact solution even in the presence of boundaries is shown
in Fig. 11.4.6. Here the transverse boundaries of a bar are constrained by
rigid walls that prevent transverse motions but do not inhibit longitudinal
motions. Given a driving condition at one end and a boundary condition
at the other, the problem can be solved in a manner identical to that used for
the thin rod in Section 9.1. If, however, the transverse walls constrain the
bar in the x-direction or fail to constrain the transverse displacements, the
motions are no longer purely dilatational. Shear strains are required to
satisfy the boundary conditions.

The block of material shown in Fig. 11.4.7 is subject to boundary conditions
that are satisfied by purely shearing motions. Here one edge is rigidly attached
to a wall that prevents both perpendicular motion and slip. The opposite end
is driven by a time-varying stress T21 = To(t). The resulting motions are
predicted by (11.4.3) if the boundaries transverse to the x-axis are driven by
the same time-varying shear stress T21(x, t) (see Example 11.4.3 for a solution),
but if these transverse boundaries are constrained by a rigid wall, or are free

Fig. 11.4.6 An elastic bar with boundaries that permit purely dilatational motions in the
x-direction.
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rX2 U I

T21 = To(t)

it

~- ~ - ~ - I

, z

0 1

Fig. 11.4.7 An elastic bar with boundaries and driving stresses that permit purely shearing
motions in the x2-direction.

of stress, the motions must include a dilatational part; that is, any other
boundary condition than that shown in Fig. 11.4.7 will couple the rotational
and dilatational motions.

Because boundary conditions usually couple the compressional and
shearing motions, any dynamical problem will involve a combination of the
characteristic velocities a, and ac. These velocities are tabulated, along with
characteristic values of 2, in Table 11.4.1.

Table 11.4.1 Phase Velocities for Shear and Compressional Waves
in an Infinite Medium*

A a, aC
Material (units of 1011 N/m2) (units of 10a m/sec) (units of 10i m/sec)

Aluminum 0.626 3.0 6.35
Brass 1.04 2.2 4.7
Copper 1.17 2.3 4.8
Iron, cast 0.836 2.8 5.2
Steel 1.18 3.2 6.0
Stainless steel 1.19 3.0 5.8
Titanium 0.904 3.0 6.2
Glass 0.366 2.9 5.1

* When ranges of E, v, and G are given in Tables 9.1 (Appendix G) and 11.2.1, the largest
values have been used.

Example 11.4.3. In this example we seek to establish a further familiarity with shearing
deformations. Figure 11.4.8 shows a slab of material rigidly attached to a wall at x = 0 and
driven with a shear stress T21 = Re [Teiat ] at x = 1. The slab has infinite extent in the x2-
and x3-directions; hence it is reasonable to assume that the motions are one-dimensional

'-~"~-"~U~~II~~~IYI-----
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fT 2 1 = Re Teimw

t
-·. l

I
Fig. 11.4.8 An infinite slab of elastic material subjected to the uniformly distributed shear
stress T,, = Re (iTel o t) at x = I and fixed at z = 0.

(a/lax = ala/, = 0). The following questions are to be answered: (1)What is the displace-
ment of the material as a function of (x, t)? (2) If boundaries are introduced at xz = 0 and
x2 = L, what boundary conditions are required to make the one-dimensional assumption
correct? (3) if the peak shear stress applied at z = 1is equal to 1 atm, what is the largest
displacement of the material (as an example, consider a slab made of brass, I = 1 m, and
the low frequency limit at which w -+0). (4) At a frequency of I kc what is the least value
of Irequired to produce a resonance?

1. The excitation tends to produce displacements 62, hence we guess that C2 = 0. Our
guess is justified if we can satisfy both differential equations and boundary conditions.
Equations (b) and (c) of Example 11.4.2 then give

a826 a2b
t= a2 - (a)

where 62 = 6 and x, = x.Two boundary conditions are necessary to determine fully the
sinusoidal steady-state solution to this equation. These conditions are evident from the
statement of the problem

86
T21(I, t) = Re (Tewt) = G- (1,t) (b)

and
6(0, t) = 0. (c)

Now, if we assume solutions with the same frequency as the excitation

6 = Re (eimet), (d)

the unknown function c(x)can be found by substituting (d) into (a) and solving the resulting
ordinary differential equation. Hence

=A sinkx + Bcoskx, (e)
where

oa

k=
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and A and B are arbitrary constants determined by the boundary conditions. Condition
(c) shows that B = 0, whereas condition (b) determines A as

A (f)
kG cos kl.

It follows from (d) and (e) that the required solution for the displacement is

6 = ReFtsin kx ejit (g)
R kG cos kl 'g

2. In our solution all displacements are zero except 62 = 6, as given by (g). There are
two components of stress (11.2.32). One was used to match the boundary condition at

a6 Tcos kx eist
T21 = G -a Re o-----  . (h)

X L cos kl

The other is present because Ti = Tj1 or, in particular,

T12 = T21. (i)

Hence, if the slab has boundaries at •2 = 0 and x2 = L, our solution will be correct only
if there is a shearing stress on these boundaries given by (h) and (i). Note that this stress is a
function of both z and t. In the limit at which L > 1, we expect that the stress excitation
on the transverse boundaries can be ignored and our one-dimensional solution will be
approximately correct, regardless of the boundary conditions at x2 = 0 and a2 = L.

3. In the limit at which w -- 0 (quasi-static motions) k -- 0 and (g) shows that the peak
6 occurs at a = 1, where (since 1 atm = 1.013 x 105 N/m2 and G can be found from
Table 11.2.1) (g) gives

i•peak = = (1.01 x 10'-)(1)/4.1 x 1010

= 2.5 x 10-6 m about 1 in. (j)

We see that static deflections are likely to be very small.
4. The slab is in a resonant state when the denominator of (g) becomes zero or when

nw
kl = , n = 1, 3, 5,... (k)

2'

Hence the smallest value of I that will produce a resonance at 1 kc (a, in Table 11.4.1) is

na, 10n
I - = nr2.2 x = 0.55 m. (1)

2w 2(2wr x 103)

Under these conditions the 0.55-m thickness of the brass slab represents one quarter of a
wavelength.

11.4.2 Principal Modes of Simple Structures

In most dynamical situations involving elastic media boundaries play an
important role. Our development makes it natural to think of these boundaries

__ II __
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Fig. 11.4.9 A thin elastic rod with a longitudinal axis x1 and transverse coordinates x2
and x.. An exaggerated transverse distortion of the material is shown as it accompanies
longitudinal compression and extension of the rod.

as two types: longitudinal and transverse; that is, the elastic structure usually
has one dimension that is greater than the others, such as the x-direction for
the thin rod of Fig. 11.4.9, and it is natural to analyze the dynamics in terms
of wave propagation in that direction. Conditions applied at discrete positions
along the x1-axis, referred to as longitudinal boundary conditions, were
discussed in Section 9.1.1b. The extremities of the material in the x 2- and
x,-directions are referred to as transverse boundaries. It is the purpose of
this section to introduce the effect that the transverse boundaries have on
wave propagation in the longitudinal direction.*

Even in the absence of electromechanical interactions, wave propagation
in the presence of material boundaries is an involved subject. It serves our
purposes here to consider two cases, both of which make the essential point
in a simple way and have practical value. First, we reconsider in the light of
three-dimensional elasticity the thin rod. Then in Section 11.4.2b the transverse
motions of a thin beam are analyzed. In each of these cases it is assumed that
the longitudinal wavelengths of interest are large compared with the trans-
verse dimensions. In the general case in which no approximations are made
concerning the wavelength, thin elastic structures support an infinite set of
modes, each having a different dependence on the transverse coordinates.
Most of these modes do not propagate at low frequencies. The waves on a
thin rod and on a thin beam, as considered in Sections 11.4.2a and 11.4.2b,

* For those familiar with the theory of guided electromagnetic waves the waves of Section
11.4.1 are waves in "free space," whereas those discussed here are guided waves analogous
to those found in a waveguide.
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propagate even as the frequency approaches zero. Among all modes that are
generally possible, they assume considerable practical importance and are
called the principal modes of their respective structures. In Section 11.4.3 we
illustrate the nature of the higher order modes by considering the dynamics
of a plate subject to a shearing excitation. Here we find that at low frequencies
the higher order modes appear as evanescent waves; hence we again en-
counter the topic of spatially growing (decaying) waves discussed in Section
10.1.2. A detailed presentation of wave propagation in elastic plates and
cylinders is of interest* in the design of delay lines and electromechanical
filters to be used at high frequencies (e.g., megahertz). At high frequencies
the higher order modes are inadvertently excited because longitudinal wave-
lengths are on the order of the transverse dimensions.

11.4.2a The Thin Rod

A thin elastic rod is shown in Fig. 11.4.9. In static equilibrium it has the
geometry of a right circular cylinder, with its axis in the x,-direction. An
approximate description of the longitudinal motions was given in Section
9.1 t. We are interested in having a second look at the dynamics to see what
transverse motions of the material are implied by the three-dimensional
equations of elasticity. We can argue that the equation of motion is the same
as that found in Section 9.1 for longitudinal deformations by observing that
the transverse surfaces of the rod are free of externally applied stresses.
Hence, if the rod is very thin, the stresses T22, T,, (essentially normal to the
transverse surface) and T1, and T1s (essentially the shear stress on the surface)
cannot be very different from zero inside the rod. This is the starting point
in writing an approximate equation of motion.

Because we take T12 = T13 = 0, the force equation in the ;x-direction
(11.1.4) becomes

a2b, aT11-- (11.4.4)

In addition, because T,2 = T,3 = 0, (11.2.29) of Table 11.2.2 shows that

e all2x 1 (11.4.5)e x - Z1  2G - T

and because G = E/2(1 + v) we obtain

ax,

* See W. P. Mason, Physical Acoustics, Vol. I, Part A, Academic, New York, 1964, p. 111.
t Table 9.2, Appendix G.
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This will be recognized as the relation used in Section 9.1. It follows from
(11.4.4) and (11.4.6) that the longitudinal displacement is predicted by the
equation

p = E -2 (11.4.7)

Although they do not enter in the equation of motion, transverse dis-
placements do accompany 6,(zx, t). They can be computed under the assump-
tion that 6, is a known function. From (11.2.32) and the condition that the
normal stress on the transverse boundaries be zero we have

T22 = 0 = (2G + A)Lb 6- + , (11.4.8)
ax2 \xx 8x3

T3 3 = 0 = (2G + 2) +(11.4.9)

Presumably, we have solved (11.4.7). Hence these last two equations can be
simultaneously solved for a86sazx or 6,3/ax,; for example,

862 -2 86a
a62-- 2( t (xI, t). (11.4.10)
8x2 2(G + A)8x,

The right-hand side of this equation is dependent only on (xx, t). Hence it
can be integrated to obtain

62 2 + f(xx, x, t), (11.4.11)
2(G + 2) ax,

wheref is an arbitrary function determined by the cross-sectional geometry;
for example, if the rod is a right-circular cylinder, coaxial with the xx-axis,
symmetry requires that 6,(x,, 0, xz) = 0 or thatf = 0. Similarly,

a -- - X3 + g(X 1, x2, t), (11.4.12)
2(G + )) ax1

where g = 0 for a right-circular cylinder. The last two equations show that
the transverse displacements are largest for the material with the greatest
distance from the x1-axis. In regions in which the rate of change with respect
to xx is large the transverse displacements are also large.

As an example, consider the traveling wave

6, = 6, sin (cot - kxz), (11.4.13)

where (11.4.7) shows that co = ki/-p. Then from (11.4.11)

6okx,6, = 6 cos (wt - kx1). (11.4.14)
2(G + 2)
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Fig. 11.4.10 An instantaneous view of displacements that accompany a compressional
wave traveling in the x1-direction on a thin rod. The transverse displacements are exag-
gerated in this figure.

The displacements represented by the last two equations can be pictured as
shown in Fig. 11.4.10.

In retrospect, we see that 62 and b6were ignored in the longitudinal force
equation and were then found from the predicted displacements 6,. This
procedure is analogous to a quasi-static analysis (Sections B.2.2 and 9.1.3)
in which variations with respect to time are at first ignored and then com-
puted as second-order effects. In the rod, two-dimensional effects are second
order and the analysis may be referred to as quasi-one-dimensional. Other
quasi-one-dimensional models are introduced in the next section and in
Chapter 13. Such models, which reduce the significant effects to a dependence
on a single coordinate, are of considerable importance not only in continuum
electromechanics but in many other areas as well. Very often they are referred
to as "long-wave" limits, because the quasi-one-dimensional model is
correct, provided wavelengths in the longitudinal direction are long enough.
We can illustrate this point by recognizing that 62 is small compared with 61
if [from (11.4.13) and (11.4.14)]

ZkR
G <<+1, (11.4.15)

2(G + A)
where we have used the rod radius R to evaluate 6,. Remember that one
wave-length is 2n/k, and we see that (11.4.15) is fulfilled if wavelengths are
large compared with the radius R.

11.4.2b The Thin Beam

The principal longitudinal or dilatational mode in the presence of bound-
aries is the subject of Section 11.4.2a. In this section we consider principal

11.4.2
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shearing modes on a thin beam of elastic material. Vibrating reeds or bars
(tuning forks), commonly used in electromechanical transducers, provide a
familiar context for broadening our understanding of distributed dynamic
systems.

By now it is a well-established notion that the dynamics of continuous
media are closely related to the propagation of waves. The examples of
Chapter 9, which describe thin rods and membranes, illustrate this point.
Transverse motions of a beam are similar but involve several complications
that prevent a misleading generalization from the simple systems considered
so far. We find that beam deflections involve four boundary conditions,
compared with the two conditions required for the rods and membranes. As
a result, the eigenmodes are not simple sinusoids in space but rather have
both propagating and evanescent components and the eigenfrequencies of
the beam are not usually harmonics. We have encountered this effect of
dispersion before (Chapter 10) but not in so familiar a context. If we clamp
the end of a beam (steel ruler) at one end with the other end free, as shown
in Fig. 11.4.11, the lowest eigenmode can be excited by releasing the beam
from a deflected position. In a rod or membrane halving the length I will
double the frequency (which can be measured with a strobotachometer). As
we shall see in Example 11.4.4, the thin beam lacks this property.

Our object is to use the fact that the bar is thin (in the direction of the
deflection) to write an equation of motion that contains only the longitudinal
coordinate xz and the time t. As is usually the case in developing quasi-one-
dimensional models, the starting point is motivated physically. A cross-
sectional view of the bar, subject to a hypothetical deformation, is shown in
Fig. 11.4.12. If there is no equilibrium (static) longitudinal tension on the
bar (it is not being stretched in the xl-direction as the membrane was*), the
displacement of a line painted on the side of the bar will be as shown.

Illumination from
lometer

.-.- Steel "beam" (ruler)
clamped at one end

i-1-t

Fig. 11.4.11 The lowest eigenfrequency of a thin beam clamped at one end and free at the
other can be measured by using a strobotachometer.

* See Table 9.2, Appendix G.
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X1

81 x2 ax1

(c)

Fig. 11.4.12 Transverse vibrations of a thin bar: (a) in static equilbrium the axis of the bar
is in the x1-direction with material motions essentially in the x2-direction; (b) a small
section of the bar shows the deformation of a line perpendicular to the neutral plane; (c) a
detailed view of a perpendicular line shows the relation to the transverse displacement
5 of the neutral plane.

Because the bar is not undergoing a net tension, there is an x2-x3 plane
(called the neutral plane) in which the material has no x1 displacement.
Then for small deflections of the bar the angle of deflection of a cross-
sectional line is given by a[/ax1 (Fig. 11.4.12). The assumption is made that
the bar is thin enough that the longitudinal material displacement 61 at any
cross section can be approximated as having a linear dependence on the
transverse dimension x,. It follows that this linear dependence is about

61= - L$ (x 1, t). (11.4.16)
8xi

Then from (11.2.10) the normal strain is

el l- - a (x1 t). (11.4.17)ax, ax,2

11.4.2
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Fig. 11.4.13 Hypothetical beam deflection due to a surface force density T2. Because the
thickness is small compared with the length, the stresses T1 l are much greater than either
T2 or Ts.

A second approximation is now made. It is assumed that the strain ell is
largely created by T1l or that Tl, > T22 or T33. A section of the bar is shown
in Fig. 11.4.13. Because the bar is thin, the stress T2, is on the order of any
loading force per unit area T2 . The stresses Tl, must hold the vertical forces
in force equilibrium, and because the beam is thin compared with its length
it is apparent that we must have T >> T22 . Because there are no loading
forces in the x3-direction, it is even more reasonable that the stresses T,3 can
be ignored, compared with Tl1 . It follows from (11.2.29) that

ax2T, = Ee,, = --xzE , (11.4.18)

Altogether, we shall make four approximations based on the thinness of
the beam and the transverse nature of the deflections under consideration.
The third of these assumptions is now introduced-that the longitudinal
inertial force makes no essential contribution to the dynamics. This is reason-
able because the deflection considered is mainly in the x2-direction. Then the
xx-component of the momentum equation for the elastic material [see (11.1.4)]
becomes becomes aTl = -Ex 2  (11.4.19)

ax, ax2  ax 3s

This expression can be integrated to give

Ex 2
2 a3 +

Th - 2 + g(xl, t). (11.4.20)
2 ax,3

The arbitrary function g(x,, t) is evaluated by requiring that the surfaces
at x2 = ±b support no shearing stress or that

T2 = (x 2
2 - b2) E a  (11.4.21)

2 aXl3

-
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The x2-component of (11.1.4), the force equation, is

a2P62 at aT22 (11.4.22)
at2 aX ax,

The desired equation of motion can now be found by integrating this equation
over an arbitrary cross section of the bar:

P 6 2dx = dx• + [Ts,=b - [T2z]~,=-b. (11.4.23)

As a fourth (and last) approximation, the left-hand side of (11.4.23) is
approximated by the product of the cross-sectional thickness 2b and the
displacement of the bar center. Hence, making use of (11.4.21) and the fact
that T12 = T21,

2bp 4 +b X2 b2
2bp = a-4 b -- 2• dz,+ T7, (11.4.24)

where T2 is the sum of the forces per unit area acting on the x2-surfaces of the
bar and defined by

T 2 = [T21,],= b - [T22•,]=-b. (11.4.25)

After the integration indicated by (11.4.24) the equation of motion for trans-
verse displacements of the bar becomes

a2ý Eb2 a48 T2
+ b aX14 2 (11.4.26)+t"3p -2bp

The independent variables in this expression are (xj, t); hence we have
formulated the dynamics in terms of a quasi-one-dimensional model. Beam
deflections can be determined from this last equation, given four boundary
conditions which arise because the ends of the beam are clamped in a certain
fashion or because the ends are free of shear or normal stresses. To write
boundary conditions on 6t, T,,, and T,, in terms of ý we can use (11.4.16),
(11.4.18), and (11.4.21).

The dependence of the longitudinal and shear stresses on the transverse
coordinate z, is shown in Fig. 11.4.14. Note that the x,-dependences of Tu

<I1
T12

Fig. 11.4.14 Dependence of the normal and shear stresses on the transverse dimension of
the beam.

11.4.2
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and T 12 are given by the lowest order polynomial expressions consistent with
the requirements that there be no net longitudinal stress and that the shear
stresses be zero at the surface of the beam.

Example 11.4.4. The situation shown in Fig. 11.4.15a provides an illustration of the
role played by the boundary conditions. A thin beam is clamped at X= 0, so that both
the transverse and longitudinal displacements of the material at this point are zero. The

Depth w into paper T211 driven by a
force f(t)

Output
load resistor

Input
signal

Pola
VC

Input force plate

Fig. 11.4.15 (a) A thin elastic beam is driven to vibrate in a direction transverse to its
smallest dimension by a forcef(t) applied at x = 1.The end at x = I is free of longitudinal
stresses T.t, whereas the beam is clamped at x = 0. (b) One electromechanical application
of the thin elastic beam is illustrated by the "Resonant Gate Transistor" (See W. E. Newell,
"Ultrasonics in Integrated Electronics," Proc. IEEE, October 1965) A high Q integrated
circuit incorporates an electrostatically driven beam. The elastic beam provides an inher-
ently stable resonant element of extremely small proportions (see Fig. 11.4.15c).

UAlu -
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Fig. 11A.15c Silicon wafer of 1-in. diameter containing nearly 500.resonant gate
transistors of the type shown in (b). (Courtesy of Westinghouse Electric Corp.)

opposite end at a = I is free of longitudinal stresses and is set into vibration by a force
f(t), which is sinusoidal:

f(t) = Re [Ieot]. (a)

The sinusoidal steady-state deflections ý(x, t) are to be found. Of course, to find the driven
response, we shall also find the natural frequencies of the beam. In an experiment such as
that shown in Fig. 11.4.11 the bar vibrates at these eigenfrequencies. Hence the dependence
of the lowest eigenfrequency on the length I will also be found.

The equation of motion is (11.4.26) with T2 = 0. Because the drive assumes a sinusoidal
form, we shall guess solutions:

&= Re [ (x)eo)t], (b)

in which case (11.4.26) requires that

ý2- 0:ci = 0(c)
dx4

where

c 2=j3p)

The spatial dependence is found from (c) by again guessing exponential solutions e = e- j kx ,

in which substitution shows that k4 = a&or that there are four solutions for the spatial
dependence:

k = m,-a,jt, and -joc. (d)

Note that we have defined ot as a positive real constant. We have assumed solutions of the
form eJ(- t- kw

) and found [from (d)] a pair of waves propagating in each direction on the

11.4.2
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beam and a pair of evanescent waves. The evanescent waves are required in addition to
the ordinary waves to satisfy the four boundary conditions imposed on the beam. This is in
contrast to the situation in Section 10.1.2, in which propagating waves became evanescent
at a frequency below some cutoff frequency. Here, all four waves are present simultaneously.

As we have seen, a boundary value problem of this kind is more conveniently solved in
terms of trigonometric and hyperbolic functions, rather than complex exponentials
(traveling waves). Hence we use linear combinations of the four exponential solutions to
write the solution in the form

= A sinax + B cos et + C sinh ux + D cosh ac, (e)

where A, B, C, and D are to be evaluated by using the boundary conditions.
Because there is no longitudinal or transverse motion of the material at x = 0, two

boundary conditions are
•(0) = 0, (f)

dx
(0) = 0, (g)

where (g) follows from the expression for 6i given by (11.4.16). Because T,_ = 0 at x = 1,
(11.4.18) shows that

d2f
() = 0. (h)

The fourth boundary condition arises from the transverse force equilibrium of the beam
at x = 1. The force f(t) acts on a thin element of the beam at x = I, as shown in Fig.
11.4.15a. This force is held in equilibrium by the shear stress T21. Hence, since the volume
of material within the element is vanishingly small (there is no singularity of mass at the
end of the beam), we can write (note that T12 = T2i)

f = w T1 2 dx 2. (i)

The boundary condition at x = I in terms of 4 follows by using (11.4.21) to find

wE d3 
b 2 2-2) d2

2 dx (j
or

2w ds

f = - Eb- (1). (k)

The first two boundary conditions show that

D = -B, (1)

C= -A. (m)

These two relations, together with the second two boundary conditions, give the equations

A[sin al + sinh cl] + B[cos al + cosh al] = 0,

A[cos al + cosh xl] - B[sin al - sinh ac] = 2, (n)
where

wE4bao•'
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Equations (n) provide simultaneous expressions for A and B which are solved to provide

F(cos aJ + cosh al)
A= -

1 + cosh al cos at

- F(sin al + sinh al)
B=

1 + cosh al cos al

To make this manipulation we have used the identities cos2 x + sin2 x = 1 and cosh2 
x -

sinh2 a = 1. The constants D and C follow from (1) and (m) to complete the solution for
given by (e).

AF=(cos al + cosh al)(sin a - sinh ax) - (sin cl + sinh al)(cos ax - cosh ilx)
[ L t (i + cosh oa cos al)

(q)

The forcef might be of electrical origin, in which case it might also depend on 4. For now
we assume that the forcing function is independent of ý, that is, that P is a given complex
constant. Then (b) provides ý(x, t).

When the denominator of (q) is zero, the response to the forcing function F is infinite.
This resonance condition results when the frequency (remember that a is determined by the
frequency) is such that

I
cosl osh= -

cosh al

The solutions to this equation are the points at which the curves shown in Fig. 11.4.16
intersect. Hence the first four modes have frequencies such that oa is as shown in Table
11.4.2. Given the value of al, the resonance frequency follows from Eq. (c)* as

(a)2" Eb20o - (s)1°=-•- 3p/

Fig. 11.4.16 Plot of the right- and left-hand sides of (r) (Example'll.4.4). The numbers
indicate the solutions for the eigenvalues of the lowest three natural modes given in Table
11.4.2.

* An account of the theory of vibrating bars is given by Rayleigh in The Theory of Sound,
1st ed., 1877; Dover edition, 1945, p. 255, Vol. 1.

__yl __ ·I _ _ ___·
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Table 11.4.2 Lowest Eigenmodes of the
Beam Shown in Fig. 11.4.15a

Mode (Cl)

1 1.875
2 4.694
3 7.855
4 10.996

Note that the resonance frequency of any given mode varies inversely as the square of the
beam length 1,a fact that is easily verified by the experiment in Fig. 11.4.11. The numerator
of (q) is plotted in Fig. 11.4.17 to show the instantaneous spatial variation of the deflection
at frequencies close to the eigenfrequencies. The role played by the evanescent wave portion
of the solution is clear from these deflections. In the lowest mode the deflection appears to
have an "exponential" character, which indicates that the evanescent solutions dominate.

3
0

Fig. 11.4.17 Deflection of the beam as a function of the longitudinal position at an instant
in time. The first four natural modes are shown, with cl as given in Table 11.4.2. The
amplitude is exaggerated, with a different normalization for each mode.
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By contrast the higher modes are dominated by the sinusoidal deflections of the ordinary
wave solutions, with the evanescent solutions becoming apparent near the ends. This trend
is also seen in Fig. 11.4.16, which shows that the higher modes (large al)are given essentially
by zeros of the function cos al.These results are consistent with the notion that the evanescent
waves are excited by the boundary conditions and affect only that region in the vicinity of
the boundary.

The longitudinal and transverse modes considered in this section have been
described in terms of quasi-one-dimensional models. As the frequency is
increased, the longitudinal wavelengths take on the same magnitude as the
transverse dimensions of the elastic structure. Under this condition the effect
of higher order transverse modes cannot be ignored, as is illustrated in
Section 11.4.3.

11.4.3 Elastic Vibrations of a Simple Guiding Structure

As mentioned in Section 11.4, the effect of boundaries is usually to couple
shearing and dilatational motions of the material. As a result, the higher
order modes, which become significant as the frequency is raised, are often
mathematically complicated. We can, however, illustrate the basic physical
effects by considering a particular class of modes composed of a purely
shearing and rotational motion.*

Figure 11.4.18 shows a slab of elastic material with a thickness d. We

x3

Fig. 11.4.18 Slab of elastic material with thickness d and extending to infinity in the zs-
direction. Shearing motions of the material in the x 3-direction are considered as they
propagate in the x1 -direction.

* For a discussion of the general modes present in elastic plates and cylinders see W. P.
Mason, PhysicalAcoustics, loc. cit.

11.4.3
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consider motions of the material in the xs-direction under the assumption
that the slab has an infinite extent in the xz-direction. Hence displacements
63 = 63(x 1, 2~, t) are assumed at the outset, with 6, = 62 = 0 and a8/la = 0.
These assumptions are justified if we can find solutions that satisfy (11.4.1)
and the boundary conditions. The surfaces of the slab at •2 = 0 and xz = d
are free; hence we require that there be no shear stresses on these surfaces:

T12 (x 1, d, t) = 0, (11.4.27)

Ta3 (x1, 0, t) = 0. (11.4.28)

With our assumptions, (11.4.1) reduces to

p• -G (?-a + n).~ (11.4.29)at2 1ax1
2 aX2

2

The boundary conditions are written in terms of 6, by recognizing that
(11.2.32)

T32 = G L3 (11.4.30)
aX2

Except for the boundary conditions, the mathematical problem is now
identical to that described in Section 10.4.1, where the two-dimensional
motions of a membrane were considered; that is, (11.4.29) has a variable
separable solution

63 = Re [X(x 1) Y(xz)ei~t], (11.4.31)

and substitution shows that
d X

+ k2X = 0 (11.4.32)
dx1

2

and

+ aC2Y= 0, (11.4.33)
dx,2

2

with k2 and Cr2 related by

k2+ 2c=2 (11.4.34)
G

The solution to (11.4.33), which satisfies the boundary conditions, is cos Ma2,

with c= n7rd, n = 0, 1, 2,.... Solutions to (11.4.32) are e-
+Ik

l.Hence it
follows that the solution (11.4.31) can be written as

63 = Re cos nrX2,6 +d(,t_-k1)+ 6_ei(,•+k)], (11.4.35)
d

where 6, and 6_ are complex constants determined by the longitudinal
boundary conditions. For each value of n we have found solutions composed
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Fig. 11.4.19 Normalized frequency versus normalized wavenumber for shear modes in the
elastic slab of Fig. 11.4.18: o' = (wd1/r)V p"G andk' = kdj/r.

of waves that propagate along the x1-axis. Given the frequency o, the wave-
number k follows from (11.4.34) as

k -= - ( ,] n = 0, 1, 2. (11.4.36)

At a given frequency each of the modes has a different wavenumber and a
different dependence on the transverse (x2)-dimension. The relationship
between frequency and wavenumber is shown graphically in Fig. 11.4.19.
At frequencies less than w' = to' all modes except one decay in the xz-direction
or are evanescent in character, as we found for the membrane in Section
10.4.1. By contrast with the membrane, however, a principal mode now
propagates without dispersion, even as the frequency approaches zero.

The spatial dependence of the first two modes is illustrated in Fig. 11.4.20,
in which we have assumed that the frequency is below cutoff. The evanescent
modes arise because of the "stiffness" introduced by the walls. The principal
mode is not affected by the transverse boundary conditions, hence does not
possess a cutoff frequency.

From (11.4.36) only the principal mode propagates if

<p•<. (11.4.37)

The wavelength of the principal mode is 2nr/k = (2r/wý,p/G); hence con-
dition (11.4.37) can also be stated as

2 dr
> 2d. (11.4.38)

11.4.3
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Fig. 11.4.20 Spatial distribution of the principal and n = 1 shear modes in an elastic slab.
For the case shown the frequency is below the cutoff frequency of the n = 1 mode and the
evanescent wave that decays in the --x1 -direction is shown.

This condition illustrates the general relationship between the principal
modes discussed in Section 11.4.2 and higher order modes. As long as the
wavelength is long compared with the thickness, only the principal modes
propagate and need be considered far from the point of excitation. As we
saw in Section 10.4.1 for the membrane and in Section 11.4.2b for the thin
beam, the evanescent modes are present to satisfy boundary conditions.

Modes of the kind described here are often used in delay lines. The higher
modes are dispersive, hence lead to a distortion of the transmitted signal.
For this reason the cutoff frequency often represents an upper limit on the
frequency spectrum that can be transmitted without distortion.

11.5 ELECTROMECHANICS AND ELASTIC MEDIA

Many electromechanical interactions with elastic media can be modeled
in terms of terminal pairs. This was illustrated in Chapter 9, where, even
though portions of the mechanical system required continuum descriptions,
the effect of electrical forces could be accounted for by means of boundary
conditions. In this chapter we have confined ourselves to the three-dimensional
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dynamics of elastic solids in the absence of electromechanical bulk forces.
We can now readily imagine using electromechanical transducers to excite
or detect the waves discussed in Section 11.4.1. At least in simple situations
a discussion in this regard would parallel that given in Section 9.1.2., in which
mechanical waves propagated on a thin rod. In Example 11.4.4 vibrations
of an elastic beam were reduced to a terminal-pair representation that pro-
vides a convenient model for coupling to a lumped-parameter device. In a
similar manner we could use a transducer to excite or detect shear waves
propagating through the slab of elastic material shown in Fig. 11.4.18. By
contrast, in this section we highlight a few illustrative situations in which
continuum coupling with elastic media is important, but even in these cases
the terminal pair concept is useful.

11.5.1 Electromagnetic Stresses and Mechanical Design

The design of electromechanical systems is often intimately concerned
with material stresses produced by electromagnetic forces. A case in point
is the design of large rotating machines, such as in Chapter 4. Here the energy
conversion process depends on a large magnetic torque being transmitted
between the rotor and stator. Because action equals reaction, the rotor and
stator materials are necessarily under significant stress due to the magnetic
forces; for example, this is the primary reason that conductors are placed
in slots. With the conductor imbedded in a highly permeable material, the
bulk of the magnetic force is on the magnetic material rather than on the
conductor. If this were not the case, it would be difficult to hold the con-
ductors down in many machines. In fact, a significant number of machine
failures have been traced to fatigue ofconductors and their support structures
stressed by magnetic forces.

In a less obvious class of situations in which electromagnetic stresses are
a major design consideration the objective is not to convert energy electro-
mechanically. Rather the forces of electrical origin are a necessary evil.
Examples in which this is the case are transformers and magnets.

In an ordinary transformer, electromechanical effects come into play in
at least three mechanisms, two of which involve magnetization forces on the
laminated magnetic core of the transformer. These forces arise because of
inhomogeneities of the core introduced with the laminations and because
of changes in the volume of the magnetic material (magnetostriction). These
forces were discussed in Section 8.5.2* and are responsible for much of the
noise (hum or, in transformers used for speech amplification, "transformer
talk") heard in the vicinity of an operating transformer.

A third mechanism for electromechanical effects is simply the J x B force
density on the individual conductors in a transformer. This design considera-
tion deserves critical attention because copper that is desirable from the point
* Summarized in Table 8.1, Appendix G.

11.5.1
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of view of electrical conductivity tends to be lacking in mechanical strength.
Transformers must be designed to withstand 25 or more times their rated
currents in power applications to prevent mechanical damage under short
circuit conditions. Figure 11.5.la shows the primary and secondary windings
of a distribution transformer which was intentionally subjected to currents
in excess of its peak ratings. This is a step-down transformer with large

Fig. 11.5.1a End view of rectangular distribution transformer coils with core removed
after being subjected to short-circuit currents in excess of design capability. Note how
reaction forces on the inner secondary coil have buckled it inward on the long sides of the
rectangle. Also note that forces on the outer secondary coil have rounded it outward on the
long sides. Original shape of the coils on the long sides was flat. (Courtesy of the General
Electric Co.)

Courtesy of General Electric Company. Used with permission.
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Fig. 11.5.1b Sketch of primary and secondary windings in relation to the magnetic
transformer core. With the secondary short-circuited, the ampere turns in the secondary
are essentially equal to those in the primary.

secondary conductors on the outside and inside and primary windings sand-
wiched between. The arrangement of the core and windings is sketched in
Fig. 11.5.lb. The secondary windings are constructed of sheets of aluminum
which were originally wound in an essentially rectangular shape. As shown in
Fig. 11.5.1a, the excessive currents have distorted the secondary windings
away from the primary windings. The copper secondary turns bulge inward
on the inside and outward on the outside. Although, in this case, the result
is not a gross mechanical failure of the structure, significant deformation
of the insulation causes local damage that can lead to electrical breakdown.
Also, the deformation increases the leakage reactance of the transformer.
Increased leakage reactance increases regulation (voltage drops as load
current increases) and this decreases the transformer efficiency, a crucial
factor in distribution transformers.

So far in this chapter we have emphasized the elastic behavior of solid
materials. Our main objective in this section is to draw attention to the fact
that in many situations it is the inelasticbehavior of a solid that is of interest.
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Fig. 11.5.2 Stress-strain for annealed aluminum* under tension showing definition of
"yield strength" stress when limiting value of permanent strain is defined as ell = 0.002.

If we wish to use solids to synthesize transducers, we must be careful to
ensure that stresses are not so large that permanent or inelastic deformations
will occur. Even more, in many situations like the one shown in Fig. 11.5.1
limiting stresses are an essential design consideration. We are then faced with
the problem of defining meaningful limits on the stress that can be supported
by the material. Because the inelastic behavior is an upper bound on the
elastic deformation of the material, we can use the elastic theory developed
in earlier sections as a starting point for computing limiting stresses.

A typical stress-strain relation for a polycrystalline metal is shown in
Fig. 11.5.2. For small values of the stress and strain the relationship is
essentially linear. As the stress is raised, however, a point is reached at
which the resulting material strain increases more rapidly. Above this point,
if the material is unloaded, it is likely that it will retain a permanent deforma-
tion. An index of the degree of this permanent set is the yield strength of the
material, which is defined in Fig. 11.5.2. After the material has been loaded
to the yield strength (the limiting stress) it is assumed that if it were unloaded
it would return to the zero stress condition along a straight line parallel to the
loading curve in the elastic range. To fix the yield strength of a material we
must define the hypothetical permanent set (the strain) taken by the material
when the stress is returned to zero. (In practice this might be 0.002 for metals
in tension.*)

If the material has an elastic regime, it is possible to obtain an approximate
prediction of material stresses that will lead to inelastic behavior by first
predicting the stresses by means of the elastic model and then comparing the
maximum stress to the yield strength. Generally such calculations are used to

* See S. H. Crandall and N. C. Dahl, An Introduction to the Mechanicsof Solids, McGraw-
Hill, New York, 1959, p. 173.

r^



Electromechanics and Elastic Media

compute an upper bound on loading the material, with a margin of safety
included in the design. The following example illustrates this procedure.

Example 11.5.1. In this example we illustrate how the simple model of an elastic beam
can be used to provide insight into the limiting stresses that can be supported by current-
carrying conductors in the situation illustrated in Fig. 11.5.1. We assume that the primary
winding (sandwiched between the two secondary windings) will remain essentially rigid
but that the secondary windings can be modeled by thin beams of the nature discussed in
Section 11.4.2b. The problem then reduces to that illustrated in Fig. 11.5.3a, in which
only the secondary conductors to the right of the primary are shown.

Under short circuit conditions the ampere turns in the secondary and primary are
essentially equal. This means that the magnetic field between the conductors is essentially
uniform and given by

I
H=-

2w'

for only half the secondary ampere turns are in the part of the windings shown in Fig. 11.5.3a.
For simplicity we assume that the section of secondary conductor can be considered as

being clamped at x1 = 0 and x1 = 1.Hence we have as boundary conditions

W(0) = 0; $(1) = 0,

(0) = 0; (1)= 0.
dxl (l)

f
arv

Fig. 11.5.3 (a) A simple model is used to predict elastic failure of the sheet secondary
conductor. This example is a first approximation to the situation in Fig. 11.5.1; the primary
is assumed to be rigid and the system has a width w into the paper. (b) Distribution of
longitudinal stress Tx evaluated on the inside surface of the secondary.

11.5.1

ary
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Of course, in a transformer the currents, hence the magnetic forces, are not constant. In
a distribution transformer the current alternates at 60 Hz, and the magnetic forces that
depend on the square of the current are therefore composed ofconstant and second harmonic
(120-Hz) parts. Now the conductors can respond, transducer fashion, to the alternating
component of the J X B force. * Here, however, we are interested only in the deformations
of the conductors that result over many cycles of the current. Hence we regard the magnetic
force on the conductors as being constant and having its average value. Because this force
varies as the square of the current, it amounts to using the rms value of the current in
evaluating the magnetic force on the secondary conductors. In what follows it is assumed
that I is the total rms ampere turns through the width w of the primary conductors.

Under steady conditions (11.4.26), which expresses the transverse force balance for the
secondary conductors modeled as a single elastic beam, becomes

d4 E 3
dx1

4 
= 2E T2 . (d)

Here 2b is the thickness of the combined secondary conductors, E is the "equivalent"
modulus of elasticity based on the combined conductors and insulation, and T2 is the force
per unit area acting in the transverse direction. Given T2, it is a simple matter to compute
the deflection $ of the beam model.

It follows from the magnetic stress tensort that the surface force T2 is constant and that

T2 = •( (e)

which combines with (d) to provide a simple fourth-order ordinary equation that can be
integrated directly:

d4$
= a, (f)

where
3/10o 1xI

4bWE 2w)

Four succeeding integrations lead to a solution that involves four constants C1 .. .C4.

ax1
4 

Clx1
3 C2 X1

2

S- -+ + + cq + C4. (g,
24 6 2

From boundary conditions (b) and (c) these constants are evaluated to obtain

$a -14[ 1(h)

for the deflection as a function of the longitudinal position rx. This is the deflection plotted
in Fig. 11.5.3a.

So far our calculations have been based on an elastic model for the beam. The objective
is to determine the values of the current that lead to permanent deformations of the
secondary winding. This is done by evaluating the maximum longitudinal stress T,1 and
comparing it to that required to give elastic failure of the material according to the preceding
discussions of this section.

* In fact, under conditions ofextreme loading the conductors of a large transformer can be
seen to "breath" in and out at 120 Hz.
t See Table 8.1 of Appendix G.



Electromechanics and Elastic Media

Remember that the longitudinal stress varies linearly over the cross section of the beam
(e.g., see Fig. 11.4.14). In the thin beam model this stress is related to the deflection by
(11.4.18), which becomes

-- d2E 
d 

-- Eal2 X
Tl, = d--x2 2 =_ [(-)- (I )i-/) + W]

where x2 is the transverse coordinate. The maximum stress is obtained at the beam surfaces,
where x2 = +b; for example, on the inside (left) surface of the beam

(,)2 (±)2[(T)2(X) 2w 1] 6jT

The manner in which this function depends on the longitudinal position is shown in Fig.
11.5.3b. At the center of the beam (x, = 1/2) the stress T11(x2 = -b) is negative, indicating
that the material is under compression. The maximum longitudinal stress is obtained at the
ends, where the material on the left side of the beam is under tension. This maximum stress
on the beam is

r,1(, = -b, x 1 = 0) = ) t ( 2. (k)

Now the beam is also subject to shear stresses T12 , which should also be considered in
determining the maximum stress. The shear stress is related to the beam deflection by
(11.4.21), which shows that if b << I the shear stress will be small compared with the longi-
tudinal stress. It is just this fact that the beam is thin that makes the mechanical stress T,1
much greater than the magnetic pressure. The stress T,1 acts over the cross section 2b of the
beam through a lever arm that is less than b to hold in equilibrium the magnetic pressure
8Ju(I/2w)2 acting over the length I through a lever arm that is on the order of I (see Fig.
11.4.13). This is why (k) is proportional to the magnetic pressure amplified by (1/b)2.

An order of magnitude calculation helps us to appreciate the significance of (k). In
magnetic circuits, such as the transformer of Fig. 11.5.1, a magnetic flux density of 10 kG
(1 Wb/m2) is commonly induced. This corresponds to a magnetic pressure of

B2  1 m 4 - 105 N/m Z.
2Po (2)(47r • 10

- 7)

If we use this number to replace the magnetic pressure f(1/2w) 2po in (k) and let 1/b = 20, it
follows that

T11(x2 = -b, xt = 0) = 2 -107 N/m2 .

This is just above the 0.2 % yield strength of annealed aluminum, * but considerably below
the value in Fig. 11.5.2. The strength of aluminum can be increased considerably by cold
working and alloying it with other substances. For example, considering the ability of the
coil to withstand the mechanical forces imposed by short-circuit currents, a transformer
designer is faced with the problem of balancing the mechanical strength of the core and
coil against the cost and electrical characteristics. His problem is complicated because
coil conductors that are most desirable in terms of their electrical characteristics are relatively
low in mechanical strength.

A critical review of this model will show that we have ignored many facets of the problem
that could be of major importance; for example, the secondary winding of the actual trans-
former is not a homogeneous solid but rather is composed of layers of conducting and

* A. E. Knowlton, Standard Handbook.for Electrical Engineers, McGraw-Hill, New York,
1957, Section 4, p. 695.

-Il~·IUIIII- -.

11.5.1



Introduction to the Electromechanics of Elastic Media

insulating sheets. In practice we would probably measure an "equivalent" modulus of
elasticity for this combination, although to be rigorous account should be taken of the
anisotropic material in the basic model of the elastic beam.

Also, the inelastic behavior of materials is more complicated than might be deduced from
our comments so far. The material is subject to repeated loading and unloading due to the
second-harmonic force. This can result in a type of failure analogous to that found when a
wire is bent back and forth repeatedly until it breaks. It depends on the number of cycles
as well as the maximum stress and is therefore referred to asfatigue failure.

To complicate the picture still further, when materials are subjected to a constant stress
over a long period of time, it is found that the strain has an initial value that can be pre-
dicted from the stress-strain relation but continues to increase with time. This creep
phenomenon can eventually lead to the failure of the material. Copper is an example of a
material that displays creep. Further discussion of the inelastic behavior of materials is
beyond the scope of this book but should be recognized as required for the understanding
of how materials are used in electromechanical systems.

11.5.2 Simple Continuum Transducers

This chapter is concluded with examples that show how quasi-one-
dimensional models of elastic structures can be used in the design of electro-
mechanical transducers.

11.5.2a Variable Capacitance Coupling

We begin with a situation that involves an electromechanical coupling
similar to that studied back as far as Chapter 3-variable capacitance
coupling. The object is to develop a simple and reliable low-frequency notch
filter. It is required that the frequency of the notch be tuned by varying a
voltage.

Example 11.5.2. An electromechanical filter, having as its basic element a simple
cantilevered beam, is shown in Fig. 11.5.4. The beam, which is at the potential Vo, is free to
vibrate between plane-parallel electrodes, and the input signal is imposed on the left
electrode. Because vi is much less than Vo, this produces a force on the beam proportional
to the input signal. The beam deflections lead to a change in capacitance between the beam
and the plate to the right. The resulting current through the resistance R is therefore
proportional to the input signal with an amplitude determined by the response of the beam
to the input.

It is assumed that the resistance R is small enough that the electrode to the right can be
considered as grounded. Further, it is assumed that the capacitive reactance due to C is
small compared with R, so that vo can be taken as the voltage drop across the resistance.

The equation of motion for the beam is (11.4.26):
a2e Eb2 a45 T,

+ (a)at 2 3p ax' 2=p(a)

We assume that d << I so that the transverse force T, is simply the difference in Maxwell
stress* acting on the opposite surfaces of the beam:

=T2-T - -T22 = I + V) 2 V0 (b)
L2(d - (2 (d + $)2J

* Table 8.1, Appendix G.
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Fig. 11.5.4 A cantilevered beam has the potential V, relative to plane-parallel driving and
detecting electrodes. This device might be used as a low-frequency voltage tunable electro-
mechanical filter.

For small deflections $ and input voltage vi this becomes

T2 = 2o%_W vd. (c)

The equation of motion (a) is then augmented by two additional forces, one having the
nature of a spring with a negative spring constant and the other a driving force proportional
to the driving voltage:

8a2 Eb2 8a4 oV2 e0Vo
+ + Vi. (d)
+t 3p 8x14 bpd + 2bpd2

We confine attention to the sinusoidal steady-state response of the system and so assume
that the drive and response have the form

vi = Re Oiemt,
(e)

$ = Re f(xl)ejoft.
Then (d) becomes

d,4

da•
- a4ý = Pb,,

11.5.2
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where

X4 0 r/o2 + 02 3p
Ldbp Eb2

3 coV,P
2 d2b3E

This inhomogeneous ordinary equation has a homogeneous solution which is identical in
form to that studied in Example 11.4.4 of Section 11.4.2b. In addition, there is now an
inhomogeneous solution which, because the right-hand side of (f) is a constant, is simply a
constant. The complete solution is

= A sin ex, + B cosacx + C sinh ex, + D cosh a•= -- i. (g)

The boundary conditions on the beam which determine the constants A, B, C, and D
require that the clamped end of the beam be constrained so that no longitudinal or transverse
displacement is there and that the free end of the beam at x, = I is free of shear and longi-
tudinal stress. In terms of the transverse displacement ý of the beam, these conditions are

4(0) = 0; d2 (1) = 0,
dx1,2

4 d4 (h)
(0)= 0; (1)= 0.dX1 dxS

These conditions require that the following four simultaneous equations be satisfied:

A(O) + B(1) + C(O) + D(1) = Pti/a4,

A(l) + B(O) + C(1) + D(O) = 0,
(i)

A(-sin al) + B(-cos al) + C(sinh al) + D(cosh ol) = 0,

A(-cos al) + B(sin al) + C(cosh al) + D(sinh ad) = 0.

The constants A, B, C, and D follow from these equations and the deflection of the beam is
now known.

To compute the output voltage it is necessary first to recognize that the surface charge
density on the right plate is

_oVo sovo EoVo
00t) 0 OOO (5)

d +- d d2

Then it follows that because the current through the resistance is the time rate of change of
the total charge on the plate to the right

0, =--Ri = jR wdV d (k)

It is a straightforward matter to carry out this integration, since =is given by (g). Note
from (i) that each of the constants is proportional to b, and inversely proportional to the
determinant of the coefficients A(w). Hence (k) for the transfer response has the form

H(Im)
o = - - i--

dL1lUW)
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and the poles of the transfer function are given by

A(w)= 0. (m)

These are the same poles found for the beam in Example 11.4.4; that is, the determinant
of the coefficients is zero if (remember a = a(w))

1 + cosh tlcos al = 0. (n)

The roots of this expression are given in Table 11.4.2.
If we call the roots of (n) (ol),, it follows that the resonance frequencies are given by

0,= + (o, - Vo(0)

where

(,l)Sn Eb)ý4

are the resonance frequencies of the beam without electromechanical coupling. At the
frequencies given by (o) there is a resonance in the transfer function unless H(wo) happens
to be zero. Note that these resonance frequencies can be tuned by varying the voltage V,.
As wemight have expected at the outset, (o)shows that the beam has an unstable equilibrium
at &= 0 when the lowest resonance frequency is reduced to zero and these lowest eigen-
frequencies become imaginary. From (o) the condition for instability is

dbp= 12. (q)

11.5.2b Magnetostrictive Coupling

The subject of magnetostriction in solids is sufficiently complex that a
comprehensive treatment is inappropriate here. We can, however, gain a
considerable qualitative insight into the subject by considering one-dimen-
sional motions of a thin rod subject to magnetostrictive forces. In this context
these forces can be viewed as described by the force density developed in
Section 8.5.2.* There are two reasons why the force density developed in
Chapter 8 is not entirely adequate. First of all, there is no guarantee that a
solid remains isotropic after a magnetic field is applied, even though it may
be isotropic in the absence of a magnetic field. Second, solids that exhibit
significant magnetostrictive behavior tend to be magnetic; for example
nickel and nickel iron alloys are commonly used in magnetostrictive trans-
ducers. t In these materials B is a linear function of H only over a limited
range of H. Hence the permeability It relates B and H only so long as B is
much less than its saturation value.

By limiting ourselves to one-dimensional motions and sufficiently small
magnetic field intensities that B = uH we can use the results of Chapter 8

* Table 8.1, Appendix G.
t A discussion ofmagnetostriction, including material characteristics and applications to the
design of electronic devices is given in W. P. Mason, ElectromechanicalTransducersand
Wave Filters,Van Nostrand, Princeton, New Jersey, 1958, 2nd. ed., p. 215.

11.5.2
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to gain a meaningful understanding of the basic magnetostrictive interaction.
Actually, most transducers are modeled as one-dimensional, and nonlinear
effects are accounted for empirically by straightforward extensions of the
linear model.

As discussed in Section 8.5, we can think of magnetostrictive interactions
as resulting because dilatational motions of the material, which lead to local
changes in the material density, also lead to a change in the local magnetic
energy storage. This makes it possible to exert a magnetic force on a volume
where material is initially homogeneous. An example in which this is a
desirable attribute is given in Fig. 11.5.5a. There, a magnetic wire constitutes
the propagating structure for an acoustic delay line. The device, which might
be used as either an input or an output transducer, is easily moved along the
wire to effect a change in the delay time. Now, if the wire were capable of
only rigid body motion, there could be no longitudinal force produced by the
input signal. The material must change its volume in order to effect any
change in the magnetic energy stored in the system as a function of material
displacements. This should be contrasted with the type of magnetization

(1,t)

T11(1 +, = r

Fig. 11.5.5 Magnetostrictive transducer. Compressional motions are excited by the input
current i'(t): (a) transducer placed at a variable position along a magnetic wire which
might be used as a delay line; (b) detail of a transducer in which the wire is fixed at one end
of a magnetic circuit.
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forces used in the delay line of Section 9.1.2, where the force resulted because
of inhomogeneities (air gaps) in the material. The inconvenience of this mode
of coupling is made apparent in Figure 9.1.14.

The following example illustrates the modeling of a magnetostrictive
transducer.

Example 11.5.3. The transducer shown in Fig. 11.5.5b characterizes devices that have
seen wide application. An input signal i'(t) is transduced into a force - that acts through a
displacement 51(l, t), we wish to find the mechanical terminal relation between r and
61(1, t). To simplify our discussion, it is assumed that the magnetostrictive material takes
the form of a rod with cross-sectional area A and one end fixed at x, = 0.

According to (8.5.38), the rod is subject to the force density

F= -- H*HVp +V 1H.H-~P) (a)

In the rod it is reasonable to view It and p as being uniquely related, /I = p(p). Note that
if a material is inhomogeneous this is not a meaningful statement; for example, a material
could have a uniform density but be composed of regions occupied by materials of different
permeabilities p. On the basis of the restriction that the force is valid only in the interior of
the rod so that I = p(p), we can write

Vp -= Vp. (b)
ap

Then (a) reduces to

F = pV H.H . (c)

In what follows we make the assumption that insofar as the force is concerned variations in
p can be ignored so that the mass density multiplying the gradient term in (c) is replaced by

P0. Note that this does not say that pis actually a constant, but simply that it can be approxi-
mated as constant in (c). Then the longitudinal equation of motion for the rod becomes

a2
1 a a Po all H. (d)P0 t z - + 2 (d)p

It is a good approximation to ignore the effect of mechanical deformation on the field.
This means that H is uniform over the length of the rod between x, = 0 and x1 = 1. Over
this range, material displacements are then governed by the simple wave equation for the
thin rod

a261_ JE 4a261

=Pt ) a•x. (e)

The influence of the magnetostrictive force is felt through the boundary condition at
x, = i. Force equilibrium for a section of the rod in the neighborhood of x, = lis shown in
Fig. 11.5.6.

The quantity in brackets on the right-hand side of (d) is the longitudinal stress transmitted
along the rod. Hence the left face of the section of material shown in Fig. 11.5.6 is subject to
this stress acting over the cross section A of the rod. Within the length h of the material
section the lines of magnetic field intensity are shunted into the magnetic circuit. The
stress on the right surface is simply TA, where 7 is the mechanical stress due to the system

11.5.2
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A(E + 2H+cl2O

-3- TA

Lines of N
h<<l

Fig. 11.5.6 A section of the rod shown in Fig. 11.5.5 in the neighborhood of x1 = I. This
section is assumed to have negligible length h compared with I.

being driven. We can argue that there are no shear stresses acting on the volume by
recognizing from (c) that the magnetostriction force is capable only of producing normal
stresses. Hence at x = 1,

a6 1 2y tE (1,t)+ H2(1,t) -= . (f)
bx 2 ap

This becomes a useful boundary condition once H is evaluated in terms of the current i.
For illustrative purposes we assume that the magnetic circuit is of much greater permeability
than the magnetostrictive wire. Then

Ni N
H= - (o + i'). (g)

The force equilibrium represented by (f)has a constant part due to the bias current I0and a
dynamic part due to small perturbations i'(t) in the transducer current. We assume that
the constant part is balanced out by a constant part of 7 due to the system to the right.
Then the linearized dynamic part of (f) is

a6" poP (N)2 '

-(1,t ) + i ' = , where Y = L -I, (h)

and r' and 6' are, respectively, the time-varying parts of the stress acting on the right surface
of the transducer rod and displacement 61(xz, t).

Our objective is to characterize the transducer by the relation between r' and 6'(1, t),
given the input signal i'(t). This is easily accomplished for sinusoidal steady-state solutions
in the form of

i' = Re feJit,

6' = Re S(x 1)e•ot, (i)

7'= Re eiOwt

by recognizing that the solution to (e), which satisfies the condition that there be no dis-
placement at xx = 0, is

.o
6 = Csinkx1 , k =wI .
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The complex amplitudes of (i) must satisfy a further condition represented by (h),

Ck cos kl + y = . (k)

Finally, it follows from (j) that C = d(O1)sin kl and that this last expression becomes the
required terminal relation between the mechanical variables d'(1, t) and r'(t) and the
driving signal i'(t).

yE= -- (1)kcotkl. (1)
E

This terminal relation is all that is required to represent the magnetrostrictive transducer
as it affects the medium being driven; for example, if the transducer were used to drive a
rod to the right (L) would constitute a boundary condition to be used at x1 = I.

The constant y can be positive or negative depending on the properties of the rod. As
made familiar by preceding chapters, the transducer has a linear response only if it is
biased by an external source such as Io.

11.5.2c Piezoelectric Coupling

A salient feature of all the mechanisms for electromechanical coupling so
far discussed has been that electromagnetic forces depend on the square of
the applied currents, potentials, or other electrical excitations. This has meant
that to obtain an electromagnetic force proportional to the applied signal
a bias field is required. It has also been necessary to provide a bias field in
situations in which a mechanical motion is to be transduced into an electrical
signal. The magnetostrictive interaction discussed in Section 11.5.2b illus-
trates this point. The bias current I is required to make the force a linear
function of the input signal i'(t). This bias current is also required if the
transducer is to be used to detect the motion of the magnetized rod, as, for
example, at the output end of a delay line.

Piezoelectric and piezomagnetic forms of electromechanical coupling are
of interest because in effect they provide their own internal bias. The di-
electric bar shown in Fig. 11.5.7 is an example of a piezoelectric transducer.
That there are new ingredients to this physical situation is apparent from two
simple experiments. First, suppose that a voltage is applied between the upper
and lower electroded surfaces of the bar. The result is an expansion or con-
traction of the bar in the x-direction, depending on the sign of the applied
voltage. The mechanical response reflects the sign of the applied signal.
Second, suppose that the bar is stretched or compressed along the x-axis.
A proportionate voltage will be developed across the terminals. These
electrical-to-mechanical and mechanical-to-electrical effects are similar to
those found in a transducer with an internal bias. In piezoelectric materials
the effect of the bias is intrinsic to the material.

Materials that display peizoelectric properties can be either single crystals,
for example, quartz, or polycrystalline ferroelectrics such as barium titanate
ceramics. In the latter materials the "bias" referred to previously is provided

11.5.2
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Electroded

a<<c
b << c

Fig. 11.5.7 Piezoelectric length expander bar.

by a permanent polarization. In single crystals the piezoelectric phenomenon
is brought about by asymmetry in the crystal structure. In general, this
subject therefore involves the elastic and electrical behavior of anisotropic
solids. In the following introduction to this class of electromechanical inter-
action attention is confined to a particular one-dimensional type of inter-
action which allows us to develop some insight into the subject without
becoming involved with general statements about the dynamics of aniso-
tropic media.*

As might be imagined from the analogy between the piezoelectric trans-
ducer and the biased transducer, it is impossible to distinguish between
electrical and mechanical forces in piezoelectric materials. If we refer to the
total stress in the material as T,,, the electrical constitutive law relating
D3 and E3 is

D3 = eE3 + yT 11. (11.5.1)

Here we have confined attention to quasi-one-dimensional motions of the
bar along the x-axis and a crystal configuration such that the induced electric
field is in the z-direction. Thus

8 = 61(x, t)i,, E = E3 (x, t)i,. (11.5.2)

The mechanical constitutive law, which represents a generalization of the
stress-strain relation, is

el, = yEs + ST1 . (11.5.3)

* For a more general discussion, see W. P. Mason, PhysicalAcoustics Vol. 1, part A,
Academic, New York, 1964 p. 170.
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The parameter S will be recognized as the reciprocal of the modulus of
elasticity. Note that the same constant y appears in (11.5.1) and (11.5.3) to
account for the electromechanical coupling. This is a consequence of a
reciprocity condition, based on conservation of energy in much the same spirit
discussed in Section 3.1.2c. To see this consider a section of the bar with
length Ax which is subject to a slowly varying stress T,,, as shown in Fig.
11.5.8. Ta is the total stress (mechanical plus electrical), hence for slow
variations it is constant over the length Ax of the section. The work done on
the sample as it undergoes the incremental displacement d6, is

ab[T1, db,(x + Ax) - T,, dd,(x)] abT11 Ax d = abT1 Ax de,,.

(11.5.4)

Energy can also be added to the sample through the electrical terminals. The
charge on the upper electrode is q = -AxbD, and the voltage between the
electrodes is -aE 3. A change in the charge dq on the upper plate corresponds
to an addition of energy through the electrical terminals given by

vdq = ab AxE. dD3. (11.5.5)

It is now possible to write a conservation of energy equation by defining the
energy density (mechanical and electrical) within the element as w:

ab AzE3 dD, + ab AxzT, de,, = ab Ax dw (11.5.6)
or

E3 dD3 + T,, de., = dw. (11.5.7)

Note that the thermodynamic subsystem described by this conservation of
energy equation includes energy storage in the elastic deformation of the
material. This is necessary because we cannot distinguish between mechanical
and electrical stresses as we can in Chapter 3, where we consider forces f0

that are zero with the electrical terminals unexcited. It is appropriate to think
of D3 and ex in (11.5.7) as thermodynamically independent variables. This
representation is similar to that used in Chapter 3, in which D3 would be the
charge q and e,, would be the mechanical displacement. To make E3 and T,,
(which are analogous to the voltage and force) the independent variables
we use Legendre's dual transformation (see Section 3.1.2b) to write (11.5.7) as

D, dE3 + e, dT,, = dw', (11.5.8)

x x11.5.8Incrementallength of bar shown in Fig. 11.5.7.+x

Fig. 11.5.8 Incremental length of bar shown in Fig. 11.5.7.

11.5.2
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where the coenergy density w' is defined as

w' = E 3D3 + Tne,,n - w. (11.5.9)

Because w' = w'(E3, T1 ), we can also write

aw' w
dE3 ++ dT = dw'. (11.5.10)

aE3 aT11

Then comparison of (11.5.8) and (11.5.10) shows that

8w' 8w'
D - , en - (11.5.11)

aE,3 aTi

It finally follows from this last pair of equations that

8D 3 ae11-- =--e, (11.5.12)
aT, aE3'

which is the desired reciprocity condition. The same coefficient y appears in
(11.5.1) and (11.5.3) because the electromechanical coupling is conservative.
The following example indicates how these constitutive laws can be the basis
for describing the electromechanical dynamics of the bar.

Example 11.5.4. We wish to determine the electrical input admittance to the device
shown in Fig. 11.5.7. In this case the electric field intensity E3 is related to the potential V by

V
E3 = ---. (a)

a

Because E2 is independent of x, the equation of motion in the bulk of the material does not
involve electromechanical coupling; that is, the force equation in the x-direction is

a26 aT11
P t - a (b)

and from (11.5.3), in which E. is independent of x, this becomes

a26 1 a26
P -t S2 "(c)

The boundary conditions at the free ends of the bar, however, do reflect the effect of the
electrical input. It follows from (11.5.3) that because T,1 (-c/2, t) = 0 and T11(c/2, t) = 0

a. /-C -yv a,.5 \ -I v
I \, t ta I\

x\L 2a O\L / a
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The input admittance is defined as

Y = V = Re ewt, (e)

I = Re leit,

where by conservation of charge on the upper plate

C0/2
-c/2I = -bicoJDsdz. (f)

In view of (11.5.1), (11.5.3), and (a), this expression can also be written as

=I -jb - - ( - K2)] d, K= (g)

To proceed in the computation of the input current we require a knowledge of the dis-
tribution of the strain e11 over the length c of the transducer, which is obtained by solving
the bulk equation (c) subject to boundary conditions (d). Solutions take the form
6 = Re 6(x) exp jot, where

= A sin kx + B cos kx Vp S (h)

6 = ReA ()eiwt.
The boundary conditions require that

Acos( + B sin ak=-

A cos B sin ak

These conditions show that B = 0 unless kc/2 is a multiple of ir. In what follows we assume
that the driving frequency does not coincide with one of these natural frequencies of the
even modes. Only the odd modes are excited by the electrical input. Then by adding
the two equations of (i)

A(j)
ak cos (kc/2)

It is now possible to use (h) and (j) to evaluate the current as given in (g). Division of this
expression by the voltage P gives the required input admittance.

= - K2 tan (kc/2) (k)

In the absence of piezoelectric coupling the coupling coefficient K is zero and (k) reduces
to the admittance of a parallel plate capacitor with a dielectric of permittivity e. Even with the
coupling the system appears as a simple capacitance at low frequencies. (Remember that k
is proportional to the frequency so that, in the limit in which on - 0, ke - 0 and the last
term in brackets reduces to K2.)

____~_ ___ · __·
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As might be expected from the fact that the bar supports elastic waves, there are resonances
in the response to a driving potential. The admittance is infinite at frequencies such that
cos (kc/2) = 0. For this reason the transducer is often used as a resonator with a single

electrical terminal pair. Operation is then limited to frequencies
in the neighborhood of one of the infinite admittance points.

by the electrical circuit shown in Fig. 11.5.9. which has the
admittance

L

Y =ja Co +[+ - / - )] (1)

(11/VLC + a)(11 LC - w '

C which for o approximately equal to 1IV/LC can also be written
as

Fig. 11.5.9 Equivalent + - (m)
circuit for expander bar 2
piezoelectric resonator.

In the neighborhood of the first resonance (k) can be written
in this same form by expanding the second term in brackets about the first resonance
frequency:

w = Wo + ', o _ -c/ (n)

Then
kc - c

2 C•Wo PS 2' (o)

cot A& C-V ,pS,
() 2

and (k) becomes

Y (jw - K) + (p)
c rV pS (wo - CO

Comparison of terms in (m) and (p) shows that the equivalent parameters in the electrical
circuit of Fig. 11.5.9 are

bc
C,= - E(1 - Ks),a

cS 2 pa
8yL b '

8K2 ebcC-.
aT2

Of course, even though we have represented the device by an electrical equivalent circuit,
it is apparent from the expressions for L and C that the resonance is electromechanical in

o-

U-

0-
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nature. The transducer is one way of obtaining an extremely large equivalent L. In practice
effects of damping would come into play. The effects of losses would introduce an equivalent
resistance into the L-C branch of the equivalent circuit.

The simple piezoelectric resonator discussed in the preceding example can
provoke only a small awareness of the wide variety of uses to which piezo-
electric phenomena can be put. Much of the attractiveness of the devices
based on this interaction is related to their small size and great reliability.
Figure 11.5.10 shows a pair of devices that involve the same expander modes
as discussed two-dimensionally in the example. Here a thin slab of lead
titanate zirconate has several electroded regions, hence constitutes a multi-
terminal pair system capable of performing logic and modulator functions.
The relative size of the devices is apparent from the figure.

11.6 DISCUSSION

In this chapter we have extended the concepts of Chapters 9 and 10, which
were developed by using one-dimensional elastic models, to obtain mathe-
matical models for more complex sitnations.

This chapter completes our introduction to electromechanical interactions
with elastic media. We now proceed to a consideration of electromechanical
interactions with fluids.


Fig. 11.5.10 A pair of piezoelectric devices with several electrical terminal pairs. Here the
working material is a thin sheet of lead titanate zirconate which undergoes mechanical
deformations essentially in the plane of the paper. Note the several electroded regions and
the small size. (Courtesy of Sandia Corporation, Albuquerque, New Mexico.)

Image removed due to copyright restrictions. 
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PROBLEMS

11.1. In Fig. 11P.1 a static elastic material is constrained along its vertical sides so that

a a
x2 - = 0.

In the absence of a gravitational field, the material has surfaces at xz = 0 and z, = L.

(a) Compute the material displacement 6l(x_) caused by the gravitational field.
(b) Find all components of the stress Ti.

A
xl

~i- £X

Fig. 11P.1

11.2. In Fig. 11P.2 a slab ofelastic solid with constants p, G, Aand a thickness L is attached
on one side to a rigid wall at xz = 0. A perfectly conducting thin plate of mass Mis attached
to the other side of the solid. A second perfectly conducting plate is fixed at zx = -L - d.
Assume that a8/8x = ajax3 = 0 and 6,(-L, t) << d.

(a) If the voltage between the two capacitor plates is V(t) = Vo + V cos wt, find
61(-L,t) V << V0.

(b) For what frequency range does the mechanicalpart of the system appear lumped ?
(c) Give the mechanical lumped parameters for the frequency range defined in (b).

Fixed

wall

)epthD

Fig. 11P.2

Tmo ~i~i~3~i ý571.
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X2

Free
surface 4

i//•

v-Driven surface

l> xt)

I ýp-X1

Fig. 11P.3

11.3. A slab ofelastic material of length I in the x-direction and infinite in extent in the x-
and x~-directions has the elastic constants G and Aand mass density p.Its surface at z, = I
is driven in the x 2-direction uniformly by a displacement source 6o(t). The surface at z 1 = 0
is free to move in the x 2-direction without restraint.

Assume that 60 (t) = Re (de'0), where bo and w are given constants. Neglect the force
of gravity and assume that

a a

aX2 aX3

(a) Find the stress and displacement in the slab.
(b) In the limit of low frequency to what lumped mechanical element does the slab

correspond ?
(c) Find the lowest frequency for which the slab may be said to "resonate."

11.4. In a coordinate system (x1 , x2 , x3 ) a surface with the normal vector n and supporting
the stress Tij is subject to the traction (see Section 8.2.2)* ri = Tijn, . Assume that the stress
components Ti- are known and that there is a surface with an orientation such that the
traction is in the same direction as the normal vector; that is, 7i = caujnj, where a is the
stress acting normal to the surface.

(a) Write three equations in the three unknowns (n ,, n2, n3).
(b) Because these equations are homogeneous, their compatibility requires that the

determinant of the coefficients vanish. Show that this gives an expression for t.

(c) Consider the case in which T, 2 = T 13 = To and all other components are zero.
What are the possible values of the normal stress a? Compare your result with
that found in Example 11.2.1.

11.5. In Example 11.2.1 it was shown that the three elastic constants (G, E, V)must be
related if a perfectly elastic material is isotropic [(g) of that example]. This was done by
considering the transformation of a particular case of stress and strain from one coordinate
system to a second with the same za-axis but a 45' rotation in the x,-x 2 plane. Follow the
arguments presented in Example 11.2.1 to show that the relation is implied for an arbitrary
stress condition and an arbitrary rotation of coordinates. Remember that the aij that
determine the rotation of coordinates are related by (8.2.23)* and that if T" = avraeTrs
then Trs = a,,ra,2 T'.

* Appendix G.
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Elastic bar having modulus of elasticity E

x2
Hypothetical deformation

( ---- L- -.. i
- L

Depth D into paper

Fig. 11P.6

11.6. An elastic bar is often used in musical instruments as a source of audio-frequency
tone. The bar is suspended by strings, attached to it at such points that the transverse (x2)
motion of the elastic material is not appreciably inhibited. (Examples are the vibraharp and
marimba.) If the bar is struck by a mallet, it vibrates at one or more of its resonance
frequencies. We consider here the problem of finding these frequencies, under the assumption
that the bar is as shown in Fig. I P.6. The bar is supported so that transverse motions are
uninhibited, that is, both ends are free.

(a) Find an equation of the form cos Pcosh # = 1 [f = l(w)] which stipulates the
resonance frequencies.

(b) Use a graphical solution of the equation found in (a) to determine the two lowest
resonance frequencies in terms of E and the dimensions of the bar.

(c) Sketch the transverse deflection as a function ofx. for the lowest nontrivial mode.

11.7. A thin elastic beam of thickness 2b, density p, and modulus ofelasticity Eis clamped
on both ends to rigid walls. The total length of the beam is L, as shown in Fig. lIP.7.

(a) If the beam is suddenly struck from above, what is the lowest (nonzero) frequency
at which it will "ring"; that is, what is its lowest natural frequency ?

(b) Give a numerical answer for (a) in Hertz if the beam is steel with length L = 50
cm and thickness 2b = 0.10 cm.

(c) What is the numerical value, again in Hertz, of the next higher resonance
frequency?

Fig. 11P.7
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i(t)I +

elastic beanm

Depth D

Fig. 11P.8

11.8. The electromechanical system shown in Fig. 11P.8 consists of a long thin elastic
beam attached to the plunger of an electromagnet. The plunger has permeability ' and is
free to slide between the faces of the electromagnet. Treat the plunger as a rigid body with
mass M. Assume that D < L. The coil on the electromagnet is now excited with a current
i(t) = o1 + il cos wot, where il I<< 10. You may assume that an externally applied force Fo
holds the plunger in equilibrium against the current Io.Also in equilibrium, the displacement
of the beam M(0) = 0.

(a) What is the value of Fo required for equilibrium?
(b) Find an expression for the electrical impedance Z(jw) seen at the terminals of

the coil, where Z(jwo) = ir(jo)1il, and 6(jw) is the complex amplitude of the steady-
state voltage developed at the terminals.

(c) What is the expression that determines the poles of the impedance Z(jw)?

11.9. A thin beam clamped to two rigid walls is shown in Fig. llP.9. Suppose that the
beam is perfectly conducting and that it is placed between two perfectly conducting rigid

S---oO
•//////////////////////////•///

EO, O

epth D

Fig. 11P.9
Fig. 1P.9

--
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plates at xz = ±a.Assume that there is a magnetic field trapped between the beam and the
plates, so that when the beam isflat H = H0i1 on both sides of the beam. (In the perfect
conductor H = 0.) Make the approximations that wavelengths of a disturbance on the
beam are long compared with a and that the magnetic field is always uniform in the x2-and
xz-directions.

(a) Write the equation of motion for the beam.
(b) Compute the first resonance frequency of the beam.
(c) Compare the result of (b) with Problem 11.7 and give a physical explanation for

any differences which occur.
(d) Can the system be unstable? Explain.

Depth D perpendicular to page

I
+ +

Plate area A

Fig. 11P.10

11.10. The system shown schematically in Fig. 11P.10 is similar to that discussed in Section
11.4.2b. The material of the beam is steel and the system constants and dimensions are

E = 2.2 x 101 N/m2 A =- 10- 4 m2

p = 7.9 x 103 kg/ m3 D = 10 m

I = 10- 1 m b = 10-3 m

V" = 1000 V d - 10- m

We are interested in investigating the impedance seen by the signal source v, for values
of exciting frequency near the first resonance of the elastic bar. This type of information
would be essential if we planned to use this system to control the frequency of an oscillator.
For sinusoidal excitation v, = Re [(,eimt] and small-signal, steady-state operation:

(a) Find a literalexpression for the input impedance Z(jo) = i 81t,, where i, is the
complex amplitude of the input current.

(b) For the numerical values given find a numericalvalue for the lowest frequency
wo at which the impedance Z(jw) has a zero.

(c) Assume operation at frequencies near we by setting w = we + Am, where

Amwl << wo and Amw can be either positive or negative. For this restriction the
impedance Z appears as a series LC circuit. Find numerical values for the
equivalent capacitance C and equivalent inductance L.

11.11. Consider the planar elastic waveguide of Fig. 11.4.18 but with the walls at xa = 0
and a' = d fixed.

(a) Find the dispersion equation for waves in the form of

6, = Re J(x 2) exp j(mt - klx).
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(b) Sketch the results of part (a) as an co-k plot and compare with Fig. 11.4.19.
Is there a principal mode of propagation ?

11.12. A cylindrical, circular elastic section of material with the shear modulus G, density p,
and radius R is embedded in a perfectly rigid solid so that the material at r = R is fixed.
This structure is to be used as a waveguide for elastic shear waves. To find the dispersion
equation for these waves, we confine interest to material displacements in the form of
S = 66(r, z, t)io. Find the dispersion equation for all modes in this form. (A discussion of
Bessel's functions is given on p. 207 of S. Ramo, J. Whinnery, and T. Van Duzer, Fields
and Waves in Communication Electronics, Wiley, New York, 1965.)

Fig. 11P.12
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Chapter 12

ELECTROMECHANICS
OF INCOMPRESSIBLE,

INVISCID FLUIDS

12.0 INTRODUCTION

We are all familiar with the distinctions between the three pure states of
matter: solids, liquids, and gases. A solid body possesses a definite shape and
size that is retained unless the body is acted on by outside forces. A given
mass of liquid possesses a definite size (volume) but conforms in shape to its
container. A particular mass of gas possesses neither definite size (volume)
nor shape because it will deform to fill completely whatever vessel it occupies.

Liquids and gases are grouped together and called fluids when their
dynamic behavior is to be studied. The essential difference between a solid
and a fluid is that the force necessary to deform a solid is a function of the
deformation (strain), whereas in a fluid the force necessary to produce a
deformation is a function of the rate of deformation (strain rate) and a
hydrostatic pressure. A fluid left to itself in a force-free environment will
relax to a state that has no internal stresses except an isotropic (hydrostatic)
pressure balanced by the surface forces exerted by the container or by
surface tension.

Although because of some similarities liquids and gases are classified
together as fluids, they also exhibit striking differences. Moderate changes
in temperature and pressure cause very small fractional changes in the density
of a liquid but the corresponding changes in a gas are quite large.

All real fluids exhibit internal friction that is described mathematically by
the property called viscosity. The effects of viscosity can be large or small,
depending on the physical situation being studied. It is standard practice for
an electrical engineer to represent a real coil of wire mathematically by an
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ideal, lossless circuit element called inductance. Similarly, the fluid dynamicist
often uses an idealization of a fluid in which viscosity is neglected. Such an
idealization is called an inviscidfluid.

In most electromechanical systems involving fluids the principal effects of
viscosity result from the contact between the fluid and a solid boundary. As
in most continuum problems, the effect of the boundary becomes less pro-
nounced at greater distances from the boundary. Thus, when the behavior of
a fluid is desired far from a boundary, an inviscid model is often adequate.
How a distance that is adequate for the neglect of viscosity is determined is
a rather complex subject and depends quite naturally on the system to be
analyzed and the accuracy desired. Much experimental and theoretical data
are available to answer this question.* We address ourselves to a few simple
cases in which viscosity is important in Chapter 14.

Our purpose in this book is to present models and do analyses of systems
in which electromechanical interactions are important. This means essentially
that for coupling with a fluid the electromechanical forces must dominate the
viscous forces. It is fortuitous that many situations exist in which this occurs,
notably magnetohydrodynamic pumps and generators and plasma accel-
erators.t Consequently, our use of an inviscid fluid model is realistic with
respect to the dominant electromagnetic forces and viscous effects can be
added later as perturbations.

When a fluid flows past a solid boundary, the fluid friction makes the fluid
particles that are in contact with the boundary remain at rest with respect
to the boundary. This makes the flow of fluid parallel to the boundary vary
with distance from the boundary and introduces a shear rate into the flow.
At low velocities each fluid particle flows along a smooth path (a streamline),
and the flow is said to be laminar.At high velocities the shearing effect of the
boundary makes the flow unstable and each fluid particle has a significant
random motion in addition to its average motion in the direction of flow.
This flow regime is said to be turbulent. When a flow becomes turbulent, its
internal friction (viscous) losses increase. In spite of this, we can often
represent a fluid in turbulent flow in terms of a steady flow at the average
velocity and obtain a good model for electromechanical interactions.

Compressibility is a property of a fluid that describes the fact that when
the hydrostatic pressure on the fluid is increased the density increases. Every
fluid exhibits this property to some extent. Liquids are only slightly com-
pressible, whereas gases are highly compressible. Compressibility to fluids is

*H. Schlichting, Boundary Layer Theory, 4th ed., McGraw-Hill, New York, 1960, pp.
1-41.
t These situations are illustrated graphically in the film entitled "Magnetohydrodynamics"
produced for the National Committee on Fluid Mechanics Films by Education Develop-
ment Center, Newton, Mass.
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what elastic modulus is to elastic solids. Thus we expect a compressible fluid
to transmit longitudinal (sound) waves just as an elastic solid does. When we
are interested in the flow ofa liquid, the compressibility can often be neglected.
This is analogous to the treatment of the gross motion of an elastic solid as
the motion of a rigid body. Even though a gas is highly compressible, we
can sometimes treat gas flow by using an incompressible fluid model,
especially at very low flow velocities. In other cases the compressibility of a
gas will have a marked effect on the flow, and we must account for it in our
mathematical model.

Our interest here is in electromechanical interactions; in each case we
select the simplest mathematical model that illustrates the physical phenomena
of interest in a realistic way. Thus in many cases we use a simple fluid model
that adequately illustrates the electromechanical interactions but ignores some
fluid-mechanical phenomena. The inclusion of such phenomena is beyond
the scope of this book. For further information on these topics the reader can
consult a good treatise on fluid mechanics.* In this chapter we investigate
various phenomena that result from electromechanical interactions with
incompressible, inviscid fluids. In Chapter 13 we treat compressible inviscid
fluids and in Chapter 14 introduce viscosity.

12.1 INVISCID, INCOMPRESSIBLE FLUIDS

An incompressible inviscid fluid model lends itself to simple mathematical
analysis and to an understanding of many fluid-mechanical phenomena.
Moreover, it provides considerable insight into the fundamental interactions
of magnetohydrodynamics (MHD) and often gives an accurate description
of MHD interactions with liquid conductors such as liquid metals.

In what follows we first introduce the equations of motion for an in-
compressible inviscid fluid and then consider some simple, fluid-mechanical
examples. Finally, we investigate the important electromechanical interactions
appropriate for study with this model.

12.1.1 The Substantial Derivative

In the study of fluid mechanics we are concerned with describing the fluid
motion and relating it to the applied forces and boundary conditions. Most
often the desired information consists of determining a flow pattern in a
region of space at a given instant of time. Because of this desired result, fluid
dynamicists have focused their attention on fluid variables at a given position
in relation to a fixed reference frame. Since the fluid is moving past this point,
different material elements occupy the point at different instants in time. This

* See, for example, Schlichting, op. cit.
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method of representing fluid properties (such as velocity) in terms of a fixed
point in space is called an Eulerian or field description. An alternative
method, called the Lagrangian description, gives the velocity and other
properties of the individual particles.

The best-known example of the use of the Lagrangian description is in
particle dynamics (or the rigid-body mechanics of Chapter 2) in which it is
conventional to ascribe to each particle (or mechanical node) a velocity v
which is a function of the initial position (a, b, c) of the particle and of time t.
Thus v(a, b, c, t) describes the velocity of a particular particle. This same
method is carried over into continuum mechanics by describing the velocity
v(a, b, c, t) of the grain of matter at position a,b, c at t = 0. This Lagrangian
description was used in Chapter 11, in which the displacement of a grain of
elastic material was written as a function of the unstrained (initial) position.

For electrical engineering students the best-known example of the use of an
Eulerian description is in electromagnetic field theory. We usually describe
the electromagnetic field and source quantities as functions of space and time.
Thus for a cartesian coordinate system (xx, x, x3) we give the electric field
intensity as E(xl, x2, x3, t). This prescribes the field intensity at the point
(xx, ,x, at any instant of time t. Using the Eulerian description, we can
describe a velocity field v(xx, xz, zX,t) that ascribes a velocity to a position
in space rather than to a particular grain of matter. At the point (zx,4z, x,)
the velocity v(x', 4x,4, t') specifies the velocity of that grain of matter that
occupies the point (x4, x2, xz)at the instant of time t'. If at a later time t" this
grain of matter is at point (x•, x~,x), its velocity will be v(4x, x", x", t").
The Eulerian system is normally used in the study of fluid mechanics and is
also used here.*

Later in this chapter we shall need the time derivative of an Eulerian
function as experienced by a particular grain of matter. The acceleration of a
grain of matter is such a derivative and we shall need it to write Newton's
second law.

Consider a system of moving matter with an Eulerian or field description
of the velocity, v(x, 2,x 3, t) and of the quantityf(xx, , X 3, at). It is necessary
to find the time rate ofchange off experienced by a grain of matter. Consider
the grain of matter that occupies position (xx,X2,x3) at time t and has
velocity v(xx, x2,X, t) with components vx, v2 , and vs. At time (t+ At) the
grain will occupy a new position, given to first order in (At) by (xx + v1 At,
X2 + v 2 At, Xa + vs At).Thus in the interval (At) the grain has experienced a
change in f of

Af= f(x 1 +v 1 At,x2 + v2At,xs + Vs At, t+ At) - f(X1, x2,xs, t) (12.1.1)

* For a more thorough discussion of these alternative representations, see, for example,
H. Lamb, Hydrodynamics, 6th ed., Dover, New York, 1945, Chapter I, Articles, 4 to 9,
13, and 14.

12.1.1
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The first term in this expression is expanded in a Taylor series about the
point (x1, x, x,, t) and second- and higher order terms in At are discarded to
obtain

af af af afAf - At + -v At + - v2 At + - v3 At. (12.1.2)
atxi ax, ax3

The desired time rate of change is defined as

Df = lim Af (12.1.3)
Dt At-o At

Substitution of (12.1.2) into (12.1.3) yields

of af af af afS= + + + ,(12.1.4)
Dt at ax1 ax2 ax3

which is written in the compact form

Df af
= - + (vV)f. (12.1.5)

Dt at

The function f may be considered to be one component of a cartesian
vector f.Equation 12.1.5 holds for each component ofthe vector; consequently,
the time rate of change of a vector field quantity f(x,, x2, x,, t) experienced
by a grain of matter is given by

Df =f
D + (v.V)f. (12.1.6)

Dt at

This derivative is variously called the Stokes, total, particle, material,
substantial, or convective derivative.

The interpretation of the physical meaning of (12.1.5) or (12.1.6) is quite
simple. It merely states that an observer moving with the velocity v, relative
to the coordinate system (x1, x2, x,) in which the quantity f(x,, xz, x,, t) is
defined, will detect a time rate of change off made up of two parts: (af/at) is
the rate of change of f at a fixed point and (v - V)f is the change in f that
results from the motion of the observer through a fixed (in time) distribution
off. In fact, (v . V)f is simply the space derivative off taken in the direction of
v and weighted by the magnitude of v.

An example of the application of (12.1.6), which will occur in Section
12.1.3 is the acceleration of a grain of matter moving in a velocity field
v(x 1, •2,x3 , t). According to (12.1.6),

Dv av
- = - + (v .V)v. (12.1.7)
Dt at
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Example 12.1.1. As an example of the calculation ofan acceleration, consider the velocity

V
v = V ° (ix 2 - ikXl), (a)

a

where Vo and a are positive constants. This will be recognized as the velocity of a fluid
undergoing a rigid-body rotation about the xa-axis. In fact, the angular velocity of the fluid
is Vo/a, where r =-VX2 + x2

2 is the radial distance from the x-axis. Note that av/at= 0.
Yet we know that the fluid is accelerating (centrifugal acceleration), and it is this accelera-
tion that is given by the second term in (12.1.7), which becomes

DV 1r + a"'' " V2a '2' (b)(vv,i+ vy + xLV , (b)I+

because va and al/ax are zero. Substitution of (a) into (b) gives

Dv 2V
- = L[-x(l)]iJ + [x2(--)li (c)

as the acceleration of the fluid. This acceleration is directed radially inward toward the
;x-axis and has the expected magnitude (Vjoa)2r (the centrifugal acceleration).

We now obtain differential equations of motion that are appropriate for
studying the dynamical behavior of incompressible inviscid fluids. We obtain
the desired equations from two postulates:

1. Conservation of mass.
2. Conservation of momentum (Newton's second law).

The validity of these postulates has been verified by a variety of experiments.

12.1.2 Conservation of Mass

The conservation of mass states that mass can be neither created nor
destroyed and thus must be conserved. To apply this postulate to a particular
system consider the system of Fig. 12.1.1 in which an arbitrary volume V
enclosed by the surface Sis defined in a region containing material with a mass

Fig. 12.1.1 Definition of system for writing conservation of mass.
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density p(x,, x2, xz, t) (kg/m3) and a velocity v(x1,x, x3, t) (m/sec). A
differential volume element is dV, a differential surface element is da, and the
normal vector n is normal to the surface and directed outward from the
volume.

Because mass must be conserved, we can write the expression for the system
in Fig. 12.1.1:

5 (pv n) da = fv dV. (12.1.8)

The left side of this expression evaluates the net rate of mass flow (kg/sec)
out of the volume V across the surface S. The right side indicates the rate at
which the total mass within the volume decreases. Note the similarity between
(12.1.8) and the conservation of charge described by (1.1.26)* in Chapter 1.

Example 12.1.2. The system in Fig. 12.1.2 consists of a pipe of inlet area Atand outlet
area Ao.A fluid of constant density p flows through the pipe. The velocity is assumed to be
uniform across the pipe's cross section. The instantaneous fluid velocity at the inlet is

Vi = i1vi

and is known. We wish to find the velocity vo at the outlet.
We use the closed surface S indicated by dashed lines in Fig. 12.1.2 with the conservation

of mass (12.1.8) to find v,. Because the density p is constant,

(v.n)da = 0.

The only contributions to this integral come from the portions of the surface that coincide
with the inlet and outlet. The result is

(v. n)da = [vs •(-il)]Ai + (vo.il)Ao = 0

from which
Ag

vo = ilVo = i1 v .

This expresses the intuitively apparent fact that in the steady state as much fluid leaves the
closed surface S as enters it.

Area Ai Area A.

L-------------------
Surface S -

-
"

Fig. 12.1.2 Example for application of conservation of mass.

* Table 1.2, Appendix G.
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We now write (12.1.8) in differential form by using the divergence theorem*

f(A* n) da = (V* A) dV

to change the surface integral in (12.1.8) to a volume integral

f(-v) dV = - t dV. (12.1.9)

The time derivative has been taken inside the integral sign because we assume
that the volume V is stationary. This expression holds for any arbitrary
volume V; therefore it must hold for a differential volume. Thus

V. pv = a (12.1.10)
at

which is the partial differential equation that describes the conselvation of
mass.

The left side of (12.1.10) can be expanded and the terms rearranged to
obtain

p(V. v) = - , (12.1.11)
Dt

where the derivative on the right is the substantial derivative defined by
(12.1.5). Equation 12.1.11 relates the rate of density decrease in a grain of
matter to the divergence of the velocity and is in a form particularly useful
when studying incompressible fluids because then the time rate of change of
the density as viewed by a particle of fluid is zero, that is, Dp/Dt = 0.
Equation 12.1.11 indicates that in this case the velocity field has no divergence
(V -v = 0).

12.1.3 Conservation of Momentum (Newton's Second Law)

The second postulate of fluid mechanics is that Newton's second law of
motion (conservation of momentum) must hold for each grain of matter.
To express this postulate mathematically we assume that in the coordinate
system (x1, xz, zx) there exists a fluid of density p(zx, x, xa, t) moving in a
velocity field v(x1 , xz, x3, t). The mass of a grain of matter occupying the
differential volume element dxz dx, dx, is p dx1 dxr dx,. We multiply this mass
by the instantaneous acceleration found in (12.1.7) and equate the result to

* F. B. Hildebrand, Advanced Calculusfor Engineers,Prentice-Hall, New York, 1948, pp.
312-315.
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the total force f applied to the grain of matter*

p(dx dx, dx,) + ( V)v = f. (12.1.12)

We now divide both sides of this expression by the volume element and define
the force density F as

F = (12.1.13)
dx1 dxs dx 3

to obtain the result

Dv av
p - = p - + p(v- V)v = F. (12.1.14)

Dt at

This is the differential form of the conservation of momentum equation that we
use most often in our treatment of continuum electromechanics.

The force density F in (12.1.14) can be written as

F = F' + pg + Fm , (12.1.15)

where F" represents the electromagnetic forces that were expressed in various
forms in Sections 8.1 and 8.3 of Chapter 8f, pg represents the force density
resulting from gravity, and Fm represents mechanical forces applied to the
grain of matter by adjacent material. This latter force density F' depends
on the physical properties of the fluid and will thus be described in Section
12.1.4 (on constituent relations).

Equation 12.1.14 can be expressed in a particularly simple and often useful
form when we recognize that the force density on the right can be expressed
as the space derivative of a stress tensor. We have already shown in Sections
8.1 and 8.3 of Chapter 8 that this is true. The ith component of the electro-
magnetic force density Fe is

Fie = , (12.1.16)

where T1j' is the Maxwell stress tensor given for magnetic-field systems by
(8.1.11)t and for electric field systems by (8.3.10)t. Because the gravitational
field is conservative, we can write the gravitational force as the negative

* Newton's second law, written as f = Ma, applies only for a mass M of fixed identity.
Because DvIDt is a derivative following a grain of matter, it is the acceleration of a set of
mass particles (p dx1 dx2 dx3) of fixed identity. Thus (12.1.12) is a valid description of
Newton's second law written as f = Ma and is valid even when p is changing with space
and time.
t See Table 8.1, Appendix G.
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gradient of a scalar potential. We define the gravitational potential as U and
write

pg = -VU, (12.1.17)

or, in index notation, the ith component is

aU 8
pg, = - - = (61,U). (12.1.18)

We obtain the force density F" of mechanical origin as the derivative of a
stress tensor in Section 12.1.4 and therefore assume that the ith component
of the mechanical force density F" is

F , (12.1.19)
ax,

where T,"j is the mechanical stress tensor to be calculated later.
Now the total stress tensor T~, for the system is

Toi = Til" _ 6ijU + Tim, (12.1.20)

and we can express the ith component of (12.1.14) simply as

Dvy aT8,
p ' (12.1.21)

Dt ax,

This form is particularly useful in applying boundary conditions.
Equation 12.1.14 is often useful when it is expressed in integral form. To

achieve this end we multiply the conservation of mass (12.1.11) by the velocity
v and add it to (12.1.14) to obtain

pD + vD + p(V . v) = F. (12.1.22)
Dt Dt

Because zero has been added to the left side of (12.1.14), (12.1.22) still
expresses Newton's second law. Combination of the first two terms of
(12.1.22) into the derivative of the product (pv) and use of the definition of
(12.1.6) leads to

d(pv) + (v V)pv + pv(V v) = F. (12.1.23)
at

The ith component of this expression is

(pv_•) + (v . V)pvi + pv,(V -v) = F,. (12.1.24)

12.1.3
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Combination of the second two terms on the left side of this expression yields

+ (V . pvv) = F,. (12.1.25)
at

We now integrate (12.1.25) throughout a volume V to obtain

fa(pv) dV+f (V- pvv)dV= F,dV. (12.1.26)

The divergence theorem is used to change the second term on the left to an
integral over the surface S that encloses the volume V and has the outward
directed normal n; thus

f a(Pv)dV + pvi(v' n) da = F, dV. (12.1.27)

Using the definition of the total force density in terms of a stress tensor* in
(12.1.21), we can also write (12.1.27) as

afPidV + pv1(v,n) da = Tdnj da. (12.1.28)

Equation 12.1.27 can be written for each of the three components and then
combined to obtain the vector form

f (Pv) dV +% pv(v n) da = F dV. (12.1.29)

This is the integral form of the equation that expresses conservation ofmomen-
tum (Newton's second law).

The momentum density of the fluid is pv; consequently, the first term on
the left of (12.1.29) represents the time rate of increase of momentum density
of the fluid that is instantaneously in the volume V. The second term gives
the net rate at which momentum density is convected by the flow out of the
volume V across the surface S. Thus the left side of (12.1.29) represents the
net rate of increase of momentum in the volume V. The right side of (12.1.29)
gives the net force applied to all the matter instantaneously in the volume V.

12.1.4 Constituent Relations

To complete the mathematical description of a fluid we must describe
mathematically how the physical properties of the fluid affect the mechanical
behavior. The physical properties of a fluid are described by constituent
relations (equations of state), and the form of the equations depends on
the fluid model to be used.

* See (8.1.13) and (8.1.17) of Appendix G.
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A homogeneous, incompressible fluid, which is the model we are con-
sidering at present, has constant mass density, independent of other material
properties (density and temperature) and of time. Thus one constituent
relation is

p = constant. (12.1.30)

This constituent relation is normally expressed in a different form by
substituting (12.1.30) into (12.1.11) to obtain the equation

V. v = 0, (12.1.31)

which is the mathematical description normally used to express the property
of incompressibility. Note, however [from (12.1.11)], that p does not have
to be constant for (12.1.31) to hold. The fluid could be inhomogeneous and
still be incompressible.

The next step in the description of physical properties is to determine how
the mechanical force density Fm of (12.1.15) arises in a fluid.

First, consider a fluid at rest. By definition, a fluid at rest can sustain no
shear stresses. Moreover, a fluid at rest can sustain only compressive stresses
and a homogeneous, isotropic fluid will sustain the same compressive stress
across a plane of arbitrary orientation. This isotropic compressive stress is
defined as a positive hydrostatic pressure p.

We can define a mechanical stress tensor for the fluid at rest in the nomen-
clature of Sections 8.2 and 8.2.1*. Thus, because there are no shear stresses,

Ti •m = 0, for i j. (12.1.32)

The normal stresses are all given by

Tllm = T22m = Ta' = -p. (12.1.33)

The information contained in (12.1.32) and (12.1.33) can be written in com-
pact form by using the Kronecker delta defined in (8.1.7) of Chap. 8*;
therefore

Tijm = - 6• ,p. (12.1.34)

We can verify that the stress tensor in (12.1.34) describes an isotropic,
normal compressive stress by calculating the traction* r- applied to a surface
of arbitrary orientation. To do this assume a surface with normal vector

n = ni, + nti2 + n3i3. (12.1.35)

Now use (8.2.2) of Chapter 8 with (12.1.34) and (12.1.35) to calculate the ith
component of rm,

7•, = Tm"n, = -p 6ijnj = -pn, (12.1.36)

The vector traction then is

r • = -p(nji1 + n2i2 + n3ai) = -pn. (12.1.37)
*Appendix G.
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x3

x2

Fig. 12.1.3 Example for the application of stress tensor to a fluid at rest.

This traction is normal to the surface and in the direction opposite to the
normal vector n. Thus the stress tensor of (12.1.34) describes an isotropic
compressive stress.

The pressure p may be a function of position; consequently, a volume
force density can result from a space variation of pressure. To find this force
density we use (8.2.7)* to evaluate the ith component

Fim•• = 6 a (12.1.38)
ax, azi ax

When the three components are combined, the vector force density becomes

F i, + LP i +
\x1 ax2 ax3 / (12.1.39)

F" = -Vp.

Example 12.1.3. As an example of the application of this mechanical force density,
consider the system shown in Fig. 12.1.3 which consists of a container of lateral dimensions
l2 and 1 and filled to a height 1.with a fluid ofconstant mass density p.The acceleration of
gravity g acts in the negative xz-direction. The fluid is open to atmospheric pressure Po at
the top. We wish to find the hydrostatic pressure at any point in the fluid.

The fluid is at rest, so the acceleration is zero. Moreover, the only forces applied to the
material are the force of gravity and the mechanical force from adjacent material. Thus the
conservation of momentum (12.1.14) and (12.1.15) yields for this system

0= -ilpg - Vp.
In component form this equation becomes

apx

0=

0= a

* See Appendix G.
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We integrate these three equations to find thatp is independent ofx 2 and x3 and is given in
general by

p = - pgX1 + C.
The integration constant C is determined by the condition that in the absence of surface
forces the pressure must be continuous at xL = 11.Thus

P = Po + pg(1
1 - 2x).

Equations 12.1.34 and 12.1.39 describe mechanical properties of a fluid at
rest. In a real fluid, motion will result in internal friction forces that add to the
pressure force. In an inviscid fluid, however, motion results in no additional
mechanical forces other than the forces of inertia already included in the
momentum equation (12.1.14). Consequently, in the inviscid model the only
mechanical force density [Fm in (12.1.15)] results from a space variation of
pressure expressed by (12.1.39).

For an incompressible inviscid fluid the physical properties are completely
specified by (12.1.31) and (12.1.39). Therefore, when boundary conditions
and applied force densities (electrical and gravity) are specified, these
constituent relations and (12.1.14) can be used to determine the motion of the
fluid. We treat first some of the purely fluid-mechanical problems to identify
the kinds of flow phenomena to be expected from this fluid model and then
add electromechanical coupling terms.

12.2 MAGNETIC FIELD COUPLING WITH INCOMPRESSIBLE
FLUIDS

An important class of electromechanical interactions is describable by
irrotational flow; that is,

V x v = 0. (12.2.1)

When such an approximation is appropriate, the equations of motion can be
solved quite easily because a vector whose curl is zero can be expressed as the
gradient of a potential. Thus we define the class of problems for which (12.2.1)
holds as potentialflow problems and we define a velocity potential0 such that

v = -- V. (12.2.2)

For incompressible flow V • v = 0 from (12.1.31) and the potential 0 must
satisfy Laplace's equation

V24 = 0. (12.2.3)

A solution of a potential flow problem then reduces to a solution of Laplace's
equation that fits the boundary conditions imposed on the fluid.

We can now establish some important properties of potential flow. The
momentum equation (12.1.14) takes the form

p -t+ p(v . V)v = -Vp - VU + F , (12.2.4)
at
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where we have used the definition of the substantial derivative in (12.1.6)
and the definition of the gravitational potential U in (12.1.17). The use of
the vector identity (. V)v = IV(v2) - v x (V x v),

where v2 = v . v, and (12.2.1) yields (12.2.4) in the alternative form

p - + 2p V(v2) = -Vp - VU + Fe. (12.2.5)

We now use the facts that p is constant, that the space (V) and time (alat)
operators are independent, and that the velocity is expressed by (12.22) to
write (12.2.5) in the form

V pt + pV + p + U =F. (12.2.6)

By taking the curl of both sides of (12.2.6) we find that potential flow is
possible only when V x Fe = 0. (12.2.7)

If this condition is not satisfied, the assumption that V x v = 0 is not valid.
Thus we restrict the treatment of the present section to electromechanical

interactions in which the force density of electrical origin has no curl (12.2.7).
In view of (12.2.7), we express the force density Fe as

Fe = --Vy, (12.2.8)

where y, is an electromagnetic force potential, and write (12.2.6) as

at + po2 + p + U + V) = 0. (12.2.9)

The most general solution for this differential equation is

p• + po2 + p + U + ? = H(t); (12.2.10)

that is, this expression can be a function of time but not a function of space.
When the flow is steady, a/lat = 0 and none of the other quantities on the

left of (12.2.10) is a function of time. Then (12.2.10) reduces to
Ipv2 +p + U + V = constant. (12.2.11)

This result, known as Bernoulli's equation, expresses a constant of the
motion and is useful in the solution of certain types of problem.

Example 12.2.1. As an example of the application of Bernoulli's equation, consider the
system in Fig. 12.2.1. This system consists of a tank that is open to atmospheric pressure Po
and filled to a height h1 with an inviscid, incompressible fluid. The fluid discharges through a
small pipe at a height h2 with velocity v2 . The area of the tank is large compared with the
area of the discharge pipe; thus we assume that the tank empties so slowly that we can
neglect the vertical velocity of the fluid and consider this as a steady flow problem.
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- 2

Po

Fig. 12.2.1 Example of application of Bernoulli's equation.

There are no externally applied forces other than pressure and gravity, which has a down-
ward acceleration g. We wish to find the discharge speed v2.

The gravitational potential U is
U = pgx,

where we assume that x is measured from the bottom of the tank. (We could choose any
other convenient reference point.)

Application of Bernoulli's equation (12.2.11) with 1p = 0 (there are no electromagnetic
forces) at the top of the fluid and at the outlet of the discharge pipe yields

Po + pgh = Po + Pghz + 2pv21,
from which

V2 = V22(h 1 - k).

We now apply the equations of motion for potential flow to examples
involving electromechanical coupling.

12.2.1 Coupling with Flow in a Constant-Area Channel

We first consider the flow of an incompressible inviscid fluid in a hori-
zontal channel with the dimensions and coordinate system defined in Fig.
12.2.2. At the channel inlet (x1 = 0) the fluid velocity is constrained to be

=I

Fig. 12.2.2 A channel of constant cross-sectional area.

I~LIIII-~llllllll.
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uniform and in the x,-direction

v(0, X2, x3, t)= itvo(t). (12.2.12)

At a fixed channel wall, the normal component of velocity must be zero
and the tangential component is unconstrained (for an inviscid fluid);
consequently, the velocity of flow throughout the channel is

v(x 1, x 2, x3, t) = ilvo(t) (12.2.13)

and the velocity potential is

(x1, x2, x 3, t) = -x 1 Vo(t). (12.2.14)

Note that this potential satisfies Laplace's equation (12.2.3) and the boundary
conditions.

Equation 12.2.13 is the velocity distribution in the constant-area channel
with the boundary condition specified (12.2.12) regardless of the space
distributions or time variations of applied force densities but with the restric-
tion that these force densities be irrotational (12.2.7).

12.2.1a Steady-State Operation

In this section we analyze a simple coupled system that is the basic con-
figuration for illustrating the most important phenomena in magnetohydro-
dynamic (MHD) conduction machines. In spite of the myriad factors
(viscosity, compressibility, turbulence, etc.) that affect the properties of real
devices, the model presented is used universally for making initial estimates of
electromechanical coupling in MHD conduction machines of all types.

The basic configuration is illustrated in Fig. 12.2.3 and consists of a rec-
tangular channel of length 1,width w, and depth d, through which an electrically

Electrode

xl

Fig. 12.2.3 Conduction-type, MHD machine.
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conducting nonmagnetizable fluid flows with velocity v in the xz-direction.
The two channel walls perpendicular to the x,-direction are insulators and the
two walls perpendicular to the xz-direction are highly conducting electrodes
from which terminals are connected to an external circuit. The flux density
B is in the z,-direction and is produced by external coils or magnets not
shown. The electrical conductivity a of the fluid is high enough that the
system can be modeled as a quasi-static magnetic field system.

We are considering an inviscid fluid model and we assume that the inlet
(xl = 0) velocity is uniform as expressed by (12.2.12); thus the velocity is
uniform throughout the channel as expressed by (12.2.13). We neglect
fringing magnetic fields and the magnetic field due to current in the fluid*
and assume that B is uniform:

B = i2B, (12.2.15)

where B is constant. Because we are dealing with a steady-flow problem with
time-invariant boundary conditions, al/at = 0 and Faraday's law yields

V x E = 0. (12.2.16)

Once again we neglect fringing fields at the ends of the channelt and obtain
the resulting solution

V
E = -i3 -, (12.2.17)

where V is the potential difference between the electrodes with the polarity
defined in Fig. 12.2.3.

We now use Ohm's law for a moving conductor of conductivity a (6.3.5),

J = a(E + v x B) (12.2.18)

to write the current density for the system of Fig. 12.2.3 as

J = ia Z(- + voB . (12.2.19)

Note that this current density is uniform and therefore satisfies the conservation
of charge condition V , J = 0. Because the current density is uniform, it can

* The neglect of the self-field due to current in the fluid is justified for MHD generators
when the magnetic Reynolds number based on channel length is much less than unity (see
Section 7.1.2a).
t This assumption is quite good provided the 11w ratio of the channel is large (five or more).
This result has been obtained in a detailed analysis of end effects by using a conformal
mapping technique. The results of this analysis are presented in "Electrical and End Losses
in a Magnetohydrodynamic Channel Due to End Current Loops," G. W. Sutton, H.
Hurwitz, Jr., and H. Poritsky, Jr., Trans. AIEE (Comm. Elect.), 81, 687-696 (January
1962).

1_1 _ __·
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be related to the terminal current by the area of an electrode; thus

I
J = i, - . (12.2.20)

Id

To obtain the electrical terminal characteristics of this machine, we combine

(12.2.19) and (12.2.20) to obtain

IR, = - V + voBw, (12.2.21)

where we have defined the internal resistance R, as

w
R = -- (12.2.22)

aid

Equation 12.2.21 can be represented by the equivalent circuit of Fig. 12.2.4.
The open-circuit voltage (voBw) is generated by the motion of the conducting
fluid through the magnetic field and has the same physical nature as speed
voltage generated in conventional dc machines using solid conductors (see

Section 6.4). This speed voltage can supply
Ri - current to a load through the internal resist-

+ ance R, which is simply the resistance that
would be measured between electrodes with

vBw v the fluid at rest. From an electrical point
of view the electromechanical interaction0 occurs in the equivalent battery (voBw) in

Fig. 12.2.4 Electrical equivalent Fig. 12.2.4.
circuit of conduction-type MHD To describe the properties of the MHD
machine. machine of Fig. 12.2.3, viewed from the

electrical terminals, we have obtained a re-
lation between terminal voltage and terminal current (12.2.21). From a
mechanical point of view a similar relation is that between the pressure
difference over the length of the channel and the velocity through the channel.
This mechanical terminal relation is obtained from the xl -component of the
momentum equation (12.2.4):

0 = p IB (12.2.23)
ax, Id

Integration of this equation over the length of the channel yields

IB
Ap = B (12.2.24)

d

where the pressure rise Ap is defined by

Ap = p() - p(0). (12.2.25)
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MHD machine
f--- !----

Ri

I + +

Fig. 12.2.5 MHD conduction machine with a constant-voltage constraint on the electrical
terminals.

Equation 12.2.24 indicates that for this system the pressure rise along the
channel is a function of the terminal current only and independent of the
fluid velocity. This is reasonable because the pressure gradient is balanced
by the J x B force density, regardless of the velocity. For an arbitrary
electrical source or load the pressure rise will vary with velocity because the
current depends on velocity through (12.2.21).

To study the energy conversion properties of the machine in Fig. 12.2.3 we
constrain the electrical terminals with a constant-voltage source V, as indicated
in Fig. 12.2.5 and study the behavior of the device as a function of the fluid
velocity vo. For this purpose we use (12.2.21) to find the current I as

voBw - 1VI w - V (12.2.26)
R,

Substitution of this result into (12.2.24) yields for the pressure rise

B
Ap = - 1 (voBw - Vo). (12.2.27)

dR,

The current and pressure rise are shown plotted as functions of velocity v.
in Fig. 12.2.6.

To determine the nature of the device we define the electric power output
P, which, when positive, indicates a flow of electric energy from the MHD
machine into the source Vo:

P. = 1 Vo. (12.2.28)

We also define the mechanical power out P,, which represents power flow
from the MHD machine into the velocity source v0:

P, = Apwdv o . (12.2.29)
For the range of velocities

vo >
Bw

__~II~·_
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we have
P, > 0, P, < 0

and the device is a generator; that is, mechanical power input is in part
converted to electric power. For the velocity range

0< <vo<
Bw

we have
P. < 0, Pm > 0

and the device is a pump. Electric power input is converted in part to
mechanical power. For the velocity range

Vo < 0,

Pe < 0, Pm < 0;

that is, both mechanical and electrical power are into the MHD machine.
All of this input power is dissipated in the internal resistance of the machine.
In this region the machine acts as an electromechanical brake because electric

V0

Fig. 12.2.6 Terminal characteristics of an MHD conduction-type machine with constant
terminal voltage.
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power is put in, and the only electromechanical result is to retard the fluid
flow.

The properties of the MHD machine, as indicated by the curves of Fig.
12.2.6, can be interpreted in terms of the equivalent circuit of Fig. 12.2.5. We
substitute (12.2.24) into (12.2.29) to find that the mechanical output power is
expressible as

P, = -I(voBw). (12.2.30)

Reference to Fig. 12.2.5 shows that this is the power input to the battery that
represents the speed voltage. Thus, when the battery (voBw) absorbs power,
energy is being supplied to the velocity source by the MHD machine. When
the battery (voBw) supplies power, energy is being supplied to the external
voltage source by the MHD machine. When the battery (voBw) supplies
power, energy is being extracted from the velocity source. Thus, when the
two batteries of Fig. 12.2.5 have opposing polarities, energy can flow from
one battery to the other and the machine can operate as a pump or a generator,
the operation being determined by the relative values of the two battery
voltages. When the polarities of both batteries are in the same direction
(vo < 0 in Fig. 12.2.5), the two batteries supply energy to the resistance Ri,
and the MHD machine acts as a sink for both electrical and mechanical
energy. This is operation as a brake.

This analysis has been done for a particular set of terminal constraints.
Essentially the same techniques can be used for other constraints. It is worth-
while to point out that (12.2.24) indicates that if the machine is constrained
mechanically by a constant pressure source the electrical output will be at
constant current.

The analysis just completed provides the basic model used in any examina-
tion of the electromechanical coupling process in conduction-type MHD
devices, regardless of whether they are pumps or generators and whether the
working fluid is a liquid or gas. The model and its consequences should be
compared with those of commutator machines (Section 6.4.1) and of homo-
polar machines (Section 6.4.2). The similarities are evident and the opportunity
of using the results of the analysis of one device for interpreting the behavior
of another will broaden our understanding of electromechanical interactions
of this kind.

An alternative method of achieving electromechanical coupling between
an electrical system and a conducting fluid is to use a system that is analogous
to the squirrel-cage induction machine analyzed in Section 4.1.6b. We shall
not analyze this type of system here, but the analysis is a straightforward
extension of concepts and techniques already presented. The system consists
basically of a channel of flowing conducting fluid that is subjected to a
transverse magnetic field in the form of a wave traveling in the direction of

_~__ ___II _______
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flow. This wave is most often established by a distributed polyphase winding
(Sections 4.1.4 and 4.1.7). When the wave of magnetic field travels faster
than the fluid, the fluid is accelerated by the field and pumping action results.
When the fluid travels faster than the magnetic field wave, the fluid is
decelerated and electric power is generated. In the analysis of an induction
machine magnetic diffusion and skin effect are important (Section 7.1.4).

Both conduction- and induction-type MHD machines are used for
pumping liquid metals*; they are proposed for power generation with liquid
metalst and used to accelerate ionized gases for space propulsion systems";
both are proposed for power generation with ionized gases,§ although the
conduction-type machine appears more attractive by far for this purpose.

12.2.1b Dynamic Operation

We now consider the kinds of phenomena that can result from electro-
mechanical coupling with an incompressible fluid of time-varying velocity.
We start by considering the fluid dynamic behavior of a simple example,
which will then be the basis for a study of electromechanical transient effects.

The configuration to be studied is shown in Fig. 12.2.7. The system con-
sists of a rigid tube of rectangular cross section bent into the form of a U.
The depth d of the tube is small compared with the radius of the bends. The
tube is filled with an incompressible inviscid fluid to a length I measured
along the center of the tube. The two surfaces are open to atmospheric
pressure p, and gravity acts downward as shown.

It is clear that for static equilibrium the two surfaces of the fluid are at the
same height. The displacement of the two surfaces from the equilibrium
positions are designated x, and xb.

To study the dynamic behavior of this system we displace the fluid from
equilibrium, release it from rest, and study the ensuing fluid motions.

The equations for solving this problem express conservation of mass and
force equilibrium. Conservation of mass (12.1.31) used with the irrotational
flow condition (12.2.1) and the fact that the channel has constant cross-
sectional area leads to the conclusion that the flow velocity is uniform
across the channel. (Here we ignore effects due to the channel curvature.)

* L. R. Blake, "Conduction and Induction Pumps for Liquid Metals," Proc. Inst. of Elec
Engrs. (London), 104A, 49 (1957).
t D. G. Elliott, "Direct-Current Liquid Metal MHD Power Generation," AIAA J.,
627-634 (1966). M. Petrick and K. V. Lee, "Performance Characteristics of a Liquid Metal
MHD Generator," Intl. Symp. MHD Elec. Power Gen., Vol 2, pp. 953-965, Paris, July
1964.
1 E. L. Resler and W. R. Sears, "The Prospects for Magnetohydrodynamics," J. Aerospace
Sci., 25, No. 4, 235-245 (April 1958).
§ H. H. Woodson, "Magnetohydrodynamic AC Power Generation," AIEE Pacific Energy
Conversion Conf. Proc., pp. 30-1-30-2, San Francisco, 1964.



Magnetic Fields and Incompressible Fluids

Po

Fig. 12.2.7 Configuration for transient flow problem.

Furthermore, the displacements of the two surfaces are equal

zT = xb. (12.2.31)

The form of the momentum equation that is most useful for this example is
(12.2.5) with F, = 0.

P •=V - + p - +u , (12.2.32)
at 2 2

where U is the gravitational potential. We now do a line integration of
(12.2.32) from the surface at (a) to the surface at (b) along the center of the
tube to obtain

fp avdl =b -V + p + U) di (12.2.33a)

pl = -2pgxa. (12.2.33b)
at

This result could have been obtained by using (12.2.10), a fact that is not
surprising because the steps leading from (12.2.32) to (12.2.33) parallel those
used in Section 12.2.

The velocity v is given by

v dt=
dt

~_·ll~·llll~lll^-Y·~LI~···~-·I~C~ --
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thus we rewrite (12.2.33) as

I - + 2gx, = 0, (12.2.34)

which is a convenient expression for the surface displacement xa. It shows
that the dynamics are those of an undamped second-order system.

We now displace the fluid surface at (a) to the position

Xa(O) = Xo (12.2.35)
and release it from rest

dx
a (0) = 0. (12.2.36)

dt

The solution of (12.2.34) with the initial conditions of (12.2.35) and (12.2.36) is

Xa(t) = ul(t)X, cos wt, (12.2.37)

where u-_(t) is the unit step and the frequency w is given by

S= () (12.2.38)

Note that this lossless, fluid-mechanical system has the basic property of a
simple pendulum in that the natural frequency depends only on the acceler-
ation of gravity and the length of fluid in the flow direction and is independent
of the mass density of the fluid.

We now couple electromechanically to the system of Fig. 12.2.7 with an
MHD machine of the kind analyzed in Section 12.2.1a placed in the U tube
as shown in Fig. 12.2.8. The total length of fluid between the surfaces at (a)
and (b) is still I and the length of the MHD machine in the flow direction is 11.
The flux density B is uniform over the length of the MHD machine and is
again produced by a system not shown. As in Section 12.2.1a, we neglect the
magnetic field due to current in the fluid as well as the end and edge effects.
The terminals of the MHD machine are loaded with a resistance R.

In this analysis we are interested in the fluid dynamical transient that will
usually be much slower than purely electrical transients whose time constant
depends on the inductance of the electrode circuit. Thus we neglect the
inductance of the electrode circuit and the electric terminal relation is obtained
from (12.2.21) by setting

V = IR. (12.2.39)

The resulting relation between current and velocity is

vBw
I = , (12.2.40)

R, + R'
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Po

Fig. 12.2.8 Transient-flow problem with electromechanical coupling.

where the internal resistance is
w

R i -
olld

and a is the electrical conductivity of the fluid.
The addition of the electrical force term to the momentum equation

(12.2.32) yields
ap- -vV + p + U• + J x B. (12.2.41)

Integration of this expression between the two fluid surfaces in the manner of
(12.2.33) yields

av IB
pl = -2pggx - _. (12.2.42)

at d

Note that the last term on the right is simply the pressure rise through the
MHD machine due to the electromagnetic force density (12.2.24).

Substitution of (12.2.40) and v = dx/Idt into (12.2.42) yields the differential
equation in xa

d 2z B2w dad x + 2 d + 2pggx = 0. (12.2.43)
dt2 d(Ri + R) dt

12.2.1
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Comparison of (12.2.43) with (12.2.34) shows that the electromechanical
coupling with a resistive load has added a damping term to the differential
equation. This is easily understandable in terms of the analysis of the MHD
machine in Section 12.2.1a. The fluid motion produces a voltage proportional
to speed, a resistive load on this voltage produces a current proportional to
speed, and the current in the fluid interacts with the applied flux density to
produce a retarding force proportional to speed. Thus the electrical force
appears as a damping term in the differential equation.

To consider the kind of behavior that can result in a real system of this
kind we assume that the fluid is mercury, which has the following constants

p = 13,600 kg/m s , a = 106 mhos/m.

The system dimensions are chosen to be

1 = 1 m, 11 = 0.1 m,

w = 0.02 m, d = 0.01 m.

We set the load resistance R equal to the internal resistance Ri

R = R -= 2 x 10-5 Q.

For these given constants the differential equation (12.2.43) reduces to

dt2 + 3.68B dx. + 19.6x. = 0. (12.2.44)
dt d t

When the fluid is released from rest with the initial conditions of (12.2.35) and
(12.2.36), the resulting transients in fluid position and electrode current are
shown in Fig. 12.2.9. It is clear that with attainable flux densities the electro-
mechanical coupling force can provide significant damping for the system.*

Some properties of the curves of Fig. 12.2.9 are worth noting. First, for
very small time (t < 0.1 sec) the response in fluid position is essentially
unaffected by the force of electric origin. This occurs because the initial
velocity is zero and it takes velocity to generate voltage and drive current.
Thus the initial increase in velocity is independent of the value of flux
density and the initial current buildup is proportional to flux density.

The resistive load on the electrodes of the MHD machine in Fig. 12.2.8 can
be replaced by an electrical source and the fluid displacement can be driven
electrically. In such a case, when the fluid motion is of interest, (12.2.21) and
(12.2.42) are adequate for the study.

* An experiment to demonstrate this effect is complicated by the fact that the contact
resistance between the liquid metal and the electrodes is likely to be appreciable.
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Fig. 12.2.9 Transient response of MHD-damped system: (a) fluid position; (b) electrode
current.

12.2.2 Coupling with Flow in a Variable-Area Channel

To establish some insight into the properties of potential flow in two
dimensions, consider the flow around a corner in the configuration of Fig.
12.2.10. The fluid container has constant depth in the x,-direction and the
fluid is incompressible and inviscid. There are no electrical forces, and we
neglect gravity effects (assume gravity to act in the x8-direction).

For potential flow the velocity is given by (12.2.2) as v = -- V and the
velocity potential 0 satisfies Laplace's equation (V2

0 = 0). The boundary

___ __ ~L__I_
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condition is that the normal component of velocity must be zero along the
rigid surfaces. The solution of Laplace's equation which satisfies these
boundary conditions is

12a

where 2v, is the speed of the fluid at xz = z2 = a. The velocity is thus given by

v = ip•2 v, L - i21/2 vo X (12.2.46)
a a

Equipotential lines and streamlines are shown in Fig. 12.2.10. This solution
is valid, even if vo is time-varying.

We now restrict our attention to a steady-flow problem (vo = constant)
and find that Bernoulli's equation (12.2.11) yields

apv2 + p = constant. (12.2.47)

We note from (12.2.46) that at xz = x, = 0 the velocity v = 0. Because the
velocity is zero, this is called a stagnationpoint. If we designate the pressure
at the stagnation point as Po, (12.2.47) becomes

½pv2 + p = Po. (12.2.48)

Thus with a knowledge of the stagnation point pressure and the velocity
distribution we can find the pressure at any other point in the fluid. The use of

a

Fig. 12.2.10 Example of potential flow.
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Fig. 12.2.11 MHD conduction machine with variable area.

(12.2.46) in (12.2.48) yields for the pressure at point (xi, x 2)

P = Po - P (x,1 + Xz'). (12.2.49)

From this result we conclude that in a flowing incompressible fluid the highest
pressure occurs at the stagnation point. Moreover, for a given flow the
higher the local fluid speed, the lower the local pressure.*

This example indicates that the pressure can be changed by changing the
velocity and vice versa. Variations of velocity are obtained by varying the
cross-sectional area of the fluid flow. We now do an example of an MHD
interaction with a two-dimensional fluid flow in which the geometry of the
channel can be adjusted to vary the relation between input pressure and
velocity and output pressure and velocity. Such freedom is desirable in many
MHD applications. Here it allows us to extend the basic ideas introduced in
Section 12.2.1a to a case in which the fluid is accelerating but the flow is
steady (alat = 0).

The system to be considered is the conduction machine shown schemati-
cally in Fig. 12.2.11. The channel forms a segment of a cylinder. The inlet is
at radius r = a and the outlet is at radius r = b. The insulating walls
perpendicular to the z-direction are separated by a distance d. The electrodes
are in radial planes separated by the angle 0o. We use a cylindrical coordinate
system r, 0, z, defined in Fig. 12.2.11. There is an applied flux density B in

* Even though (12.2.49) indicates that the pressure p can go negative, in fact it cannot. As
long as we use an incompressible model, the pressure appears in only one place in the
equations of motion, and they remain unaltered if an arbitrary constant is added to (or
subtracted from) p. Other effects, such as compressibility, depend on an equation of state
that is sensitive to the absolute magnitude of the pressure. If these effects are included, a
negative pressure is not physically possible.
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the z-direction. The electrodes are connected to electrical terminals at which
the voltage V and current I are defined.

The velocity at the inlet (r = a) and the velocity at the outlet (r = b) are
assumed to be radial and constant in magnitude. We assume solutions with
cylindrical symmetry. These solutions are quite accurate, provided the angle
0o is reasonably small. Again the magnetic field generated by current in the
fluid is neglected (low magnetic Reynolds number).

As already assumed, the fluid is incompressible and inviscid with electrical
conductivity a and permeability 0o.The velocity is radial

v = irVr (12.2.50)

and the electric field intensity and current density are azimuthal

E = ioEo, (12.2.51)
J = i0Jo. (12.2.52)

We have already specified that the total flux density is

B = izB,, (12.2.53)
where B, is a constant.

We first assume that at the inlet (r = a) the radial component of velocity is

v'= 0a. (12.2.54)

Next, conservation of mass for incompressible flow requires that

v. n da = 0. (12.2.55)

The value of vr at any radius r follows as

Vr = a va. (12.2.56)
r

Steady-state operation yields V x E = 0 and the z-component of V x E =
0 [assuming that E takes the form of (12.2.51)] is

I O(rEo)=0. (12.2.57)
r Or

This yields the result that

E0 = -, (12.2.58)
r

where A is a constant to be determined from the boundary conditions. To
evaluate the constant A, the definition of the terminal voltage

- Eor dO = V (12.2.59)
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is used to obtain
V

E =- (12.2.60)
rO,

Substitution of (12.2.53), (12.2.56), and (12.2.60) into the 0-component of
Ohm's law for a moving, conducting medium (12.2.18) yields

Jo = -= +r v°B,. (12.2.61)

Note that this expression satisfies V - J = 0.
A relation between current density and terminal current can be obtained

from the expression

I = fJod dr. (12.2.62)

Performance of this integration yields

IR = - V + a0ovB,, (12.2.63)

where we have defined the internal resistance Ri as

Ri = (12.2.64)
ad In (b/a)

Note the similarity between (12.2.63) and (12.2.21) for the simpler geometry
in Fig. 12.2.3.

The radial component of the momentum equation (12.2.4) for steady-state
conditions is

pv, = - + JeOB. (12.2.65)
ar ar

Multiplication of the expression by dr, integration from r = a to r = b, and
use of (12.2.56) and (12.2.62) yields

p 2[() 1- = -Ap 1Bd (12.2.66)

where the pressure rise Ap is defined as

Ap = p(b) - p(a). (12.2.67)

Note the similarity between (12.2.66) and (12.2.24) for the constant-area
channel. The difference lies in the first term on the left of (12.2.66) which
results from the changing area and therefore changing velocity in the channel
of Fig. 12.2.11.
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Equation 12.2.66 could have been obtained from Bernoulli's equation
(12.2.11); in a simple case like this, however, it is more informative to obtain
the result from first principles.

To study some of the properties of the system with varying area consider
first the case in which the electrical terminals are open-circuited. The terminal
voltage, as obtained from (12.2.63) is

V = aOovaB, (12.2.68)

and the pressure rise obtained from (12.2.66) is

Ap = PVa 1 _ (a . (12.2.69)

Because a < b, this pressure rise is positive, which indicates that the outlet
pressure is higher than the inlet pressure. This results because the fluid
velocity decreases as r increases and this fluid deceleration must be balanced
by a pressure gradient as indicated by the momentum equation (12.2.65).
Thus the variable area channel by itself acts as a kind of "fluid transformer"
that can increase pressure as it decreases velocity or vice versa.

The electrical terminal relation (12.2.63) for the machine with variable area
(Fig. 12.2.11) has the same form as the electrical terminal relation (12.2.21)
for the machine with constant area (Fig. 12.2.3). Thus, if the inlet velocity va
is the independent mechanical variable, the analysis of the electric terminal
behavior is exactly the same as that of the constant-area machine; that is, from
an electrical point of view the machine appears to have an open-circuit voltage
(aOvaBz) in series with an internal resistance R, (12.2.64), as illustrated in
Fig. 12.2.12. This equivalent circuit can be connected to any combination of
active and passive loads, and the electrical behavior can be predicted correctly
within the limitations of the assumptions made in arriving at the model.

To study the energy conversion properties of the variable-area machine we
must generalize the concept of mechanical input power that was used in
(12.2.29) for the constant-area machine. No longer is the mechanical input
power simply equal to the pressure difference times the volume flow rate of
fluid because the difference in inlet and outlet velocities indicates that there is

1 2.d In(b/a)

Fig. 12.2.12 Electric equivalent circuit for a variable-area MHD machine.
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a net transport of kinetic energy into or out of the volume of the channel by
the fluid. To illustrate this concept consider the system operating with the
electrical terminals open-circuited. There is clearly no electrical output
power and no 12R, losses in the fluid. Moreover, the fluid is inviscid, so there
can be no mechanical losses. Thus we expect the mechanical input power to
be zero, although there is a nonzero pressure difference between inlet and
outlet of the channel.

To determine the mechanical energy interchange between the MHD device
and the energy source which makes the fluid flow through the device we use
the conservation of energy which states, in general,

total power input] Frate of increase of 1
to channel volume] Lenergy stored in volume] (12.2.70)

For the steady-state problem being considered the energy stored in the
volume is constant and the right side of (12.2.70) is zero. We thus define the
mechanical output power from the channel as Pm and the power converted to
electrical form as P,, and write (12.2.70) for conservation of mechanical
energy* as

-P'r - P,, = 0. (12.2.71)

For open-circuit conditions the electromechanical power P,m is zero and

Pm = 0. (12.2.72)

To calculate Po, which has been defined as the work done by the fluid in the
channel on the fluid mechanical source, we must specify how work is done on
the fluid in the channel and how energy is stored and transported by the fluid.

At a surface of a fluid (this can be an imaginary surface in a fluid) with
outward directed normal vector n, as illustrated in Fig. 12.2.13, there will be a
pressure force on the fluid enclosed by the surface of magnitudep and directed
opposite to the normal vector (-pn) [see (12.1.37)]. If the fluid is moving
with velocity v at the surface, the rate at which the pressure force (-pn da)
does work on the fluid inside the volume V is

[power input fromes - pn. v da. (12.2.73)
pressure forces

A fluid can store kinetic energy with a density Ipv2. At each point along the
surface of Fig. 12.2.13 fluid flow across the surface will transport kinetic
energy into or out of the volume V. The volume of fluid crossing the surface

* Even though electrical losses in the fluid (12R,) occur within the volume of the channel,
they are not included in this energy expression. This is possible here because these losses do
not affect the mechanical properties of an incompressible, inviscid fluid. When we consider
gaseous conductors in Chapter 13, the electrical losses must be included because they will
affect the mechanical properties of the conducting fluid.

___·_ _I__·^
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Fig. 12.2.13 Geometry for writing conservation of energy for a fluid.

element da in unit time is v * n da. Thus the total kinetic energy transported
out of the volume in unit time is

power output from kinetic] =~ ~2V *n da. (12.2.74)
energy transport

For an incompressible inviscid fluid (12.2.73) and (12.2.74) represent the
only mechanisms for interchanging mechanical energy with a fluid; thus the
mechanical output power P, defined in (12.2.71) is given by

P. = pn. v da + spv'v . n da. (12.2.75)

To apply (12.2.75) to the variable-area channel of Fig. 12.2,11 we must
define the surface that encloses the fluid in the channel. This surface consists
of the four channel walls and the two concentric cylindrical surfaces at r = a
and r = b. The velocity is nonzero only along the last two surfaces; con-
sequently, (12.2.75) integrates to

Pm = -p(a)v,(a)aOod + p(b)v,(b)bOod

-- pvyr(a)aOod + ½pv.(b)bOod. (12.2.76)

The assumption that ov(a) = va (12.2.54) and the use of (12.2.56) to write

v,(b) = - va (12.2.77)
b

allows us to write (12.2.76) in the simplified form

P, = aOodva[AP - pu 1- )21 , (12.2.78)

where the pressure rise Ap has been defined in (12.2.67) as Ap = p(b) - p(a).
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To apply (12.2.78) we first note that for the open-circuit condition I = 0,
and (12.2.66) yields

Apo = - . (12.2.79)

Substitution of this result into (12.2.78) yields for open-circuit conditions

Pm= 0.

This is in agreement with our intuitive physical prediction made at the start
of this development. Next, for any arbitrary load I 0 (12.2.66) yields

-Ap = p (- E -- . . (12.2.80)

Substitution of this result into (12.2.78) and simplification yield

Pm = -aOovaBz. (12.2.81)

From (12.2.71) the power converted electromechanically is

Pm = -Pm = aO0vfBlI. (12.2.82)

Reference to the equivalent circuit of Fig. 12.2.12 shows that this converted
power is simply the power supplied to the electric circuit by the battery
representing the open-circuit voltage.

This interpretation leads to the conclusion that for conversion of energy the
variable-area machine has exactly the same properties as the constant-area
machine analyzed earlier. The only difference arises when we are interested
in the details of the pressure and velocity distributions and in the nature of the
fluid mechanical source that provides the fluid flow through the machine.
As we shall see in Chapter 13, however, these are essential considerations if
the velocity is large enough (compared with that of sound) to make the
effects of compressibility important.

12.2.3 Alfv6n Waves

So far in the treatment of electromechanical coupling with incompressible
inviscid fluids we have considered problems in which there has been gross
motion of the fluid. All of these examples have been analyzed by using
potential flow. In this section we consider electromechanical coupling that
results in no gross motion of the fluid but rather involves the propagation of
a signal through a fluid. Moreover, the fluid velocity has a finite curl and a
potential flow model is inappropriate. Our discussion is pertinent to an
understanding of MHD transient phenomena.

As discussed in Section 12.1.4, an inviscid, incompressible fluid can, by
itself, support no shear stresses; but when such a fluid with very high
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electrical conductivity is immersed in a magnetic field the magnetic field
provides shear stiffness such that transverse waves, called Alfv6n waves and
very much akin to the shear waves in elastic media, can be propagated. They
play an essential role in determining the dynamics of a highly conducting
liquid or gas (plasma) interacting with a magnetic field.

To introduce the essential features of Alfv6n waves we use a rectangular
system in which variables are functions of only one dimension. It is difficult
to realize physically the boundary conditions necessary for this model. Thus,
after the ideas are introduced, we extend the example to cylindrical geometry,
where all boundary conditions can be imposed realistically.

The magnetohydrodynamic system is shown in Fig. 12.2.14. An incompres-
sible, inviscid, highly conducting (a -- co) fluid is contained between rigid
parallel walls. An external magnet is used to impose a magnetic flux density
Bo in the x1-direction. It is the effect of this flux density on the motions of the
fluid transverse to the xl-axis that is of interest.

Plate for
move i
x2 dire

rced
n th
ectic

X3

Rigid plate

Fig. 12.2.14 Fluid contained between rigid parallel plates and immersed in a magnetic
induction Bo. Motions of the fluid are induced by transverse motions of the left-hand plate,
which, like the fluid, is assumed to be highly conducting.
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Fig. 12.2.15 End view of the loop abcd shown in Fig. 12.2.14. The initial loop formed by
conducting fluid and the plate links zero flux ;.. To conserve the flux, density B remains
tangential to the loop with the additional magnetic flux density B2 created by an induced
current.

Suppose that in the absence of a magnetic field the rigid plate is set in
motion in the x2-direction. Because the fluid is inviscid, there is no shearing
stress imposed on the fluid and the plate will transmit no motion to the fluid.
In fact, if any sheet of fluid perpendicular to the x1-axis is set into transverse
motion, the adjacent sheets of fluid remain unaffected because of the lack of
shearing stresses.

Now consider the effect of imposing a magnetic field. The fluid is highly
conducting, and this means that the electric field in the frame of the fluid is
essentially zero. The law of induction can be written for a contour C attached
to the fluid particles:

E'dl= d B-n da - (12.2.83)

Ec dt is dt'

where E' is the electric field measured in the frame of the fluid.* Because
the first integral is zero, the flux A linked by a conduction path always
made up of the same fluid particles remains constant.

This is an important fact for the situation shown in Fig. 12.2.14, as can be
seen by considering the conduction path abcd intersecting the fluid and the
edge of the rigid plate at xz = 0. Initially the surface enclosed by this path is
in the z2-X, plane, hence links no flux (A = 0). When the plate is forced to
move in the xz-direction this surface, which is always made up of the same
material particles, moves to a'bcd'. Because the surface is tilted, there is now
a flux from Bo that contributes to 2. Because A must remain zero, however,
there is a current induced around the loop in such a direction that it cancels
the flux contributed by Bo. There is then an addition to the magnetic field
(induced by this current) along the x,-axis (Fig. 12.2.15) that makes the net
* See (1.1.23), Table 1.2, Appendix G.
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magnetic field remain tangential to the surface of the deformed loop. This is
necessary if A is to remain zero.

The current, returning along the path cb in the fluid flows transverse to the
field Bo; hence there is a magnetic force on the fluid (J x Boil) in the x,-
direction. The result of moving the highly conducting plate in the x2-direction
is a motion of the fluid adjacent to the plate in the same direction. The
motion of the plate creates a magnetic shearing stress on the fluid. This stress
is transmitted through the fluid in the xl-direction because the magnetic force
sets the fluid in the plane of be into motion, and this sheet of fluid now plays
the role of the plate in inducing motions in the neighboring sheets of fluid.

In our arguments we have assumed that motions of the fluid are the same
at all points in a given x, -x, plane. To provide an analytical picture of the
dynamics consistent with this assumption it is assumed that all variables are
independent of x2 and x,. As an immediate consequence of this assumption,
the condition that V - B = 0 requires that Bo be independent of x1. If, in
addition, Bo is imposed by an external magnet driven by a constant current,
it follows that B, = Bo = constant, regardless of the fluid motions. By similar
reasoning the incompressible nature of the fluid (V - v = 0), together with the
rigid walls that do not permit flow along the x,-axis, require that v, = 0
everywhere in the fluid. Hence both the fluid motions and additions to the
magnetic flux density occur transverse to the xx-axis.

From the discussion that has been given it is clear that three essential
ingredients in the fluid motions are of interest here. First, a mathematical
model must account for the law of induction. In particular, since the magnetic
field is induced in the x2-direction, we write the x2-component of the induction
equation

8E3 aB2aE =-a(12.2.84)

The second important effect comes from the high conductivity of the fluid.
In order that the conduction current may remain finite in the limit in which
the conductivity a becomes large, we must require that E' = 0. This in turn
means that E = -v x B, and it is the x3-component of this equation that is
of interest to us:

E3 = V2Bo. (12.2.85)

Substitution of this expression for E, into (12.2.84) gives an equation that

expresses the effect of the fluid deformation on the magnetic field.

B, -B2 (12.2.86)a1 • at
Note that if we define a transverse particle displacement in the fluid such that

v2 = a[/at (12.2.86) simply requires that the magnetic flux density remain
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tangential to the deformed surface of fluid initially in a given xx-xa plane.
Equation 12.2.86 shows that the lines of magnetic field intensity are deformed
as though they were "frozen" to the particles of fluid (see Fig. 12.2.15).

The third input to our analytical description comes from the effect of the
magnetic field on the fluid motions. Because the fluid moves in the z,-direction,
we write the xa-component of the force equation (12.1.21)

av) 8T"1 B o aB,
P =T 21  Bo (12.2.87)

8t 8ax1  Po 8a
Note that the absence of a velocity component v, and the one-dimensional
character of the motions under consideration eliminate the spatial derivatives
from the substantial derivative (the first term) in this expression. The only
component of the Maxwell stress tensor* that enters on the right is T'2
because variables do not depend on z, or x, and we have made use of the fact
that Bo is a constant in writing Eq. 12.2.87.

The last two equations can be used to write an expression for either B2 or
v2 ; for example, we eliminate B2 between the time derivative of (12.2.87) and
the space derivative of (12.2.86) to obtain

a2v2  Bo a~8v2a2 V2 oP B x2 ' (12.2.88)

where (Bo2
ab BoP

This is the wave equation, considered in some detail in Chapters 9 and 10.
The velocity a, with which waves propagate in the x,-direction is called the
Alfvyn velocity.t

To develop further a physical feel for the nature of an Alfv6n wave,
consider the propagation in the positive ax-direction of the pulse illustrated in
Fig. 12.2.16. The pulse, as drawn, represents what happens along the xa-axis;
but, because in our model the variables are independent of xa and sa, the
figure applies to all elements having the same coordinate x1. With reference
to Fig. 12.2.16, we can easily show that the variables as sketched satisfy
(12.2.86) and (12.2.87) with J found by Ampire's law. Moreover, (12.2.88)
is satisfied when the waveforms maintain constant shape and propagate in the
ax-direction with the Alfv6n velocity ab.

We note from Fig. 12.2.16 that the force density J x B has an x-rcomponent
equal to J3 B, and that this force density is in the positive X,-direction in the
leading half of the wave and in the negative X,-direction in the trailing half of
the wave. Thus, as the wave propagates in the x1-direction, the fluid at the
* Table 8.1, Appendix G.t Alfv6n waves are named after the man who first recognized their significance for astro-
physics. See H. Alfv6n, Cosmical Electrodynamics, Oxford, 1950.
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Fig. 12.2.16 The variables associated with an Alfv6n wave.

leading edge is accelerated upward by the electrical force and at the trailing
edge the fluid is decelerated.

It is instructive to use the pulse of Fig. 12.2.16 to construct the curves of
Fig. 12.2.17 which show the displacement of the fluid particles that were
initially on the x1-axis. Fluid particles and magnetic flux lines are displaced in
the same way by the passage of the Alfv6n wave. For a highly conducting
(a -* oo) fluid the fluid particles and magnetic flux lines are "frozen"
together and any motion of the fluid causes a distortion of the flux lines.

(a) (b)

Fig. 12.2.17 Fluid displacement and flux-line distortion in an Alfv6n wave: (a) fluid
displacement; (b) magnetic flux line.

Xý1,
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2

(b)

Fig. 12.2.18 (a) Experimental arrangement for producing torsional Alfv6n waves in
highly conducting cylindrical container; (b) conduction paths represented as "spokes" in
adjacent wheels of perfectly conducting fluid.

It would be difficult to generate Alfv6n waves in the cartesian geometry of
Fig. 12.2.14 for two reasons. First, fluid motions in the x,-direction have
been assumed independent of x2 and this implies that container boundaries in
x-Zxa planes must not inhibit the velocity vs . Second, currents that flow along
the x3-axis must have a return path (V . J = 0), and this implies that con-
ducting walls are provided by the container in x1-x, planes. We can satisfy both
requirements by using the cylindrical container shown in Fig. 12.2.18. Here

· · · _I_~ I___ I
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we expect that Alfv6n waves will appear as torsional motions of the fluid
about the axis of the cylinder. These motions, like those just considered, are
transverse to the imposed magnetic field Bo (which has the same direction as
the axis of the cylinder).

Again it is helpful to think of the fluid as composed of sheets, as shown in
Fig. 12.2.18. Now the sheets take the form of wheels that can execute torsional
motions about the cylinder axis. Currents can flow radially outward along
"spokes" of a "wheel" through the outer cylinder wall, inward along another
"spoke," and finally complete the loop along the cylinder axis (Fig. 12.2.18).
In fact, these loops provide a simple picture of the electromechanical
mechanism responsible for the propagation of waves along the magnetic
field Bo.

Suppose that the first slice of fluid is forced to rotate to the positive angle yv
(Fig. 12.2.18b). The loop formed by the conducting path through the neighbor-
ing sheet initially links no flux. To conserve this condition in spite of the
rotation a current i is induced which tends to cancel the flux caused by Bo.
This current returns to the center through the neighboring sheet. In doing so
it produces a force density J x Bo which tends to rotate this second sheet in
the positive v-direction. Of course, as the second sheet rotates, a current
must flow around a loop through the third sheet to conserve the zero flux
condition in the second loop of Fig. 12.2.18. Hence the third sheet of fluid is
set into motion and the initial rotation propagates along the cylinder axis.
These arguments can be repeated for motions that propagate in the opposite
direction. The waves have no polarity and can propagate in either direction
along the lines of magnetic field Bo The propagation is not instantaneous
because each sheet has a finite mass and time is required to set the fluid in
motion

The magnetic field has the same effect on the fluid as if the fluid sheets
were interconnected by taut springs (Fig. 12.2.19). Wave propagation occurs

f

Fig. 12.2.19 Side view of the circular sheets of fluid in Fig. 12.2.18 showing equivalent
interconnecting springs under the tensionf.
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Fig. 12.2.20 Cylindrical geometry for the study of Alfv6n waves.

very much as it does on a string (Section 9.2.). In the string the wave velocity
was proportional to the square root of the tension f*. Here the tension is
apparently proportional to B2, as can be seen by comparing (12.2.88) and
(9.2.4). This would be expected from a simple experiment: hold one sheet
fixed and twist the next sheet and there is a restoring torque proportional tof.
With the magnetic field the restoring torque is caused by J x Bo, but since J
is induced in proportion to Bo this magnetic restoring torque is proportional
to Bo, . Hence we can think of Bo2 as producing a magnetic tension in a
perfectly conducting fluid.

To be precise about the fluid velocity and electrical current distribution,
we now consider a specific analytical example. The system, illustrated in
Fig. 12.2.20, consists of a rigid, cylindrical container made of highly con-
ducting material, filled with a highly conducting fluid, and immersed in an
equilibrium axial flux density Bo produced externally. The ends of the
cylinder are also rigid and may be insulators or conductors, depending on
the boundary conditions desired. The fluid is modeled as incompressible and
inviscid with mass density p, permeability /to, and high electrical conductivity
(a -- oo). The fluid in the cylinder has axial length Iand radius R. We use the
cylindrical coordinate system illustrated in Fig. 12.2.20.

We specify that any drive will be applied at the ends and will have cylindrical
symmetry; that is, there will be no variation with the angle 0 and v =
ievo(r, z, t). In this case we can require that the relevant variables have only
the following components, defined in terms of the cylindrical coordinate
system (r, 0, z) in Fig. 12.2.20.

B = iB. + ioBo, (12.2.89)

J = if, + izJs, (12.2.90)
E = i,.Er + iE,. (12.2.91)

* See Table 9.2, Appendix G.
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The variables v., Be, Jr, J,, Er, and E. can be functions of r, z, and time t.
To analyze this system we must write the necessary equations in cylindrical

coordinates by recognizing that (ala0) = 0. For the basic equations refer to
Table 1.2*, and for their forms in cylindrical coordinates refer to any
standard text on electromagnetic theory.t The use of the constituent relation
B = uH with Ampere's law (1.1.1)* in cylindrical coordinates yields

1 aBB
= Jr, (12.2.92)

P*o az

1 a(rBo) = J-. (12.2.93)
yor ar

We obtain from Faraday's law (1.1.5)

aE a (12.2.94)
az ar at

Ohm's law (12.2.18) yields

J,= o(Er + v&Bo), (12.2.95)

J, = aE, (12.2.96)

with Jr and J. related by the condition of conservation of charge (1.1.3)*

l 8 J,
1-(rJr) + _ = 0. (12.2.97)
rar az

The 0-component of the momentum equation (12.1.14) with F" = J x B is

8vo
P o -JrBo. (12.2.98)at

We now assume high conductivity (a - co), which, coupled with the fact
that J remains finite, reduces (12.2.95) and (12.2.96) to

Er = -v 0Bo, (12.2.99)

E, = 0. (12.2.100)

These expressions are used in 12.2.94 to write

B, vo - aB. (12.2.101)
az at

* See Table 1.2, Appendix G.
f See, for example, R. M. Fano, L. J. Chu, and R. B. Adler, Electromagnetic Fields,
Energy, andForces, Wiley, New York, 1960, p. 510.
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Equations 12.2.92, 12.2.98, and 12.2.101 are combined to obtain the wave
equation

a2v -= B a% (12.2.102)
at" Mop a?

This equation indicates that waves can propagate in the z-direction with the
Alfv6n velocity [see (12.2.88)].

a. P . (12.2.103)

Note that (12.2.102) has no derivatives with respect to the radius r although
the variables may be functions of r as indicated by (12.2.93) and (12.2.97).
Variations with r are determined by boundary conditions; for instance, the
general solution of (12.2.102) can be written in the separable form as

vo = A(r)f(z, t). (12.2.104)

The function A(r) is then set by boundary conditions and automatically
satisfies all the differential equations.

To consider a specific example of boundary conditions we assume that the
end of the container at z = 0 is rigid, fixed, and made of insulating material
(a -- 0). The end at z = I is highly conducting (a -- oo) and is rotated about
its axis with a velocity

V = Re (Dre'it). (12.2.105)

These constraints impose the following boundary conditions:

at z = 0, J. = 0 (12.2.106)

at z = 1, ve = Re (Drei'1). (12.2.107)

This last boundary condition reflects the fact that there can be no slip between
the perfectly conducting moving wall and the adjacent fluid because of the
magnetic field; that is, the electric field must remain continuous across this
boundary. Since E = -v x B and the normal B is continuous across the
boundary, it follows that the fluid velocity must also be continuous.

The solution for vo can now be assumed to have the form

vo = Re [A(r)be(z) ei't]. (12.2.108)

Substitution of this assumed solution into (12.2.102) yields the differential
equation

d-- = -k2 0o, (12.2.109)
dz2

where

k Co.a.

_yl I_ · I^_
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The solution of this equation is, in general,

i0 = C1 cos kz + C, sin kz. (12.2.110)

Imposing the boundary condition at z = 1, (12.2.107) yields

Or = A(r)(C1 cos kl + C2 sin ki). (12.2.111)

To maintain A(r) nondimensional as indicated by (12.2.108), while satis-
fying this last equation for all values of r, we set

A(r) = - (12.2.112)
R

and rewrite (12.2.111) as

OR = C1 cos kl + C2 sin kl. (12.2.113)

To apply the boundary condition at z = 0 we need to find an expression for
J,. We accomplish this by first substituting (12.2.108) into (12.2.101) to
obtain

B = Re [BoA(r) ! ee"t . (12.2.114)
at dz

If we assume that
B0 = Re [A(r)Ae(z)e••t], (12.2.115)

then, using (12.2.114), we obtain

jwco(z ) = B. di, (12.2.116)
dz

which, by using (12.2.110), yields

io(z) = Bk (--C 1 sin kz + C2 cos kz). (12.2.117)

Now we use (12.2.93) to evaluate J, as

J, = Re 2k (-C sin kz + C2 cos kz)e "  . (12.2.118)

The boundary condition at z = 0 (12.2.106) now requires

C2 = 0. (12.2.119)

We use this result with (12.2.113) to find

IOR
C , = • (12.2.120)

cos kl

i
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The resulting solutions are

vo = Re r cos kz ei , (12.2.121)
cos kl I

Be = Re erB, sin It  t  (12.2.122)

J Re 2Bk sin kz e ' , (12.2.123)
owPo cos kl

J, = Re j(p% r cos kz e "). (12.2.124)
(\ BO cos kl

Study of these solutions indicates that there are standing, torsional waves
in the system. The fluid motion is azimuthal and the flux line distortion is
azimuthal. The details of the phenomena involved in the wave propagation
are as described in connection with Fig. 12.2.18. Now, however, we see that
the current loops are distributed throughout the fluid.

Because Alfv6n waves are reflected from both ends of the container, the
system exhibits an infinite number of resonances whose frequencies are
defined by

cos kl = 0. (12.2.125)

The boundary condition at the insulated end of the cylinder (12.2.106) is
essentially a free end condition. This is true because no current can flow in
the insulator and no electrical forces are available at the boundary to perturb
the fluid motion. Also, because the fluid is inviscid, there can be no tangential
mechanical force applied to the fluid by the end plate. At the perfectly con-
ducting end plate (z = 1) the fluid "sticks" to the end plate because of
electrical forces. A small radial current loop with one side in the end plate
and the other side in the fluid will keep the flux linking it at zero. This
produces the currents that interact with B, to allow no slippage of the fluid
at a perfectly conducting boundary that is perpendicular to the equilibrium
flux density.

To ascertain the kinds of numbers that would be involved in an experi-
mental system of this sort, consider a container with the dimensions

I = 0.1 m, R = 0.1 m.

Assume the fluid to be liquid sodium (sometimes used as a coorant for nuclear
reactors) which has a mass density, at 1000C, of

p = 930 kg/m3.

If we assume a flux density of
Bo = 1 Wb/m 2,

-IIIII~·PIL~LL·I~···1111111·-~·
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which is easily obtainable with iron-core electromagnets, we obtain an
Alfv6n velocity of

a, = 31 m/sec.

The lowest resonance frequency of this system is given from (12.2.125) by

21
which yields

wo= 490 rad/sec
or

f = 78 Hz.

From these results we can see that Alfv6n waves propagate at low velocities
in liquid metals and that for devices of reasonable size the resonance fre-
quencies also are low.

In our treatment of Alfv6n waves we have assumed that the electrical
conductivity of the fluid is infinite. In such a case we wonder how the flux
density Bo can exist in the fluid. The answer is simply that the conductivity is
large but finite, and in establishing the equilibrium conditions sufficient time
was allowed for the flux density Bo to be established by diffusion into the
fluid. In the analysis of the waves the assumption a - co means simply that
the diffusion time of the magnetic field through the fluid is much longer than
the time required for the wave to propagate through the fluid* (see Section
7.1).

We have introduced Alfvyn waves by using an incompressible fluid model.
These waves can also propagate in compressible, highly conducting fluids
such as gases. The analysis is essentially the same in both cases; however,
more complex waves are- possible in compressible fluids. Thus we must
exercise care to ensure that only Alfv6n waves are driven by a particular
excitation in a compressible fluid.

12.2.4 Ferrohydrodynamics

Attention has been confined so far in this section to coupling with fluids
that carry free currents. As pointed out in Section 8.5.2, magnetization forces
can also be the basis for interaction with liquids. Commonly found fluids
have no appreciable permeability. Ferromagnetic fluids, however, can be
synthesized by introducing a colloidal suspension of magnetizable particles
into a carrier fluid. Colloidal suspensions tend to settle out over long periods
of time, and in the presence of a magnetic field the magnetized particles tend

* For an example of the experimental conditions necessary see A. Jameson, "A Demon-
stration of Alfv6n Waves, I: Generation of Standing Waves," J.FluidMech., 19, 513-527
(August 1964).
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z

Fig. 12.2.21 A dish of magnetizable fluid is subjected to the magnetic field induced by
current L

to flocculate. Recent research efforts have led to the synthesis of colloidal
suspensions (e.g., submicron-sized ferrite particles in a carrier fluid of
kerosene), which are stable over indefinite periods of time.* We have no
intention of delving into this topic in depth here; rather we confine ourselves
to one simple example that illustrates this class of phenomena.

Although the ferrofluid is easily magnetizable, it can be made to be highly
insulating against electrical conduction. In a magnetic field system the
electric field is important because it determines the conduction current
(through Ohm's law). In the region occupied by a magnetic insulator the
conduction current is negligible and the equations for the magnetic field are
simply

V x H = 0, (12.2.126)

V. B = 0. (12.2.127)

These are the equations used to describe the magnetic field, even in a
dynamic situation. At any instant in time the magnetic field, at least insofar
as it is determined by the magnetized fluid, has the same distribution as if the
system were static.

As an illustration of the nature of the magnetization force consider the
experiment shown in Fig. 12.2.21. A constant current I is imposed along the
z-axis by means of a conductor. This conductor passes vertically through

* R. E. Rosensweig, "Magnetic Fluids," International Sci. Technol. 55, 48-66, 90 (July
1966).
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a dish containing the magnetic fluid. We wish to compute the static equilibrium
of the fluid that results after the current I has been turned on. This amounts
to determining the altitude h of the fluid interface above the bottom of the
dish. We can expect that, because a force density, -H - HVC1 , tends to pull
the fluid upward, the depth will be greatest where the magnetic field intensity
is greatest.

We assume that the magnetic field induced by the return current can be
ignored. Then, under the assumption of axial symmetry, Ampere's law
requires that the current I induce an azimuthally directed magnetic field
intensity H = io I 

(12.2.128)
2nr

This problem is relatively simple because the magnetizable fluid has no effect
on the distribution of H; that is, because the physical system is axially
symmetric, we can argue that the fluid deformations are also axially symmetric
and h = h(r). It is clear that (12.2.128) satisfies the field equations (12.2.126)
and (12.2.127) in the region occupied by the fluid, and because the interface
is axisymmetric it also satisfies the boundary conditions. The tangential
component of H is continuous and there is no normal component of B at the
liquid interface. Hence we know the magnetic field intensity at the outset,
and this makes finding h(r) straightforward.

The magnetic force acting on the fluid (from Section 8.5.2)* is

F= -- H HV + V( p - H - H. (12.2.129)

In the bulk of the liquid, /u is constant. Hence the force density can be written
as

F = -VV, t = - -H. (12.2.130)
2 ap

This is the form assumed in deriving Bernoulli's equation (12.2.11) which,
in the case of a static fluid, becomes

p + pgz - ý H H = constant. (12.2.131)
2 ap

Remember that this equation is valid in the bulk of the fluid. It can therefore
be used to relate the pressures and heights at the points (a) and (b) in
Fig. 12.2.21. These points are just beneath the interface, where pressures are
p. and Pb, respectively, and the altitudes are ha and hb. From (12.2.131)

Pa + pgha - 2 (Ha) = Pb + pgh, - ý ' (Hb) a. (12.2.132)
2 ap 2 ap

* See Table 8.1, Appendix G.
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Similar reasoning shows that the pressures Pa and V

niitsuncrnss the interfr rn nn~(Isd(I - "
respectively, are related by

PC = Pa. (12.2.133)

Here we have assumed that the density of the air
above the liquid can be ignored.

Now, it we could relate the pressures at adjacent -

points on opposite sides of the interface, we would ume element encloses the
have four equations that would make it possible interface between points c
to relate all four of the pressures pa, pb, p,, and p,. and b in Fig. 12.2.21.
At the interface there is a jump in y, and we must
be careful to include the effect of the first term in (12.2.129) [which was not
accounted for in (12.2.131)]. The stress tensor representation of the force
density is convenient for determining the jump in pressure at the interface
[see (8.5.41)].* A thin volume is shown in Fig. 12.2.22, as it encloses the
region of interface between points b and c. To make use of the stress tensor
in cartesian coordinates we erect a set of orthogonal coordinates (u, v, w)
at the interface, with w in the 0-direction. Force equilibrium then requires
that the sum of the surface forces balance

P[-P0-TL P{H)[s-P ( t-: (12.2.134)

Similarly, at the interface between points (d) and (a)

pd - = -(Ha)'[o - 1 - I]. (12.2.135)

Now addition of these last four equations eliminates the pressures and gives
an expression for the difference in surface elevation at points a and b as a
function of the magnetic field intensities.

pg(h, - hb) = (Po - Pu)[(Hb)2 - (Ha)2
]. (12.2.136)

Until now we have not specified the field intensity at points a and b. It has
been known all along, however, because of (12.2.128). In particular, if we
take the point a as being at r = R (which could be the outside radius of the
pan), (12.2.136) becomes an expression for the dependence of interface
altitude on the radius r.

, Ia /1 1.ff_
pg(hb - ha)= -(( o-- P) - . (12.2.137)

(27r)2 r R
This result is sketched in Fig. 12.2.23. We have assumed that the density of
the liquid is constant. This means that the total volume of the liquid must be

* Table 8.1, Appendix G.
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Fig. 12.2.23 Sketch of the liquid interface contour predicted by (12.2.137).

conserved, a fact that could be used to find the distance from a to the bottom
of the pan.

An experiment with essentially the same ingredients as this example is
shown in Fig. 12.2.24. In actuality, a significant magnetic saturation of the
liquid makes the electrically linear model used here (B = IH)only approxi-
mately correct. As we know from Chapters 3 and 8, energy methods can also
be used to calculate magnetization forces for electrically nonlinear systems,
and this is what is required to make a careful comparison of theory and
experiment.

Finally, it is worthwhile to observe that the magnetostriction force density
has no observable effect on the surface deformation. This will always be the
case as long as interest is confined to situations in which the fluid density
remains essentially constant.

12.3 ELECTRIC FIELD COUPLING WITH INCOMPRESSIBLE FLUIDS

There is a wide range of mechanisms by which an electric field can produce
a force on a fluid. In this section examples are used to illustrate two of the
most commonly encountered types of interaction.

12.3.1 Ion-Drag Phenomena

Electrical forces can be produced in highly insulating gases and liquids
by injecting charged particles and using an electric field to pull them through
the fluid. Here we assume that these charged particles are ions that might be
emitted by the corona discharge in the neighborhood of sharply pointed
electrodes placed at a high potential (several kilovolts). These ions move
through a liquid or gas under the influence of an applied electric field. Their
motion, however, is retarded by friction, and momentum is imparted to the
fluid. Therefore the ion-drag effect can be used to pump or accelerate the
fluid. Similarly, if the ion is transported by the fluid against the retarding
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Fig. 12.2.24 (a) A conductor passes along the axis of symmetry through a pan containing
the magnetizable liquid, I = 0. (b) The current Ihas been turned on. The result is a force
density -H •HVq that tends to lift the fluid upward, as predicted by (12.2.137). (Courtesy
of AVCO Corporation, Space Systems Division.)

I

Courtesy of Textron Corporation. Used with permission.
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force of the electric field, energy can be transferred from the flow into an
electrical circuit. In this context the ion-drag phenomenon is the basis for a
gaseous Van de Graaff generator analogous to that discussed in Section 7.2.2.

To be quantitative about the ion-drag phenomenon we require a con-
stitutive law to describe the conduction of current through the fluid. Here a
simple picture of the force equilibrium for a single ion is helpful. Suppose
that an ion with a charge q moves with a velocity v, relative to the gas in an
electric field intensity E. We would expect (at least at atmospheric pressure)
that the ion would experience a frictional drag force proportional (say, by
the constant 7) to the relative velocity v,. In the absence of appreciable effects
from acceleration, force equilibrium on the ion requires that

v, = q. (12.3.1)

If we let n be the number density of the ions, then the current density is

J, = nqv,, (12.3.2)

which, in view of (12.3.1), can also be written

J, = pyE, (12.3.3)

where p, = free charge density = nq,
/ = q/y = mobility of the ion.

Equation 12.3.3 is a constitutive law for the medium at rest and plays the
same role in what follows as Ohm's law did in Section 7.2. This law holds
in a frame with the same velocity v as the moving fluid, where it would be
written as JX = pfpE'. In view of the field transformations for an electric
field system (Table 6.1)*, the constitutive law can be written in the laboratory
frame as

Jf = p,(/tE + v). (12.3.4)

In the example we now undertake it is assumed that the mobility JA is a
constant, found from laboratory measurements. Note that pE is the velocity
of an ion relative to the fluid.

An electrostatic pump might be constructed as shown in Fig. 12.3.1. The
system consists of a nonpolarizable (e = co) gas flowing with constant
velocity

v = iv o  (12.3.5)

through a cylindrical insulating tube of cross-sectional area A. At z = 0 and
z = 1, plane conducting screens are placed perpendicular to the axis. We
assume that the screens do not affect the gas flow but make electrical contact
with the gas. The screens are connected to external terminals that are excited

* Appendix G.

II_ ··__ ·__ I
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at this plane

Fig. 12.3.1 Configuration for a gaseous electrostatic pump or generator.

by the constant-current source Ioas shown. At the plane z = 0 positive ions
are injected into the gas by a source of ions.

For now we assume that this source supplies ions at a rate necessary to
maintain the charge density po at the inlet screen:

at z = 0, p, = P0. (12.3.6)

The current density and electric field intensity are assumed to have only
z-components,

J = i.J, (12.3.7)
E = iE,

and to be functions of z alone. Attention is confined to steady-state operation.
In addition to the boundary condition of (12.3.6), the equations we need

to solve this problem are the z-component of (12.3.4)

J = p,(uE + v.), (12.3.8)
Gauss's law written as

dE
Eo = Pt, (12.3.9)

dz

and the conservation of charge for steady-state conditions

dJd- = 0. (12.3.10)
dz

The area over which current flows is A; consequently, the current density
and the source current are related by

J = Io. (12.3.11)

12.3.1

% J
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We first solve (12.3.8) for the electric field intensity to obtain

E = - + . (12.3.12)
P Ph#

Next, this expression is differentiated with respect to z and (12.3.9) is used
to eliminate E:

p -= d z(1" (12.3.13)
e0  dz \pgsl

Expansion of the derivative and use of (12.3.10) yields

dP= 1_ P 3 (12.3.14)
dz EoJ

Integration of this expression, use of the boundary condition of (12.3.6), and
some manipulation yield

S+ 2 (Poo)Z_ , (12.3.15)
Po R, J I

where R, = E0vo/Popl is the electric Reynolds number.
The plot of the free charge density shown in Fig. 12.3.2 makes it evident

that the rate of decay down the channel is decreased as the electric Reynolds
number is increased.

Substitution of (12.3.15) into (12.3.12) gives the electric field intensity
between the grids

E= -1 + 1[ + 2 o ( )]} (12.3.16)JU OV R J 6) 1

Pf

p.

Fig. 12.3.2 Charge-density distribution between grids. J/poVo = 1.

I
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0Z

Fig. 12.3.3 Distribution of electric field intensity between the grids. J/pov = 1.

If the ion source at z = 0 is essentially limited by space charge, it will emit
just enough charge to make the electric field at z = 0 vanish.* From (12.3.16)
this requires that

J
- 1. (12.3.17)

In our discussion it is assumed that J, Po, and vo are positive. Remember that
pE is the velocity of the ions relative to the fluid. This condition requires
that the ions have the same velocity as the fluid at z = 0. Then the electric
field is positive everywhere between the grids, as shown in Fig. 12.3.3. This
means that the ions move more rapidly than the fluid and, as we shall see,
the system operates as a pump.

As for the MHD machine discussed in Section 12.2.1, two "terminal"
characteristics of the electrohydrodynamic flow interaction are of interest-
the pressure change from inlet to outlet and the terminal voltage. The first
can be computed from the electric field intensity by making use of the Maxwell
stress tensort. The pressure forces acting on the fluid in the channel section
between z = 0 and z = I are just balanced by the Maxwell stresses acting
over the surface enclosing this section. Because there are no electrical shear
forces,

A[p(I) - p(0)] = A[T11 (1) - TI(0)] = 1 Aeo[E2(l) - E2(0)]. (12.3.18)

Since we have constrained E(0) to vanish, it is clear from this statement that

* For a discussion of this model for the ion source see O. M. Stuetzer, "Ion Drag Pumps,"
J. Appl.Phys., 31, 136 (January 1960).
t Section 8.3 or Appendix G.

I^·· ·__
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p(l) > p(O). In fact, from (12.3.16)

p(l)--p(O) + + -Rp()-p(0) = 2(V1) + ( + .]2 (12.3.19)

This result indicates that the larger R,, the smaller the pressure rise between
the grids. This is misleading because both the electric Reynolds number Re
and the first factor in (12.3.19) depend on vo. If we think of holding vo fixed,
however, and recall that R. is inversely proportional to 1, (12.3.19) shows
that the pressure rise increases as I increases.

To obtain the terminal voltage V we integrate the negative of the electric
field intensity from z = 0 to z = 1:

V L= 1 1-+1 ) - 1. (12.3.20)

This voltage is negative, as must be the case if power is supplied by the current
source to the fluid. The fact that there is a pressure rise in the direction of
flow indicates that work is done on the fluid as it passes through the region
between the grids.

Ion-drag interactions can be used not only to pump slightly conducting
fluids but also for conversion of energy from mechanical to electrical form.*
In gases the mobility of ions is so great that such devices tend to lack effi-
ciency. This shortcoming can be obviated either by using liquids, in which the
mobility of ions tends to be much lower, or by replacing the ions with larger
charged particles of liquid or solid. In any case, the electric pressure eo4E0

tends to be small compared with the magnetic pressure JjUH2 because the
electric field intensity is limited by the breakdown strength of the dielectric
medium. Hencefor agiven size of device the amount of energy converted in
an electric field interaction is much less than that found for a magnetic field
interaction.

One of the most significant reasons for our discussion of the ion-drag
phenomenon is that it is commonly (and altogether too easily) encountered
in high voltage systems, in which it accompanies corona discharge. A simple
laboratory demonstration of the effect is shown in Fig. 12.3.4, in which two
wire grids are placed at a potential difference of about 25 kV. Perpendicular
segments of wire are mounted on the lower electrode to form a "bed of nails,"
and when this grid is electrified the tips of these segments provide sites for
corona discharge. This discharge is the source of ions at z = 0 in Fig. 12.3.1.

* B. Kahn and M. C. Gourdine, "Electrogasdynamic Power Generation," AIAA J., 2,
No. 8, 1423-1427 (August 1964). Also, A. Marks, E. Barreto, and C. K. Chu, "Charged
Aerosol Energy Converter," AIAA J., 2, No. 1, 45-51 (January 1964).
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Fig. 12.3.4 Simple laboratory demonstration of ion-drag effect. In the absence of an
applied voltage the balloon rests on the plastic enclosure. With voltage, it is pushed
upward by ions being conducted between the grids.

In the absence of an applied voltage, the balloon rests on the plastic enclosure.
With voltage, it is pushed upward by the pumping action between the grids.

12.3.2 Polarization Interactions

The analog to the magnetization interactions with fluids, discussed in
Section 12.2.4, is the polarization interaction with electric fields-sometimes
referred to as "dielectrophoresis." The polarization force density for fluids
was developed in Section 8.5, in which it was found that in the absence of

12.3.2
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free charges a fluid with permittivity Ewould experience the force density*

F= -E E.EVe + V ap EE . (12.3.21)

The first term is due to inhomogeneity of the fluid. Its effect is made familiar
by the example shown in Fig. 8.5.6, in which a slab of dielectric material is
pulled into the region between plane-parallel electrodes placed at a constant
potential difference. The second term is due to changes in the volume of the
material. It can be included in the analysis of electromechanical interactions
with an incompressible fluid, but as we saw in Section 12.2.4, its effect will
cancel out of any measurable prediction based on an incompressible model for
the fluid. In what follows we do not include the second term of (12.3.21) in
our analysis but rather leave it as an exercise to see that it has no effect. We
are concerned with the dynamics of a fluid with uniform e; hence there is no
force density in the bulk of the material. In the absence of the electrostriction
force density, the electric stress tensor becomes [(8.5.46)* with al/ap = 0]

Tij = EEiE, - lbijEEkEk. (12.3.22)

Now consider the example shown in Fig. 12.3.5. Here we have a fluid
pendulum very much like that shown in Fig. 12.2.7. This pendulum, however,
is upside down because g is directed upward. The problem has a practical

Fig. 12.3.5 A liquid pendulum containing dielectric fluid. Slightly diverging plates are used
to impose a spatially varying electric field that tends to maintain the liquid in the bottom of
the tank in spite of the acceleration g.

* See Table 8.1, Appendix G.
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basis. Suppose that we wish to use the electric field to provide an artificial
"gravity" to bottom the fluid within a tank under the near-zero gravity
conditions of outer space; for example, the fluid might be the cryogenic
liquid fuel used to propel a spacecraft. The electric field then provides fluid
at a drain placed at the "bottom" of the tank. In this case g represents the
effect of acceleration of the vehicle, as, for example, that which would occur
during attitude control maneuvers. We have chosen g to be upward because
this appears to be the worst possible situation in terms of removing the fluid
from the bottom of the tank.

The U-shaped tank is considered in this example because it is easily
analyzed with the tools developed in this chapter. Even though the example
may seem academic, it has practical significance in the design of fluid
orientation systems.

Because there are no electrical forces in the bulk of the liquid, we can use
Bernoulli's equation derived in Section 12.2.1b. Again we carry out an inte-
gration of the momentum equation, as indicated by (12.2.33a), between
points a and b, defined in Fig. 12.3.5. Now, however, the interfaces are
subject to surface forces [due to the first term in (12.3.21)], and we cannot
claim that the pressures p,, and p, (just below the respective interfaces) are
equal. In carrying out the integral of (12.2.33a) we retain the pressures
evaluated at the points a and b to obtain

pl-t = 2pgx, + p,, - pb. (12.3.23)at
Here r is the velocity of the fluid directed from a to b so that

av d=2x (12.3.24)
at dt'

We have approximated the velocity as being the same along a streamline
connecting the points a and b. The cross-sectional area of the pendulum
varies somewhat because the vertical legs are constructed with side walls
composed of slightly diverging electrodes. Insofar as the fluid velocity is
concerned, the effect of the diverging plates represents a nonlinear effect
equivalent to slight changes in the length I of the pendulum; this effect is
ignored here.

The fundamental difficulty in keeping the liquid in the bottom of the tank,
with no electric field, is illustrated by combining the last two equations. With
no applied voltage, p, = p, and it is clear that the equilibrium represented
by x, = 0 is unstable. It is the purpose of the electric field to stabilize this
equilibrium.

Before completing the mathematical representation of the dynamics
consider physically how the polarization force density [the first term in

12.3.2
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(12.3.21)1 can stabilize the equilibrium at x, = 0. This force is finite only at
the two interfaces, where it is singular (infinite in magnitude over an in-
finitely thin region of space); that is, it comprises a surface force directed in
the positive x-direction on each of the interfaces in proportion to the square
of the electric field intensity. With the pendulum in equilibrium, the electrical
forces on each of the interfaces just balance. Suppose that the system is
perturbed to the position shown in Fig. 12.3.5. Then the upward-directed
force on the interface at a is increased (the plates are closer together at this
point; therefore E is greater), whereas that at b is decreased. This tends to
return the pendulum to its equilibrium position. We expect that if we can
make this stabilizing electrical effect large enough it will outweigh the de-stabi-
lizing effect of gravity.

To provide a quantitative statement of the condition for stability we com-
plete the equation of motion by relating the pressures Pa and Pb. Force
balance on the interfaces, in view of the force diagrams shown in Fig. 12.3.6,
requires

Pa, - Pa = T11"' - T1 = -_(E 0 - e) - , (12.3.25)

Pb' - Pb = T 1b' - T1 1 b = -- (E0 -- ) • (12.3.26)

Of course, the spacing d used in these expressions is evaluated at the instan-
taneous locations of the respective interfaces.

da = do - cxa, (12.3.27)

db = do + cxb. (12.3.28)

Here c is determined by the rate at which the electrodes diverge. Then, to
linear terms, the combination of (12.3.25) and (12.3.26) (remember, x, = x,)
gives

Pa - Pb + Pb' - Pa' = -2c(e -- o) )( ( . (12.3.29)

Formally, we can see that p, = p,a by joining points a' and b' with a stream-
line passing through the fluid above the interfaces (where the vapor phase
is present and density is negligible). Then, by combining (12.3.25), (12.3.26),

Pa'J a' IT 11"' Pb' b1 IT.b'
I I I

TIa a Tp1 1b6 fP 6

Fig. 12.3.6 Force equilibrium for each of the interfaces shown in Fig. 12.3.5.
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and this last expression, we obtain the required equation of motion for the
pendulum:

p d + x, -2pg + 2c(f - co) ] 0. (12.3.30)

From this it is clear that the equilibrium is stable if the voltage is made large
enough to satisfy the condition

v2
c(f - Eo) - > pg. (12.3.31)

d0

Liquid being oriented under near-zero gravity conditions is shown in
Fig. 12.3.7. Each pair of adjacent plates has a potential difference. The
zero gravity situation was created by flying the experiment within a KC-135
in a near-zero gravity trajectory. The liquid is Freon 113 with aniline dye
added for purposes of observation. The basic mechanism for orienting the
liquid is the same as that for the example considered in this section. Any two
pairs of diverging plates can be considered as constituting a fluid pendulum
with the essential behavior of that shown in Fig. 12.3.5. The stability con-
dition of (12.3.31) guarantees that the equilibrium with the fluid in the tank
"bottom" will be stable. Of course, a more complete representation of the
dynamics requires a continuum model,* for instability may develop in the
region between a single pair of electrodes.

We have stated from the outset that free charge forces are of negligible
importance. In practice, this is guaranteed by making the applied voltages
V of alternating polarity with sufficiently high frequency that free charges
cannot relax into the fluid. If the frequency is high compared with typical
mechanical frequencies, it is possible to use the same mathematical model
as that developed here, except that V is the rms value of the voltage.

12.4 DISCUSSION

In this chapter we have introduced some of the fundamental laws and
analytical techniques that are used in the study of electromechanical inter-
actions with conducting, magnetizable and polarizable fluids. We have applied
these laws and techniques to the analysis of systems in which an incom-
pressible, inviscid fluid model is appropriate. Even though the incompressible,
inviscid fluid model may seem quite restrictive, it provides an understanding
of the basic electromechanical interactions that occur in all sorts of magneto-
hydrodynamic and electrohydrodynamic systems, including those with
gaseous conductors.

* In fact, a description of this mode of instability is given in Section 10.1.
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Fig. 12.3.7 Orientation system for storing liquids within a tank in the zero gravity environ-
ment of space. The tank used in this test was spherical and transparent, with circular
electrodes which are seen here edge-on. The electrodes converge toward the bottom of the
picture; thus this is the region in which the electric field should provide an artificial
"bottom." (a) With one g acting toward the top of the picture and no electric field, the

liquid is in the upper half of tank; (b) liquid oriented at artificial "bottom" of tank under
near-zero-gravity conditions created by flying the tank within a KC-135 in a zero gravity
trajectory. The electrodes are at alternate polarities and can be viewed as a combination
of pendulums with the basic configuration shown in Fig. 12.3.5. (Courtesy of Dynatech
Corp., Cambridge, Mass.)
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In Chapter 13 the restriction of an incompressible fluid is relaxed, and the
effects of compressibility on electromechanical interactions are studied,
although the restriction to inviscid fluid models is still retained.

PROBLEMS

12.1. The mechanism shown in Fig. 12P.1 is to be used as an electrically driven rocket. An
insulating fluid of constant density p is compressed by a piston. The fluid is then ejected
through a slit (nozzle) with a velocity V,; because dD << LD, V, is approximately a constant,
and the system is approximately in a steady-state condition (8/8at = 0):

(a) What is the pressure p at the inside surface of the piston? (Assume that p = 0
outside the rocket.)

(b) Under the assumption that d < L, what is V,?
(c) What is the total thrust of the rocket in terms of the applied voltage Vo and other

constants of the system?

Fig. 12P.1

12.2. A magnetic rocket is shown in Fig. 12P.2. A current source (distributed over the
width W) drives a circuit composed in part of a movable piston. This piston drives an
incompressible fluid through an orifice of height dand width W.Because D > d, the flow is
essentially steady.

(a) Find the exit velocity V as a function of I.
(b) What is the thrust developed by the rocket? (You may assume that it is under

static test.)
(c) Given that I = 103 A, d = 0.1 m, W = 1 m, and the fluid is water, what are the

numerical values for V and the thrust? Would you prefer to use water or air in
your rocket?

Movable perfectly conducting piston

/o2 Incompressible
I o inviscid fluid D d -

p=00 I VFP',o o P=
The rocket has adepth W into the paper

Fig. 12P.2
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Movable, perfectly-

p=O

Depth W into paper

Fig. 12P.3

12.3. A magnetic rocket is shown in Fig. 12P.3. A current source Io (distributed over the
depth W) drives a circuit composed in part of a movable piston. This piston drives an
incompressible, inviscid, nonconducting fluid through two orifices, each of height d and
depth W. Because D > d, the flow is essentially steady.

(a) Find the exit velocity Vas a function of I,.
(b) What is the thrust developed by the rocket? (You may assume that it is under

static test.)

12.4. An incompressible, inviscid fluid of density p flows between two parallel walls as
shown in Fig. 12P.4. The bottom wall has a small step of height d in it at x1 = 0. At x1 =
-L, the velocity of the fluid is v = V/iI and the pressure is Po. Also, at x, = +L the
velocity of the fluid is uniform with respect to x2 and is in the xl-direction, since d << L.
Assuming that the flow is steady (a/at = 0) and irrotational, find the x1-component of the
force per unit depth on the bottom wall. The system is uniform in the x3-direction and has
the zx dimensions shown in Fig. 12P.4.

)--- 1 I "-IIt
/,x2 d

x3 x= L

Fig. 12P.4

12.5. Far away from the rigid cylinder shown in Fig. 12P.5 the velocity of a fluid with
density p is aconstant V = Voi 1 and its pressure isp,. Assume that the fluid is incompressible
and that the flow is steady and irrotational:
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(a) Find the velocity of the fluid everywhere.
(b) Sketch the velocity field.
(c) Find the pressure everywhere.
(d) Use the stress tensor to find the total pressure force (give magnitude and direction)

exerted by the fluid on the rigid cylinder. Assume that 8/8la = 0.

--- V = Vo 1

PO

a

Fig. 12P.5

12.6. An inviscid incompressible fluid flows around a rigid sphere of radius a, as shown in
Fig. 12P.6. At x• = ± oo the fluid velocity becomes v = Voi.

(a) Compute the velocity distribution v(x., x2 , x3).

(b) Find the pressurep(xl, x2, xa). [Assume that the pressure is zero at (x 1,X, 3)
(-a,0, 0).]

(c) Use the results of (b) to compute the force exerted on the sphere in the zl-direction
by the fluid.

Vo V0 --... )

xC1 -*--

Fig. 12P.6

12.7. The velocity distribution of an inviscid fluid is given as v = -VO, where
(Vo/a)3xx 2 and V. and a are constants.

(a) Show by means of a sketch the direction and magnitude of the velocity in the
x,-x2 plane.

(b) Compute the fluid acceleration. Sketch the direction and magnitude of the
acceleration in the xl-x2 plane.

(c) In what physical situation would you expect the flow to have this distribution?

12.8. In the configuration of Fig. 12P.8 an incompressible, inviscid fluid of mass density p
flows without rotation (V x v = 0), between two rigid surfaces shown, with velocity

a a

where vo and a are positive constants. Neglect gravity.

(a) Find the fluid acceleration at all points in the flow.
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X2

X2 -xl Fluid

X2
2 - x1

2 = a2

a

tflow 
x2= x

X,1 11X1

Fig. 12P.8

(b) The pressure is constrained at the origin (x =-22 = 0) to bep,.Find the pressure
at all other points in the fluid.

12.9. Consider the situation of Prob. 12.8, but now with gravity acting in the -X-
direction.

(a) Find the velocity between the rigid walls.
(b) Show that the boundary conditions are satisfied at the walls.

12.10. Figure 12P.10 shows an irrotational flow in a corner formed by a rigid wall.
(a) Let v = - VO. What are the boundary conditions on 0 ? Sketch the contour of

constant 0 in the x-y plane.
(b) What function 6(x, y)satisfies both V - v = 0 and V x v = 0 and the boundary

conditions of part (a)?
(c) Assuming that the pressure p = Po at (z, y) = 0 and that p = Po to the left and

below the wall, what is the force exerted by the fluid on the section of the wall
between x = c and x = d?

(d) Compute the fluid acceleration. Make a sketch to show the magnitude and
direction of the acceleration in the x-y plane.

x

d

V

Rigid wall

Fig. 12P.10

i I:
r
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x=0 x=1
Fig. 12P.11

12.11. An inviscid incompressible fluid enters the channel shown in Fig. 12P.l 1, with the
velocity Vo and pressurepo. One wall of the channel includes a section of length I composedof a taut membrane with the deflection &.

(a) Assume that spatial variations in the membrane deflection occur slowly so that
the velocity ve is independent of z. Relate v,(x) to Vo, 4, and h.

(b) Determine the pressure on the upper surface of the membrane using the factthatp = Po at the inlet where v = Vo.
(c) Find an expression of the form T = CE for the force per unit area Tz on the

membrane as a function of 5 and a constant C. To do this assume that perturba-

tions in & are small and use the fact that the pressure below the membrane is Po.(d) Now assume that the dynamics occur slowly enough that the result of part (c)
will remalocity vis in true evden if v = v(, el and = , t). The membrane has a

tension S and mass per unit area ao. For what values of Vo will the staticequilibrium of the membrane at u = 0 be stable?
(e) Explain physically why the instability of part (d) occurs.

12.12. A perfectly conducting membrane with tension S and mass per unit area aT, is fixed

at x = 0 and x = L. An inviscid, incompressible fluid with mass density Po flows underneaththe membrane (Fig. 12P.12). An electric field exists in the region above the membrane. The
upper region is filled with a light gas that is at atmospheric pressurelow the everywhere.

(a) Find the value thaof the pressure in the fluid for -dthat y 0 in terms of given
parameters if main , t) 0 is a state of equilibrium.

(b) Under what conditions can a small signal sinusoidal oscillation exist about the
equilibrium position (x, t) = 0 be stable??

Note. The gravitational field affects both the equilibrium and small signal solutions.
(c) Make a dimensioned wi-k plot for a real wavenumber.
(d) Justify the validity of imposing boundary conditions at y =- 0 and x = L such

that these conditions affect the membrane for 0 <x < L.

Depth D

T Upper am,S- V
zZL __region -- o0 t

O P Incompressible

g Pi inviscid

0 L

-,

-d

-0

-- d

Fig. 12P.12
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Membrane under
tension S

qP = Po" V, V o t< L ..

P=Po i x

Fig. 12P.13

12.13. A duct is formed by stretching membranes between plane parallel rigid plates, as
shown in Fig. 12P.13. An inviscid fluid flows through this duct, entering at the left with
velocity V.. The pressure outside the duct is Po, so that the membrane can be in static
equilibrium with $, = ý2 = 0.

(a) What is the largest velocity Vo that can be used and have the membranes remain
in a state of stable equilibrium?

(b) What would the appearance of the membranes be if Vo were just large enough to
make the equilibrium 41 = 4ý= 0 unstable?

12.14. An inviscid, incompressible fluid rests on a rigid bottom, as shown in Fig. 12P.14.
In the absence of any disturbances it is static and has a depth a. If disturbed, the surface of
the fluid has the position 4(x, t). As is obvious to anyone who has observed ocean waves,
disturbances of the interface propagate as waves. It is our object here to derive an equation
for the propagation of these gravity waves, which have "wavelengths" that are longcompared
with the depth a of the fluid. To do this we make the following assumptions:

(a) The effects of inertia in the y-direction are negligible. Hence the force equation
in the y-direction is

ap

Because y = ý(x, t) is a free surface, the pressure there is constant (say zero).
What is p in terms of y and 4?

(b) Because the fluid is very shallow, we can assume that v, = v,(x, t); that is, the
horizontal fluid velocity is independent of y. On the basis of this assumption, use
the conservation of mass equation for the incompressible fluid (V - v = 0) to
find v,(x, t,t) in terms of v,.

(c) Use the result of (a) to write the horizontal component of the force equation as
one equation in v.(x, t) and 4(x, t).

(d) Use the result of (b) to write an additional equation in 4 and v, (assume Z << a
so that only linear terms need be retained).

(e) Combine equations from parts (c) and (d) to obtain the wave equation for
gravity waves. What is the phase velocity of these waves?

Fig. 12P.14
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H(b)

(b)

At z z, r = r,

normal = 11
-IH= 13

For some typical
r = ra, z = z, and
any O< 0 < 21

Typical point on surface
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Fig. 12P.15

12.15*. A perfectly conducting, cylindrical pot contains a perfectly conducting fluid. A
center coaxial post is placed inside the cylinder. A current source is attached between the
center post and the outer wall of the pot to cause a current to flow on the perfectly conducting
surfaces, as shown in Fig. 12P.15a. When the current source is turned off, the fluid comes
to rest with its surface at z = a. When the current source is turned on, the magnetic field
pressure (normal surface traction) causes the surface to deform (e.g. as shown).

* Colgate, Furth, and Halliday, Rev. Mod. Phys., 32, No. 4, 744 (1960).

r = Ro

b << R,

Z, Hm

r,
H, =- I.2irr,

n1
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(a) At any typical point on the surface (0-direction symmetry exists; see Fig. 12P.15b),
the normal traction on the surface can be found by using the Maxwell Stress
Tensor and a coordinate system arranged for the sample point, as shown in Fig.
12P. 15c. Since the MST result is good for any surface point (r, z), the normal
traction is known everywhere as a function of r, the radial position of the surface
point. Find the normal traction due to the magnetic field as a function of r.

(b) The hydrostatic pressure of the dense fluid varies appreciably with z, due to
gravity, whereas the pressure of the light gas (air) may be assumed to be Po
(atmospheric) everywhere. Using the fact that the forces acting normal to the
fluid-air interface must balance, find an equation for the surface. Neglect surface
tension and call the top point on the surface z = zo, r = Ro. Hint. Remember
that at z = z,, r = Ro, the magnetic traction + Po exists on the air side of the
interface and is counterbalanced by the hydrostatic pressure on the fluid side of
the interface. No magnetic field exists in the fluid; hydrostatic pressure exerts a
normal force on the interface.

(c) In part (b) the value of zo remains unknown. Because the total mass of the fluid
(or volume for an incompressible fluid) must be conserved, set up an expression
that will determine z.. Integration need not be carried out.

12.16. The MHD machine for which dimensions and parameters are defined in Fig. 12P.16
can be assumed to operate with incompressible, uniform flow velocity v in the z-direction.
The fluid has constant, scalar conductivity. There is a uniform applied flux density B in the

Y

Fig. 12P.16



Problems

x-direction and the magnetic field due to current through the fluid may be neglected. The
electrical terminals are connected to a battery of constant voltage Vo and a constant
resistance R in series. For steady-state operation calculate and sketch the electric power out
of the generator Pe= VIand the mechanical power into the generator P, = (p(O) - p(1)]wdv
as functions of the fluid velocity v. Specify the range of velocity over which the system
operates as a generator, pump, and brake.

12.17. From a conformal-mapping analysis of end effects in an MHD generator,* for a
generator having

channel width w, channel depth d,
electrode length 1, uniform velocity ve,
fluid conductivity a, flux density Bo over length of electrodes,

the electrical output power is

1 1
Pout = (Voc - V) V - - a V1,

Ri R,
where

w
Ri = -ld

Voc = VoBow,

a = ý In 2

V = terminal voltage.

(a) Show that the mechanical power input is given by

S= ,dJBody dz (Voc - V)Voc

by direct integration. Note. All that is needed foi this integration is the facts
that E = -- V and the difference in potential between the electrodes is V.

(b) Defining efficiency as ri = PouJPm, find the efficiency at maximum power output
and the maximum efficiency and plot them as functions of1/a for 0 < 1/a < 10.

12.18. For the MHD machine with solid electrodes, for which parameters, dimensions, and
variables are defined in Fig. 12P.18a, assume that the fluid is incompressible, inviscid, and
has a constant, scalar conductivity a. Neglect the magnetic field due to current in the fluid.
The source that supplies the pressure Ap = pi - Po has the linear characteristic Ap =
Apo(1 - vlvo), where Apo and vo are positive constants. The machine with this mechanical
source can be represented electrically by the equivalent circuit of Fig. 12P.18b. Find the
open-circuit voltage Voe and the internal resistance R' in terms of the given data.

* G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill,
New York, 1965, Section 14.6.1.
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Fig. 12P.18

12.19. An MHD conduction generator has the configuration and dimensions defined in
Fig. 12P.19. The fluid is inviscid, has conductivity a, and is flowing with a uniform, constant
velocity v in the x-direction. The field intensity Ho, in the y-direction, is produced by the
system shown, which consists of a magnetic yoke with two windings; one (No) carries a
constant current I o and the other (NL) carries the load current IL . The resistance of
winding NL, fringing effects at the ends and sides of the channel, and the magnetic field
due to current in the fluid may be neglected (the magnetic Reynolds number based on
length I is small). For steady-state operating conditions find the number of turns NL

necessary to make the terminal voltage VL independent of load current IL .

System has length I perpendicular to the paper

Fig. 12P.19

i
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or

Fig. 12P.20

12.20. A dc transformer is to be made by using a closed channel of incompressible, inviscid
fluid ofconductivity a, permeability po and density p, and two MHD conduction machines,
as illustrated in Fig. 12P.20. Both machines have the same applied uniform flux density B,
but their dimensions are different, as indicated. Make the usual assumptions of uniform
velocity in the machines, neglect the magnetic fields induced by current in the fluid, and
neglect end and edge effects and fringing. For steady-state conditions find a relation between
V2 and 12 in terms of input voltage VI, conductivity a, and the dimensions. Draw the
Thevenin equivalent circuit this relation implies.

12.21. A conducting liquid flows with a constant velocity v in the closed channel shown in
Fig. 12P.21. The motion is produced by an MHD pump which provides a pressure rise

Fig. 12P.21
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pi - P2 > 0 wherepL andp2 are the outlet and inlet pressures. The fluid, as it flows through
the remainder of the channel, undergoes the pressure drop P, - P2 = kv, where k is a
known constant. Determine the velocity v in terms of the imposed magnetic field Ho and
the other constants of the system.

12.22. The rectangular channel with the dimensions shown in Fig. 12P.22 is to be used in an
MHD pump for a highly conducting liquid of conductivity a. The channel has two sides
which are perfectly conducting electrodes, and an electrical circuit is connected to them. An

R

Fig. 12P.22

external magnet produces a constant magnetic field Ho in the x2-direction. The device is to
pump against a gravitational field (which is in the (-x-)-direction):

(a) What range of values for the voltage source Vo will make the liquid flow upward
in the +x1-direction ? Assume that the pressure at x, = 0 is the same as the
pressure at x1 = L.

(b) Under the conditions of part (a) show clearly that the voltage source is supplying
power to the liquid.

12.23. Two large reservoirs of water are connected by a large duct, as shown in Fig.
12P.23a. Over a length I of this duct the walls are highly conducting electrodes short-
circuited together by an external circuit, as shown in Fig. 12P.23b. A uniform, constant
magnetic field Bois imposed perpendicular to the direction of flow. Because the water has a
conductivity a, there is a current through the water between the electrodes. Assume that the
reservoirs are so large that h1 and h 2 remain constant and that the fluid is incompressible
and inviscid. What is the velocity v of the fluid between the electrodes ?

Fig. 12P.23 (a)
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12.24. The system shown in Fig. 12P.24 consists of a storage tank of horizontal cross-
sectional area A, open to the atmosphere at the top, and an MHD generator through which
fluid stored in the tank can flow to atmospheric pressure. The generator is loaded by
resistance R as shown. The tank is initially filled to a height h. with mercury. At t = 0 the
valve is opened to allow mercury to discharge through the generator. When the height has
decreased to ho/2 the valve is closed again. Do the following calculations, using the numerical
data given below. Make any approximations that are justified by the numerical data.
Assume all flow to be incompressible (V . v = 0) and irrotational (V x v = 0).

(a) Calculate the height h of mercury in the tank as a function of time.
(b) Calculate the current in the load resistance R as a function of time.

Numerical Data

Mercury Generator
Density: 1.35 x 104 kg/m3 Ho = 1.6 x 105 A/m

D = 0.1 m
Conductivity: 106 mhos/m W = 0.2 m

Lo=lm
Tank Dimensions L, = 2 m

A = 100m 2 R = 2 x 10-5 Q
ha = 10 m Acceleration of Gravity

g = 9.8 m/sec2

12.25. A simple, bulk-coupled MHD system is used to pump mercury from one storage
tank to another, as shown in Fig. 12P.25a. Figure 12P.25b shows the details of the MHD
system. The MHD system is driven with a voltage source Vo in series with a resistance R.

Each storage tank has area A and is open to atmospheric pressure at the top. Consider
all flow to be incompressible and irrotational (V -v = 0 and V x v = 0). Use the following
numerical data for your solutions.

Mercury MHD System
Density: 1.35 x 104 kg/m3 Ho = 5 x 105 A/m
Conductivity: 106 mhos/m D = 0.01 m

W = 0.02 m
Tank Area: A = 0.1 m2 L z = 0.1 m
Acceleration of Gravity: g = 9.8 m/sec2 L 2 = 1.9 m

R = 10-5~

(a) What voltage Vo is required to maintain the levels in the tanks h, = 0.4 m and
h2 = 0.5 m. How much current and power does the voltage source supply in
this case?

(b) With the equilibrium conditions of (a) established, the voltage Vo is doubled at
t = 0. Find h2(t) and the source current i(t) for t > 0. Sketch and label curves
of these time functions. To solve this problem exactly it is necessary to know the
three-dimensional flow pattern in the tanks. For this problem, however, it is
sufficient to make the following approximations. In writing dynamical equations
neglect the acceleration of the fluid in the tanks compared with the acceleration
of the fluid in the pipe. Be sure to estimate the error caused by making this
assumption after the solution has been completed. Also neglect the magnetic
field due to current in the mercury.
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Fig. 12P.25

12.26. Figure 12P.26 shows schematically an ac, series-excited, liquid metal conduction
pump. The liquid metal has mass density p and electrical conductivity a. The excitation
winding has N turns (N >> 1) and the magnetic path is closed externally by infinitely per-
meable, nonconducting magnetic material. The dimensions are given in the figure. The
electrical terminals are driven by an alternating current source: i(t) = Isin wt, where land
wa are positive constants. The pump works against a velocity dependent pressure rise
p(l) - p(O) = Apo(v/vo), where Apo and vo are positive constants. For steady-state operation
complete the following:

(a) Find the velocity v as a function of time.
(b) Evaluate the ratio of the amplitudes of the ac and dc components of velocity.

~--·-~1(·11~1111~-··111_·
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I i(t)

Fig. 12P.26

12.27. A pair of magnetohydrodynamic conduction generators is shown in Fig. 12P.27.
In each generator a conducting fluid flows through a channel of width wand height a with
approximately uniform constant velocity V. A magnetic field is applied to each generator
by means of a magnetic circuit that produces (approximately) a uniform magnetic field in
the vertical direction. The magnetic circuits can be considered as having infinite perme-
ability with all the drop in mmf across the channels. Currents are passed through the
channels by means of highly conducting electrodes of height a and length b, as shown in
Fig. 12P.27. The current i1 (amperes) through the left generator is used to produce a magnetic
field in the left generator and in the right generator, as shown, and to deliver power to the
load RL. The current 12through the right generator follows a similar path, except that the
turns Nand Nm have different directions. We wish to establish the dynamics that would be
expected for two generators interconnected in this way, with the objective of producing ac
rather than dc power delivered to the loads R,.

(a) Find the pair of ordinary differential equations in il(t) and i2(t) that defines the
system dynamics under the given conditions.

(b) Determine the condition, in terms of the given system parameters, that the
generators be stable.

(c) Under what condition will the system operate in the sinusoidal steady state?
Given that RL = 0, a = 50 mhos/m, V = 4000 m/sec, and N = 1 turn, what
is the length b required to meet this condition?

(d) Compute the frequency at which the system will operate in the sinusoidal steady
state under the above conditions, given that Nm = 1 turn.

12.28. The system shown in Fig. 12P.28 has been proposed for an ac, self-excited, MHD
power generator. It consists of a single channel with length 1, width D, and height W,
through which an incompressible, inviscid, highly conducting liquid with conductivity a
and permeability Po flows. The velocity of the liquid is constrainedexternally to be a constant
and always in the qx-direction; that is, v = Vi1 everywhere in the channel. (The scalar Vis
a known fixed constant.) The sides of the channel at x 2 = 0 and xz = W are insulating, but
the other two sides, namely those at x, = 0 and a' = D, are perfectly conducting electrodes.



Problems

i2

Fig. 12P.27

An external circuit connected to the electrodes consists of three elements in series. The first
two elements are a load resistance RL and a capacitance C. The last element is a losslesscoil
of N turns which is wound on the top (z = W) surface of the channel to produce a uniform
x-directed magnetic field everywhere in the channel. (Reasonable assumptions may be
made about this field; namely, that it is equivalent to the field produced as if the N turns
were distributed uniformly through the depth W of the channel but on the outer perimeter
of the channel.)

(a) Find the value of the load resistance RL that will make the device act as an ac
generator (so that the current i is a pure sinusoid). Note that ac power will then
be continuously dissipated in the load resistance RL.

(b) What is the frequency of the resulting sinusoid of part (a)?
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Fig. 12P.28

12.29. The MHD generator of Fig. 12P.29 has a channel of length 1, width w, and depth d.
An external system not shown establishes the magnetic flux density Bo = i,Bo . Two equal
resistances of R 0 each are connected in series between the electrodes, with a switch S in
parallel with one resistance. The channel contains an inviscid, incompressible fluid of mass
density p flowing under the influence of a pressure difference Ap = pi - Po, which is positive
and maintained constant by external means. The fluid has an electrical conductivity o and
the magnetic field due to current flow in the fluid can be neglected.

R R

Fig. 12P.29

a -- Oo
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(a) For steady-state conditions with switch S open, find the velocity v and load
current i in terms of given data.

(b) With the system operating in the steady state as defined in part (a), the switch S
is closed at t = 0. Find the velocity v and load current ias functions ofthe given
data and time for t > 0.

12.30. This problem concerns the self-excitation of a de generator. The variables and
dimensions are given in Fig. 12P.30. The channel has a constant cross-sectional area, the
fluid is incompressible and inviscid, and the conductivity is constant and scalar. Assume

Fig. 12P.30

that the magnetic circuit is closed outside the channel with infinitely permeable iron.
The mechanical source providing power has the pressure-velocity characteristic Ap =
Pi - Po = Apo(l - v/v,), where Apo and vo are positive constants. The volume, geometry,
and space factor of the field winding are constants so that the field coil resistance varies as
the square of the number of turns R0 = N2 Rco. The numerical constants of the system are

Apo = 2 x 105 n/m2

S402m
a = 40 mhos/m

Vo = 103 m/sec
w = 0.4 m

Reo = 10- 6 Q

d = 0.2 m
RL = 2.5 x 10-2 0

(a) Find the number of turns necessary to produce a load power in RL of 1.5 x
106 W. If there is more than one solution, pick the most efficient.

(b) For the number of turns in part (a), find the start up transient in current and
plot it as a function of time. Assume an initial current of 10 A, provided by
external means.

(c) For the number of turns found in part (a) find the steady-state load power as a
function of RL. Plot the curve.

12.31. The system of Fig. 12P.31 represents an MHD transverse-current generator with
continuous electrodes. We make the usual assumptions about incompressible, inviscid,
uniform flow. The fluid has mass density p and conductivity a. The pressure drop along the
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Fig. 12P.31

length of the channel is constrained by a mechanical source to be

Pi -PoP= Ap = Po 1 - -)

where Ape and vo are positive constants. The flux density Bo is uniform and constant and is
supplied by a system not shown. Neglect the magnetic field due to current in the fluid. The
switch S is open initially and the system is in the steady state:

(a) Find the terminal voltage V.
(b) At t = 0 switch S is closed. Find and sketch the ensuing transients in fluid

velocity and load current.

ele\\
elect

mean length 1
containing inviscid
fluid of
conductivity o
density p
permeability Mo

Fig. 12P.32

Bo1
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12.32. An energy storage element is to be made by using a closed channel of incompressible
inviscid fluid of conductivity a, permeability yo, and mass density p, with an MHD con-
duction machine for coupling (Fig. 12P.32). The channel has constant cross-sectional area
wd and mean length I and the radius of the bends is large compared with the channel width
w. The flux density B is supplied by a system not shown. Assume that the velocity is uniform
across the channel and neglect end and edge effects and the magnetic field induced by current
in the fluid. Find an equivalent electric circuit as seen from the electrical terminals and
evaluate the circuit parameters.

12.33. In the system of Fig. 12P.33 an MHD generator is to be used to charge a capacitor.
The MHD generator has a channel of constant cross-sectional area with the dimensions and
arrangements shown in Fig. 12P.33. The working fluid has electrical conductivity a and is
incompressible and inviscid; it is constrained by external means to flow through the channel
with a constant velocity vo that is uniform across the cross section. The constant uniform
flux density B, is established by an external magnet not shown. Neglect the magnetic field
due to current in the fluid and neglect fringing effects at the ends.

(a) Find the capacitor voltage V. as a function of time and evaluate the final energy
stored in capacitance C.

(b) Find the pressure difference supplied by the fluid source as a function of time
and evaluate the total energy supplied by the fluid source.

(c) Account for the difference between your answers for energy in parts (a) and (b).

Fig. 12P.33

12.34. This problem is similar to the example worked in Section 12.2.1b. A U-tube of
constant, rectangular cross section contains an inviscid, incompressible conducting fluid
of mass density p and conductivity a.The fluid has a total length 1between the two surfaces
which are open to atmospheric pressure as illustrated in Fig. 12P.34a. A conduction type
MHD machine of length /1 is inserted at the bottom of the U-tube. The details of the MHD
channel are illustrated in Fig. 12P.34b. Neglect end effects and the magnetic field due to
current flow in the fluid. The system parameters are

1 = 1 m, 11 = 0.1 m, w = 0.01 m, d = 0.01 m,
Be = 2 Wb/m 2, V = 0.001 V, g = 9.8 m/sec2.

The fluid is mercury with constants a = 106 mhos/m, p = 1.36 x 104 kg/mi. With the
system in equilibrium, with switch S open, x --= x = 0; switch S is closed at t = 0.
Calculate the ensuing transients in fluid position za and electrode current i. Sketch and label
curves of these transients.
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MHD machine
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Fig. 12P.34

12.35. An incompressible inviscid conducting liquid fills the conduit shown in Fig. 12P.35.
A current density J. (known constant) flows through the fluid over a length L of the channel.
This section of the fluid is also subjected to a magnetic field produced by a magnetic circuit.
(The gap D is the only portion of the circuit where 1 0 oo.) This magnetic field is produced
by two Nturn coils wound as shown. The liquid has two free surfaces denoted by x and y.
When the fluid is stationary, x = L/2 and y = L/2. In the regions of the free surfaces,
electrodes carrying the currents I, and 12are arranged as shown. It is seen that the resistance
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Fig. 12P.35

of the circuits is related to the heights of the interfaces. Find an equation for x(t) that de-
scribes the system. Specifically, when t = 0, z = L, and dx/dt = 0, what is x(t)?

Assumptions

(a) v is directed along the channel and is independent of cross-sectional position.
(b) Ignore L(dll/dt) and L(dl2/dt) (the rates of change with time are slow because

of the fluid inertia).
(c) Ignore the magnetic field produced by Jo.

12.36. Rework the Alfv6n-wave problem in cylindrical geometry in Section 12.2.3 with the
following change in the boundary condition at z = 0. The end of the tube at z = 0 is fixed,
rigid, and perfectly conducting. Your answer should consist of solutions for ve, B0 , J,, and

Jr which are similar to (12.2.121)-(12.2.124). The functional dependences on z will be
different in your answer because of the different boundary conditions.

12.37. A perfectly conducting inviscid fluid is bounded on the right by a perfectly conducting
rigid wall, as shown in Fig. 12P.37. On the left a perfectly conducting plate also makes
electrical contact with the liquid while being forced to execute an oscillatory motion in the
x-direction. The system is immersed in a magnetic field so that when there are no motions
B = Boi,, where B0 is a constant.
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(a) Find the equations of motion, which together predict the transverse fluid
velocity v,(z, t) and field intensity H,(z, t).

(b) Use appropriate boundary conditions to find H,(z, t) in the sinusoidal steady
state.

(c) Compute the current density implied by (b). If you were to do this experiment,
how would you construct the walls of the container that are parallel to the x-z
plane? Explain in words why the fluid can transmit shearing motions even
though it lacks viscosity.

____



Chapter 13

ELECTROMECHANICS
OF COMPRESSIBLE,

INVISCID FLUIDS

13.0 INTRODUCTION

In this chapter we introduce the additional law (conservation of energy)
and constituent relations necessary to describe mathematically a compressible,
inviscid fluid. This more general model is then used to study electromechanical
interactions. Attention is focused on the effects of compressibility on the
MHD machine analyzed in Chapter 12 and on how magnetic fields can affect
the propagation of longitudinal disturbances (sound waves) in a compressible
fluid.

13.1 INVISCID, COMPRESSIBLE FLUIDS

Cases of electromechanical coupling with fluids that have appreciable
compressibility are found in MHD systems which use ionized gases
as working fluids. We have chosen a perfect gas as our model of a compres-
sible fluid. Although alternative models can be used, the principal phenomena
that we shall study also occur in systems for which other models are appro-
priate.

It is a well-known fact that when work is done to compress a gas the
temperature increases. This is an indication that the mechanical work of
compression has been stored as internal (thermal) energy in the gas. The
strong coupling between thermal and mechanical energy in a gas will
necessitate the inclusion of the conservation of energy as one of the funda-
mental equations; and it will also require that we specify thermal and
mechanical equations of state as constituent relations for the fluid.

The compressible fluids we deal with will obey the conservation of mass as
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derived and discussed in Section 12.1.2. The differential form of the con-
servation of mass is (12.1.11)

D= - p(V. v), (13.1.1)
Dt

where (D/Dt) is the substantial derivative defined in (12.1.5)

D a
Dt = + (v V). (13.1.2)
Dt at

The integral form expressing conservation of mass is (12.1.8)

(pv. n) da = - pV. (13.1.3)

The surface S encloses the volume V and n is the outward-directed unit
normal vector.

The derivation of the conservation of momentum (Newton's second law)
in Section 12.1.3 was done without assuming that the mass density p was
constant. Consequently, the resulting equations are equally applicable to
compressible fluids. The differential form of the momentum equation is
(12.1.14)

DvP D F, (13.1.4)
Dt

where F is the force density applied to the fluid by all sources-mechanical,
gravity, and electrical. The integral form of the momentum equation is
(12.1.29)

V a(v) dv + pv(v - n) da = F dV, (13.1.5)

where the surface S encloses the volume V and n is the outward-directed unit
normal vector.

After deriving the conservation of energy equation for a compressible
fluid, we describe the appropriate constituent relations. These equations,
along with the conservation of mass, the conservation of momentum, and
appropriate boundary conditions, will allow us to solve problems in which
there is electromechanical coupling with compressible fluids.

13.1.1 Conservation of Energy

In accounting for the conservation of energy we are concerned only with
thermal and mechanical energy storage in a fluid. There will be energy input
to the fluid from electromechanical conversion. The Poynting theorem can
be written as a separate electromagnetic energy conservation equation; in

~ ___
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this system, however, which is quasi-static electromagnetically, this is
unnecessary.

When a fluid is in motion, its kinetic energy density (joules per cubic
meter) is jpv2 and its kinetic energy per unit mass (joules per kilogram) is
1v0. This kinetic energy represents energy storage in the ordered or average
motion of fluid particles. In a gas the particles also have random motion.
The kinetic energy stored because of random motion is called thermal or
internal energy. The internal energy per unit mass (joules/kilogram) is
designated as u. The internal energy, like the velocity v, is an Eulerian
variable; thus the internal energy of the fluid in the vicinity of a point is
specified by the value of u at that point. The internal energy density (joules
per cubic meter) is pu. The total energy per unit mass (kinetic and thermal)
of the fluid at a point is (u + Iv2); the energy density at any point in space is
p(u + ½v2).

Consider now a volume V enclosed by the surface S with outward-directed
unit normal vector n. The conservation of energy for the fluid within the
volume is written

f p(u + ½v2) dV + p(u + ½v2)v. n da = [power input to fluid].

(13.1.6)

The first term on the left specifies the time rate of increase of energy stored
by thermal and kinetic energy in the fluid that occupies the volume V at the
instant of time in question. The second term on the left specifies the rate at
which thermal and kinetic energy is transported across the surface S and out
of the volume V. Thus the left side of (13.1.6) represents the energy that must
be supplied by the total power input to the fluid in the volume V. This power
input can be supplied by volume force densities, such as those of gravity and
of electromagnetic origin, by volume heat generation, such as joule losses
(J2/a) and viscous losses, by forces due to pressure that do work, and by
heat conduction and radiation. An inviscid fluid model is being used, and
viscous effects are ignored. Heat conduction and radiation will also be
ignored because they have very small effects in practical situations on the
electromechanical phenomena to be studied.

Before (13.1.6) can be specified in more detail and before a useful differential
form can be obtained it is necessary to use the physical properties of the fluid
to describe constituent relations.

13.1.2 Constituent Relations

A homogeneous, isotropic, compressible fluid at rest can sustain no shear
stresses. Moreover, an inviscid fluid in motion can sustain no shear stresses.

13.1.2
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Consequently, the mechanical stresses transmitted by an inviscid incom-
pressible fluid are always normal and compressive; thus we define a pressure
p exactly as we did in Section 12.1.4 with the result that the mechanical stress
tensor is (12.1.34)

Ti/~ -•m iP. (13.1.7)

The traction applied to a surface whose normal vector is n (12.1.37) is

Vm = -pn (13.1.8)

and the mechanical force density (12.1.39) is

Fmn = -Vp. (13.1.9)

We model the compressible fluid as a perfect gas. The mechanical equation
of state for a perfect gas is

p = pRT, (13.1.10)

where T is the temperature in degrees Kelvin and R is the gas constant for the
particular gas in question with units joules per kilogram-oK. The gas constant
R is obtained from the universal gas constant R a as follows. The universal
gas constant is

R, = 8.31 J/mole-oK. (13.1.11)

The gas constant R in mks units is obtained from

R= R, (13.1.12)
M

where M is the mass of one mole of the gas in kilograms. This is simply the
molecular weight multiplied by 10-3; for example, consider Argon, which
has a molecular weight of 39.9. The gas constant for Argon is thus

R - 8.31 208 J/kg- K. (13.1.13)
39.9 x 10-

Equation 13.1.10 is conventionally called a mechanical equation of state.
Because we must consider internal energy storage in the gas, we must also
specify a thermal equation of state that relates the internal energy storage to
the variables of the system.* For a perfect gas the internal energy is a function
of temperature alone and is conventionally expressed as

du = c, dT, (13.1.14)

where c,, is the specific heat capacity at constant volume with units joules
per kilogram-oK. Equation 13.1.14 is expressed in differential form because,

*For a more thorough discussion see, for instance, W. P. Allis and M. A. Herlin, Thermo-
dynamics and Statistical Mechanics, McGraw-Hill, New York, 1952, pp. 16-20 and 62-65.
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over the range of temperatures of interest to us, c, can be assumed constant;
but over a wider range of temperature c, is not constant and the variation
must be accounted for in evaluating internal energy. Our purpose of examin-
ing electromechanical interaction phenomena will be served adequately by
assuming that the specific heat capacity is constant.

Another specific heat capacity often useful and that we assume is constant
in our treatment is the specific heat capacity at constant pressure c,, which
is related to c, by the expression

c, = c, + R. (13.1.15)

Yet another useful parameter is the ratio of specific heat capacities

7 = - (13.1.16)
C'

In the ranges of temperature and pressure and for the gases of interest in
this treatment the specific heat capacities vary appreciably but the ratio of
specific heat capacities remain essentially constant.* Our assumption that
all three parameters are constant is adequate for describing the phenomena
resulting from electromechanical interactions.

Now that we have described the physical properties of inviscid, compres-
sible fluids by the constituent relations of (13.1.9), (13.1.10), and (13.1.14)
we shall recast the momentum and energy equations in more useful forms.
We are concerned primarily with pressure and electromagnetic forces and we
neglect the force of gravity.

The use of (13.1.9) for the mechanical force density in (13.1.4) yields the
momentum equation in the form

Dv
p- =-Vp + Fe, (13.1.17)

Dt

where FC is the force density of electrical origin. To rewrite the integral form
of the momentum equation we use

f--Vp dV = -- pn da (13.1.18)

to write (13.1.5) in the form

a(v) dV + pv(v n)da = -pnda + VF" dV. (13.1.19)
Jv at Js

* For a thorough discussion of the properties of gases, see, for example, H. B. Callen,
Thermodynamics, Wiley, New York, 1960, pp. 324-333.

13.1.2
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To write the energy equation (13.1.6) in more precise form we must
specify the power input to the fluid within the volume V from all sources.
Consider first the pressure forces that can be viewed as doing net work only
at the surface of the volume V. Thus, because the pressure forces are com-
pressive and normal to any surface, the power input to the fluid from pressure
forces is

pv- n da.

The use of the divergence theorem allows us to write this quantity as

f -n (pv) da = f-V (pv) dV. (13.1.20)

The electrical power input to the fluid within the volume V is the total rate
at which electrical work is done on charged particles. This includes both the
work done by electromagnetic forces and the electrical losses due to finite
conductivity in the fluid. In all cases the electrical input power density is
J . E and the total electrical power input is

Felectrical power = J -EdV. (13.1.21)
input I

To interpret J •E as the input power density to the moving gas consider
first a magneticfield system and denote with primes the variables defined in
a reference frame fixed with respect to the fluid. Using (6.1.36), (6.1.37),
and (6.1.38)*, we write

J. E = J' (E' - v x B'). (13.1.22)

Then from the vector identity

J' v x B' = -J' x B' v
it follows that

J. E = J'- E' +-J' x B' v. (13.1.23)

The first term on the right is the electric power density that heats up the fluid.
For a linear conductor J' = aE' and

j/2J'. E' - .

The second term on the right of (13.1.23) is simply Fe -v, which is the rate
at which the magnetic force density does mechanical work on the fluid.

For an electricfield system we use (6.1.54), (6.1.56), and (6.1.58)* to write
J - E in the reference frame of the fluid as

J E = (J + p'v) E'. (13.1.24)
* See Table 6.1, Appendix G.
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Expansion of this expression yields

J -E = J' •E' + p'E' v. (13.1.25)

The first term on the right is the rate of heating of the fluid and the second
term is the rate at which the electric force density p'E' does mechanical work
on the fluid.

The use of (13.1.20) and (13.1.21) with (13.1.6) yields

f a[p(u + v')] dV + p(u + Iv')v - n da

=V -V (pv) dV + J EdV. (13.1.26)

The divergence theorem is used to write

fp(u + v')v • n da = fV [p(u + jv')v] dV. (13.1.27)

Then all terms in (13.1.26) are volume integrals. The volume is arbitrary;
thus the equation must hold for the differential volume dV.

a [p(u + Iv')] + V . [p(u + jv')v] = -V. pv + J - E. (13.1.28)
at

Expansion of the derivatives in the two terms on the left and use of the
conservation of mass (13.1.1) yield the simplified result

D
p - (u + v2') = -V . (pv) + Ja E. (13.1.29)

Dr

Equations 13.1.26 and 13.1.29 are convenient forms that express the con-
servation of energy for time-varying situations. Many important problems
involve steady flow, in which case (a/at = 0) and (13.1.26) simplifies to

sp(u + v')v. n da = fV-V (pv) dV + f .-EdV (13.1.30)

and (13.1.29) simplifies to

p(v. V)(u + Iv 2) = -V. (pv) + J.E. (13.1.31)

This last equation is conventionally written in a different form by expanding
the first term on the right

V - (pv) = (v V)p + p(V -v).

13.1.2

(13.1.32)
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The use of the conservation of mass to eliminate V • v yields

V. (pv) = (v V)p - - (v . V)p. (13.1.33)
P

Recognizing that

(v.V) = (v. V)p - - (v. )p.
P P P

We write (13.1.33) in the form

V (pv) = p(v - V) p

and (13.1.31) becomes

p(v V)u + P + = J . E. (13.1.34)

This expression is simplified further by defining the specific enthalpy h as

h = u + = u + RT (13.1.35)
P

or, in differential form,

dh = du + R dT = (c, + R) dT = c, dT. (13.1.36)

Thus (13.1.34) is written as

p(v. V)(h + 2v
2 ) = J . E. (13.1.37)

This equation is in a form that emphasizes the electromechanical aspects
of a problem. It shows that electrical input power goes into enthalpy or
kinetic energy in the gas. Thus for steady-flow problems enthalpy plays the
role of energy storage in the gas other than kinetic energy.

13.2 ELECTROMECHANICAL COUPLING WITH COMPRESSIBLE
FLUIDS

Now that we have completed the description of the mathematical models
we shall use for inviscid, compressible fluids, we treat some steady-state
and dynamic systems that emphasize the physical consequences of electro-
mechanical coupling. The simplest examples that illustrate the electro-
mechanical aspects of the problems are selected. It should be clear that many
other effects will be significant in an engineering system that uses the basic
phenomena that we describe. The details of these other effects are outside
the scope of this work but they are well-documented in the literature.*

* See, for example, G. W. Sutton and A. Sherman, Engineering Magnetohydrody)namics,
McGraw-Hill, New York, 1965.

I 
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x1 = 0

Fig. 13.2.1 A conduction-type MHD machine with constant-area channel.

13.2.1 Coupling with Steady Flow in a Constant-Area Channel

In this section we analyze the system of Fig. 13.2.1 which consists of a
channel of constant cross-sectional area through which an electrically con-
ducting gas flows with velocity v. The electrical conductivity is high enough
to justify a quasi-static magnetic field model. The two walls perpendicular to
the x2-direction are electrical insulators and the two walls perpendicular to
the z3-direction are highly conducting electrodes. A flux density B is pro-
duced in the x,-direction by external means not shown. The electrodes are
connected to electrical terminals at which a voltage Vand current I are defined.
Note that this is the same configuration as that in Fig. 12.2.3 which was used
in Section 12.2.1a for the analysis of electomechanical coupling with an
inviscid, incompressible fluid. Thus the example in this section, when com-
pared with that of Section 12.2.1a, highlights the effects of compressibility
on the basic MHD interaction.

We assume that the 1/w and lid ratios of the channel are large enough that
we can reasonably neglect end effects. Also it is assumed that the flow
velocity is uniform over the cross section of the channel and that the magnetic
field induced by current in the fluid is negligible compared with the applied
field (low magnetic Reynolds number). Thus the magnetic flux density and
electric field intensity are constant and uniform along the length of the
channel

B = iB 2, (13.2.1)

E = i iE= -- i3 , (13.2.2)
w

and the velocity and current density are given by

V = ii,1, (13.2.3)

13.2.1

(13.2.4)J = i'J3 .
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The velocity v1 , current density J, and the gas variables (p, p, T) are
functions of x, but not of x, and x,. We assume that the gas has a constant,
scalar electrical conductivity a and consider only a steady-flow problem.

The equations that describe this essentially one-dimensional problem are
obtained by simplifying equations already presented. From (13.1.1) we obtain
the equation for the conservation of mass:

dp dv_v- + P = 0. (13.2.5)
dzx dxz

The momentum equation is obtained from (13.1.17) with FV = J x B:

dv, dpp dv- = JsB 2. (13.2.6)
dxz dxz

The conservation of energy (13.1.37) yields

pvl (h + vl1
2) = J 3E3 . (13.2.7)

dxz

The mechanical equation of state (13.1.10) is

p = pRT (13.2.8)

and the thermal equation of state (13.1.36) is

dh = c, dT. (13.2.9)

Finally, Ohm's law for the moving gas is J' = AE' or*

J3 = o(E 3 + vxB). (13.2.10)

In these equations a total space derivative is written because x, is the only
independent variable.

The six equations (13.2.5) to (13.2.10) have six unknowns (p, p, T,
h, vi, J3) that vary with x1. These equations are nonlinear and direct integra-
tion in a general form is not possible. The usual method of solution is to
assume that all of the variables are known at the inlet and then to integrate
the equations numerically to find the variables along the length of the
channel.

The equations can be put in a form convenient for interpretation and
numerical integration by finding influence coefficients. This process is one
of essentially finding each space derivative as a function of the variables
themselves. In the derivation of influence coefficients it is convenient to
define the velocity of sound (see Section 13.2.3)

a = /-yRT (13.2.11)
* Table 6.1, Appendix G or Section 6.3.1.
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and the Mach number of the flow

M = (13.2.12)
a

By manipulating (13.2.5) to (13.2.10) and using (13.2.11), (13.2.12), and
the ratio of specific heat capacities y (13.1.16) we obtain the influence co-
efficients in these forms

1 dv. 1 dp [(y - 1)E, + yvlB 2JJ 3
- (13.2.13)

v- dx, p dx1  (1 - M2)ypv (13.2.13)

1 dT [(1 - yM2 )Ea - yM2vjB2](y - 1)J

Tdxz (1 - M2 )ypv (13.2.14)
1 dp {(y - 1)M2E3 + [1 + (y - 1)M2 ]vIB,}yJ3

p d (1 - M2 )yp (13.2.15)

1 d(M2 ) {(y - 1)(1 + yM 2)E, + y[2 - (y - 1)M2 ]vB,}J .
.- (13.2.16)

M2 dx, (1 - M 2)ypvI

We first use these influence coefficients to draw some general conclusions
about electromechanical interactions with a conducting gas and then solve a
problem in some detail to assess the consequences of compressibility.

First, with reference to Fig. 13.2.1, consider the situation in which the
system is acting as a generator along the length of the channel. In this case

E3 < 0, J3 = o(E3 + vB 2s) > O.

It is clear from (13.2.13) to (13.2.16) that we can distinguish two cases:

subsonic flow M2 < 1,
supersonic flow M s > 1.

For subsonic flow (M 2 < 1) (13.2.13) to (13.2.16) yield the results

- > 0, < 0, dp < 0, T < 0, d(M2) > 0.
dxz dxl dx, dxl dxx

These results show the curious property that with J x B in a direction to
decelerate the gas the flow velocity actually increases. This is a direct result
of compressibility. The temperature decreases rapidly enough for the
enthalpy of the gas to supply both the energy fed into the electrical circuit
and the energy necessary for the increasing kinetic energy.

For supersonic flow (M2 > 1) (13.2.13) to (13.2.16) yield the results

< 0, p > 0,  p > 0,  T > 0, d(M) < 0.
dzl dx, dzx dzx dx,

_··_·1_
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In this case the fluid decelerates as would at first be expected because the
J x B force density tends to decelerate the gas. At the same time, however,
the increase in temperature indicates that the kinetic energy of the gas
supplies both the electrical output power and the power necessary to increase
the enthalpy of the gas.

In the subsonic case the Mach number increases and in the supersonic case
it decreases. Both changes make the Mach number tend toward unity. It is
clear from (13.2.13) to (13.2.16) that the derivatives go to infinity at M 2 = 1
and our model becomes inaccurate. The treatment of the flow in the vicinity
of the Mach number of one is outside the scope of our discussion. Suffice
it to say that for a subsonic flow that approaches Mach one the flow chokes,
and a smooth transition to supersonic flow is possible only for a very special
set of circumstances. For a supersonic flow that approaches Mach one a
shock wave will form. A shock wave is a narrow region in which the gas
variables change rapidly and the flow velocity changes from supersonic to
subsonic. A more complete model of the gas than we have used is necessary
for an analysis of shock waves. The additional constraint needed is the
second law of thermodynamics.*

The operation of the system in Fig. 13.2.1 as a pump is somewhat more
complicated. By operation as a pump (or accelerator) we mean that the
terminal voltage has the polarity shown, and v. > 0, J3 < 0. Thus electric
power is fed into the channel, and the J x B force density is in a direction
that tends to accelerate the gas. Whether it does accelerate depends on the
results obtained from (13.2.13) to (13.2.16).

Consider first the subsonic flow (M2 < 1). The requirement that J. < 0
imposes through (13.2.10) the requirement that

E3 < -- t'B2.

This ensures that electric power will be put into the fluid. Equations 13.2.13
and 13.2.14 yield the qualitative sketches of Fig. 13.2.2a. The constant y is
always in the range 1 < y < 2; thus we must distinguish two possible curves
for the temperature variation. It is evident from Fig. 13.2.2a that a J x B
force density applied in a direction that tends to accelerate a gas flowing with
subsonic velocity may actually decelerate the flow and heat the gas to a higher
temperature. The curve of (dvl/dx,) also indicates that when the magnitude
of J is made large enough the flow velocity can be increased.

For supersonic flow (M 2 > 1) with J3 < 0 and the terminal voltage set to
the polarity indicated in Fig. 13.2.1 (13.2.13) and (13.2.14) yield the qualita-
tive curves of Fig. 13.2.1 b. The upper curve indicates that for small magnitudes

* For a thorough and lucid description of the many fluid-mechanical phenomena that can
occur in one-dimensional steady flow see A. H. Shapiro, The Dynamics and Thermo-
dynamics of Compressible Fluid Flow, Vol. I, Ronald, New York, 1953, pp. 73-264.

__
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Fig. 13.2.2 Variation of velocity and temperature in a constant-area channel flow of a
compressible fluid driven by a J x B force: (a) subsonic (M2 < 1); (b)supersonic (M2 > 1).

of J. the velocity is accelerated, but for too much driving current the velocity
decreases.

Phenomena such as those demonstrated in Fig. 13.2.2 complicate the
behavior of MHD devices that use compressible working fluids. Such
phenomena are crucial in applications like plasma propulsion in which the
object is to obtain a gas velocity as high as possible. When it is realized that
these complications are predicted by an extremely simple model that neglects
viscous and boundary layer effects, turbulence, and variation of electrical
conductivity with temperature and is not complete enough to describe shock
waves in supersonic flow, then we understand how complex the behavior
of gaseous MHD systems can be and how we have to be extremely careful
in obtaining the desired result from a particular model.

In order to understand how the behavior of a constant-area channel,
MHD machine is affected by compressibility and to compare it with the
incompressible analysis of Section 12.2.1a, a numerical example is presented.

13.2.1



Electromechanics of Compressible, Inviscid Fluids

For this example we assume gas properties typical of seeded combustion
gases suitable for use in MHD generators:

R = 250 J/kgoK, y = 1.4 , c, = 875 J/kgoK, a = 40 mhos/m.

We assume that the inlet (x, = 0) conditions are known:

vl(0) = 500 m/sec, T(O) = 30000K,

p(O) = 4 x 10 N/m2, p(O) = 0.534 kg/m,3

M 2(0) = 0.238.

The channel dimensions are assumed to be w = 0.2 m, d = 0.1 m., and
I = 0.95 m. The terminals are constrained with a constant voltage source

V = 150 V,

which constrains the electric field intensity to be constant along the length of
the channel

E3 = -750 V/m.

The magnetic flux density is assumed to be

B, = 3 Wb/m 2.

These numerical values lead to an inlet current density

J3(0) = 3 x 104 A/m2 .

These numerical data are used with numerical integration of (13.2.13)
and (13.2.14) and the mechanical equation of state and the definition of the
Mach number to generate the normalized curves of Fig. 13.2.3. It is clear
from these curves that the gas properties and flow velocity vary significantly
over the length of the channel. Moreover, the rate of variation increases with
zx. With reference to the curve of M2, it is evident that if the channel were
made longer M2 would pass through unity. Although the equations would
give numerical answers, the solutions are physically impossible because the
flow would choke and it would be impossible physically to make the Mach
number greater than unity.

For this particular generator and these specified conditions the current
density can be integrated numerically over the length of the channel to obtain
the total terminal current

I= 4100 A

Thus the generated power, that is, the power fed to the voltage source at the
terminals is

P = 615,000 W.

The total pressure drop through the channel is

Ap = 2.11 x 105 N/m2,
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xl (meters)

Fig. 13.2.3 Variation of properties along a constant-area channel with compressible flow
acting as a generator.

or about 2.11 atm. It is interesting to compare these numbers with those of a
generator that has an incompressible fluid operating with the same inlet
velocity, electric field intensity, and flux density. Equations 12.2.19, 12.2.20,
and 12.2.24 yield the results for the incompressible model:

I = 2850 A, P = 427,000 W, Ap = 0.95 x 105 N/m2.

Comparison of these numbers with those of the compressible flow shows that
with compressible flow the output current, power, and pressure drop are
increased. Reference to the curves of Fig. 13.2.3 indicates that these increases
are direct results of the increase in flow velocity with distance down the
channel. The rather large difference in pressure drop is accounted for by the
necessity to accelerate the gas flow in opposition to the decelerating J x B
force.

__1IIL_ _I_
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This example has been presented to highlight some of the effects of com-
pressibility. It must be emphasized that these results and the discussion hold
only for generator operation with subsonic flow. For other conditions the
effects can be grossly different. The techniques involved are the same,
however.

13.2.2 Coupling with Steady Flow in a Variable-Area Channel

It is evident from the results of the preceding example that compressibility
can limit the performance of a constant-area channel with MHD coupling;
for example, with the conditions specified it would be impossible to operate
the system with a larger pressure drop simply by lengthening the channel.
Such limitations can be avoided by constructing the channel to make the
cross-sectional area a function of distance (x1 ) along the channel. When the
channel area varies "slowly" enough with distance along the channel, we
can use a quasi-one-dimensionalmodel to describe the system with only one
independent space variable. This technique is commonly employed in fluid
mechanics* and magnetohydrodynamics,t and it yields quite accurate
results in most applications. Its use in problems involving elastic media was
introduced in Chapters 9 and 11. We present this technique in the context of a
conduction-type MHD machine.

The system to be analyzed is illustrated in Fig. 13.2.4. It consists of a
channel of rectangular cross-section but with the dimensions of the cross-
section functions of the axial distance xz. A perfect gas having constant
electrical conductivity flows with velocity v through the channel as indicated

1=1

x1=0

Fig. 13.2.4 MHD conduction machine with varying area.

* Shapiro, op. cit., pp. 73 and 74.
t Sutton and Sherman, op. cit., Chap. II.
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Fig. 13.2.5 Approximations for electromagnetic quantities in quasi-one-dimensional
model: (a) electric field intensity; (b) current density; (c) magnetic field intensity.

in the figure. Two walls of the channel are insulators and two are electrodes
that are connected to electrical terminals at which the terminal voltage V
and terminal current I are defined with the polarities indicated.

We shall now develop the quasi-one-dimensional mathematical model for
steady-flow in the system of Fig. 13.2.4. The derivation for non-steady flow
is similar but more complex. The essential feature of the quasi-one-dimen-
sional model is that all variables are assumed independent of x, and x3 over
a cross-section and they are thus functions only of x1, the distance along the
channel. This basic assumption involves approximations that will be discussed
as we proceed.

We are considering a steady-flow problem; thus (a/at = 0) and the electric
field is conservative (V x E = 0). The actual electric field lines between the
electrodes will have the shapes shown qualitatively in Fig. 13.2.5a. In the
quasi-one-dimensional model we assume that the field lines are only in
the x,-direction and the field intensity has the value

V
E = i3E3 = -ia . (13.2.17)

w(xx)

This approximation is also illustrated in Fig. 13.2.5a and is the same as the
long-wave limit used in the treatment of elastic continua in Chapters 9 and
10. It should be evident that the quality of the approximation improves as
(dw/dxl) becomes smaller.

13.2.2
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The current density J will have the actual configuration shown in Fig.
13.2.5b. In the quasi-one-dimensional model we assume that J is in the
x3-direction:

J = i3J. (13.2.18)

and that J, is a function of x1 only. This approximation is illustrated in
Fig. 13.2.5b.

We neglect the magnetic field induced by current flow in the gas (low
magnetic Reynolds number), thus within the gas V x H = 0. For illustration
purposes we assume infinitely permeable pole pieces that conform to the
insulating walls of Fig. 13.2.4; consequently, the actual magnetic field
intensity appears as in Fig. 13.2.5c. In the quasi-one-dimensional approxima-
tion the magnetic field intensity (and flux density because B = P0H in the
gas) is in the x2-direction and given by

F
H = i2 dl) (13.2.19)

where F is the mmf (ampere-turns) applied by external means between the
pole pieces. Thus

B = i2B2(x) = 2 oF (13.2.20)
d(xl)

This approximation, also illustrated in Fig. 13.2.5c, improves in validity as
(dd/dxz) decreases.

Although Fig. 13.2.5c represents a reasonable method for establishing the
flux density, the magnetic material may not conform to the insulating walls
or the field may be excited by air-core coils. In these cases we still assume that
there is only an xs-component of B and that it varies only with x, in a manner
determined by the method of excitation. Thus B2(X1) is most often a function
independently set in the analysis of an MHD device.

It is clear from (13.2.17), (13.2.18), and (13.2.20) and Fig. 13.2.5 that
fringing fields at the ends of the channel are neglected. It should also be
clear that the approximate field quantities (13.2.17), (13.2.18) and (13.2.20)
do not satisfy the required electromagnetic equations exactly. This is a con-
sequence of the approximation.

In the quasi-one-dimensional model we assume that all the gas properties
(p, p, T) are uniform over a cross section and functions only of xx. Moreover,
we assume that the x,-component of the velocity is uniform over a cross
section. We neglect the effects of transverse velocity components. Thus, in
view of (13.2.17), (13.2.18) and (13.2.20), we write Ohm's law as

Js = ot(E + vIB,). (13.2.21)
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Use of the small volume between planes at x1 and at x, + Axz, as illustrated
in Fig. 13.2.6 with the integral form of the conservation of mass (13.1.3) and
the assumption of the uniformity of v, over a cross section gives

f(pv . n) da = p(xl + Ax1 )v1 (x, + Ax1)A(x 1 + Axx)

- p(x=)v,(x1)A(x 1) = 0, (13.2.22)

where A is the cross-sectional area given by

A(x,) = w(x1) d(x1). (13.2.23)

We divide (13.2.22) by Ax, and take the limit as Ax1 - 0 to obtain

d(pv,A)d(A) 0. (13.2.24)
dx1

This is the differential form that expresses conservation of mass in the
quasi-one-dimensional model.

In deriving the quasi-one-dimensional momentum equation it is often the
practice to use a small volume, shown in Fig. 13.2.6, with the integral form
of the momentum equation (13.1.5). It is more
direct, however, to recognize initially the assump-
tions that all gas properties and the x1-component
of velocity are uniform over a cross section and that
transverse components of velocity have negligible
effects and to write the x,-component of (13.1.4)

Pv = - - JB 2. (13.2.25)
ax1  ax,

In this equation we have used (13.1.9) for the Fig. 13.2.6 Closed surface
for derivation of conserva-

mechanical force density and J x B for the mag- tion of mass equation
netic force density. for quasi-one-dimensional

The same comments hold true for the conserva- model.
tion of energy. Recognizing the assumptions made,
we can write the quasi-one-dimensional energy equation from (13.1.37) as

pyd (h + IvI) = J3 E3 . (13.2.26)
dxx

In the quasi-one-dimensional model the equations of state (13.1.10) and
(13.1.14) or (13.1.36) are unchanged from their general forms.

The quasi-one-dimensional model of MHD interactions in the variable-
area channel of Fig. 13.2.4 consists of (13.2.17), (13.2.18), (13.2.20),
(13.2.21), (13.2.24), (13.2.25), (13.2.26), (13.1.10), and (13.1.36). This set of
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13.2.2



Electromechanics of Compressible, Inviscid Fluids

coupled, nonlinear, differential equations can be used with specified boundary
conditions to calculate how the gas properties, flow velocity, and electro-
magnetic quantities vary along the length of the channel. The equations are
summarized in Table 13.2.1.

As is the case with compressible flow in a constant-area channel, (Section
13.2.1) it is useful to derive influence coefficients that express each derivative
as a function of the variables themselves. These influence coefficients are
useful for general interpretation of properties and for numerical integration
of the equations.

By solving the equations in Table 13.2.1 for each of the derivatives sepa-
rately we arrive at the following set of influence coefficients:

l dv 1 + 1 dA
v dx1  (1 - M2) ypv1  A dx-' (13.2.27)

P[(y - 1)E3 1 , + yvB2] -  + , (13.2.28)
p dx1  (1- M2 ) y pv1  A I

1 dT M(] - 1) J M2 dA
dT (- 1) - yM 2 )E3 - yM'vB] + (13.2.29)

T dx, (1 - M2 ) Ypv1  A dx1

1 dp Y [(Y - 1)M'E 3 + {1 + (Y - 1)M 2}viB 2
p dx, (1 - M')

J dA
x + 3 +M , (13.2.30)

YPvo A dx )

M2 dx (1 - M )  ) pvL
M2 dx, (1 - M2) 'YPV 1

[2 + (y - 1)M2 ] dA} (13.2.31)
A dx

These influence coefficients should be compared with those of (13.2.13) to
(13.2.16) for the constant-area channel. It is clear that when (dA/dx, = 0)
the two sets of influence coefficients become identical.

It is also clear from (13.2.27) to (13.2.31) that for any set of conditions the
derivative of any variable can be made to have either sign and any magnitude
by adjusting the factor (dA/dx1 ). Thus the tendency of the flow to approach
Mach one in a constant-area channel can be counteracted by letting the area
of the channel vary. In fact, by adjusting the area A(x,) such that the quantity
in braces in (13.2.31) is zero all along the channel the Mach number can be
held constant along the channel. It is also true that any of the other influence
coefficients can be used to design a channel [fix A(xl)] such that one property
(v,, p, p, or T) is constant along the length of the channel.

i
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Table 13.2.1 Summary of Quasi-One-Dimensional Equations for System
of Fig. 13.2.4

Channel area A(xl) = w(x 1) d(x1 ) (13.2.23)
V

Electric field intensity E = iE 3 = -- (13.2.17)
W(x1)

Current density J = isJl (13.2.18)
Magnetic flux density B = iB ,(x1) (13.2.20)
Ohm's law J3 = a(E3 + v1B2) (13.2.21) "'

Conservation of mass d(pA) = 0 (13.2.24)
dx1

Conservation of momentum pv •, = d- - J3 B (13.2.25)
dx, dx1

d
Conservation of energy pv1  (h + 1v:) = JEs (13.2.26)

Mechanical equation of state p = pRT (13.1.10)
Thermal equation of state dh = c, dT (13.1.36)

Local sound velocity a = vyRT (13.2.11)

Local Mach number M V1  (13.2.12)
a

Although the influence coefficients of (13.2.27) to (13.2.31) are useful for
examining general properties of the variable-area MHD machine and for
numerical integration when necessary, some exact solutions are possible and
they are best obtained by using the basic equations summarized in Table
13.2.1.

Before proceeding with an example of an exact solution of the equations
it is useful to introduce a convention used in the analysis of gaseous MHD
generators. This convention defines a loading factor K as

K = E (13.2.32)
vlB

2

The use of the factor K in Ohm's law (13.2.21) yields

Js = (1 - K)cavB,. (13.2.33)

Thus, when 0 < K < 1, electric energy is being extracted from the gas;
otherwise it is being put into the gas. The power density extracted electrically
from the gas [see (13.2.26)] is

P, = -JsE, = K(1 - K)av1
2B 2

2 .

____I I_

13.2.2
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Thus it is evident that maximum energy is extracted locally when K = ½
or when the electric field intensity is one half v x B. On a continuum basis
this is the maximum output condition when the external impedance is made
equal to internal impedance. In general, K can be a function of x1; however,
to achieve maximum power extraction along the channel, K should be kept
close to the optimum value of one half. It is evident from (13.2.34) that the
maximum power density that can be extracted electrically from the gas is

o'u2B2
Pe(max) = 2 (13.2.35)

4

We now set constraints suitable for obtaining an exact solution of the
quasi-one-dimensional equations that describe the variable area MHD
machine in Fig. 13.2.4. A set of constraints is selected to correspond closely
to those used for analyzing MHD generators for large amounts of power
(more than 100 MW). We present a normalized solution in literal form and
then introduce numerical constants.

It is assumed that the values ofall quantities are known at the inlet (x, = 0).
We select the channel dimensions to achieve constant flow velocity v1,
constant loading factor K, and constant-channel aspect ratio [w(x 1)/d(xj).
The requirements of constant K and constant aspect ratio are satisfied only
if

d(xz)

Thus we assume that the magnetic field is excited by using infinitely permeable
pole pieces that conform to the insulating walls, as illustrated in Fig. 13.2.5c.
It follows that the flux density B, is given by (13.2.20).

For the constraints that have been specified, with the loading factor K
defined by (13.2.32) and the current density J3 given by (13.2.33), the equa-
tions of Table 13.2.1 can be simplified to the following:

d(pA) = 0, (13.2.36)
dx,

= -(1 - K)avvB 2
2 , (13.2.37)

dxz

dT
pvIc, - = -K(1 - K)aov 2 B2

2 , (13.2.38)
dx,

p = pRT. (13.2.39)

Before solving for any variable as a function of xz, it is convenient to obtain
relations between pairs of unknowns; for example, division of (13.2.38) by
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(13.2.37) and simplification of the results yield

dT dp
P, - K dp (13.2.40)

dx, dx,

This equation can be written as
(c,)dT 1 dp

(pR) = (Kp) d (13.2.41)
R Tdxl p dx,

Using (13.2.39) and the fact that

R y7-1'

we integrate (13.2.41) to obtain the result that

P(x1) = [T(1x)]/l[KG' -1)] (13.2.42)
p(o) T(O)j

Note from (13.2.33) that when K = 1no current flows and (13.2.42) reduces
to the standard isentropic relation between temperature and pressure.*

We now use (13.2.42) with (13.2.39) to obtain the relation between tem-
perature and density as

p(Zx) [T(x1 )][-K(Y-1)]K(Y-1)
p( - L T-(0) (13.2.43)
p(0) IT(0)l

The use of this result with (13.2.36) yields

A(xl) T(xx)][K(y-1)--]/K(y-1)
(13.2.44)

A(O) LIT(0)1I

Because the aspect ratio (w/d) is constant, (13.2.44) yields the result

d(x) w(x•) FA(xO)1d(0) w =) O) (13.2.45)

Finally, the definition of Mach number M in Table 13.2.1 with the constraint
of constant velocity yields the relation between the square of the Mach
number and the temperature:

M2(0) LT(xO) (13.2.46)

Now that we have relations among the unknowns it is necessary to obtain
a solution for only one of the unknowns as a function of x,. It is easiest to

*Allis and Herlin, op. cit., p.78 .
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do this for the temperature by using (13.2.38), which we rewrite as

dT _ -K(1 - K)avB22(13.2.47)
dx I pc,

From (13.2.36) pA = constant and from (13.2.20) and (13.2.45) B,2A =
constant.

Thus (13.2.47) becomes

dT _ K(1 - K)ravB1B(0)
(13.2.48)

dx1 p(O)c,

The right side of this expression is constant and integration yields

K(1 -- K)rovB,2(O)T(x-) - T(0)= (- - 2 
1. (13.2.49)

p(o)c,

By normalizing and rearranging this expression we obtain

T() 1 - (y - 1) K(1 - K)orvx B 2
2 (0) X. (13.2.50)

T(O) yp(O)

We define the constant C, as

(7 - 1) K(1 - K)orvI B 2 (0)
C, = (13.2.51)

yp(O)

and rewrite (13.2.50) as

= 1 - CIx1 . (13.2.52)
T(0)

We now use (13.2.42) to (13.2.46) to obtain the space variations of the other
variables; thus

P(X1 ) = (1 - C1x)y/I[K(-1)], (13.2.53)
p( 0 )

p(X0)= (1 - Cx •j)
[y-K(y-1)]/K(y-1), (13.2.54)

P( 0 )

A(x) = (1 - Cxx)K(y-l)-y/K(y-l, (13.2.55)
A(O)

d() = w(xX) = (1 - CJxx)[ K ( v- 1)-
y]/2K(y - 1), (13.2.56)

d(O) w(O)

M2() = (1 - CIz -x). (13.2.57)
M2 (0)
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To complete the description of this generator we note from (13.2.17) and
(13.2.32) that the terminal voltage with polarity defined in Fig. 13.2.4 is

V = KvLB 2(x,) w(xl) (13.2.58)

and constant. From (13.2.33) the current density is

J3 = (1 - K)av, B 2(x,). (13.2.59)

The total terminal current is

I = J. d(xj) dzx = (1 - K)av, B2(xl) d(xz) dzx. (13.2.60)

From (13.2.20) we have

B,(x1 ) d(xj) = B2(0) d(0); (13.2.61)

thus (13.2.60) is written as

I =f(1 - K)av1 BA(0) d(O) dx. (13.2.62)

In this expression the integrand is constant, which indicates that each element
dx, along the length makes the same contribution to the total current.
Integration of (13.2.62) yields

I = (1 - K)av, B2(0) d(0)1. (13.2.63)

It is interesting to note by reference to Section 12.2.1 that this is the same as
the current output from a constant-area channel of depth d(0), width w(O),
and length 1, using an incompressible fluid with conductivity a and velocity
v, in the presence of a uniform flux density of value B2(0).

It will be instructive to make the input dimensions and variables the same
as those of the constant-area channel in Section 13.2.1 and to compare the
performance of the variable area and constant-area channels. Thus we set

R = 250 J/kg°K, y = 1.4, c, = 875 J/kg°K,

a = 40 mhos/m, v, = 500 m/sec, T(0) = 30000K,

p(O) = 4 x 105 N/m2, p(O) = 0.534 kg/m3 , M 2(0) = 0.238,

w(0) = 0.2 m, d(0) = 0.1 m, I = 0.95 m,

K = Y, V = 150 V, B2(0) = 3 Wb/m2 .

First we use (13.2.51) to calculate the constant C1 :

C1 = 0.0322/m.

__I __··
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Then the expressions for the variables follow from (13.2.52) to (13.2.57):

T(xl) = (1 - 0.0322x,), = (1 - 0.0322x,)7,
T(0) p(0)

P(X1 -= (1 - 0.0322x,) 6 , A(x 1
p(O) A(0) (1 - 0.0322x1) 6

d(x) _ w(x__) 1 0.238

d(0) w(0) (1 - 0.0322x)' (1 - 0.0322x,)

These variations with x, are plotted in Fig. 13.2.7. Compare the curves in
this figure with those in Fig. 13.2.3 to learn how the slight variation of the
channel area can reduce the changes in properties along the channel. Because
the Mach number has changed so slightly over the length of the channel, the
channel can be made much longer without reaching Mach one. This was not
the case for the constant-area channel.

Further comparisons can be made in the constant-area channel with both
compressible and incompressible fluids. Assuming the same inlet dimensions
and properties for each of the three cases, we list several quantities in Table
13.2.2. Note that the constant-area generator with incompressible fluid
produces the same power as the variable-area generator but with a larger
pressure drop, and that the constant-area generator with compressible
fluid produces the most power. This is due to the acceleration of the gas
down the channel, as indicated by Fig. 13.2.3. This small increase in power
occurs at the expense of a large increase in pressure and temperature drops

1.3

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0
xl (meters)

Fig. 13.2.7 Variation of properties along a variable-area channel designed to have constant
velocity and constant loading factor while acting as a generator.

A(xt)

A(O)

ST(O)

p(x )
p(x (x)•
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Table 13.2.2 Properties of MHD Generators

Variable-Area
Constant-Area Constant-Area Constant Velocity
Incompressible Compressible Constant Loading

Fluid Fluid Factor

Terminal voltage (volts) 150 150 150
Terminal current (amperes) 2,850 4,100 2,850
Power output (watts) 427,000 615,000 427,000
Pressure drop (newtons per

square meter) 0.95 x 105 2.11 x 105 0.80 x 105
Temperature drop (degrees

Kelvin) ... 420 93

over the variable-area generator. Although it is beyond the scope of this
book, it is worthwhile to remark that this increase in power output from the
constant-area channel results in the generation of considerable entropy
which makes the energy in the exhaust fluid less available than with the
variable-area channel.

In our analysis of the variable area channel we defined a set of constraints
that allowed the complete solution of the differential equations in closed
form. Several other sets of constraints allow direct integration of the equa-
tions. For still others numerical integration is necessary for solution.

It must be recognized that when a set of constraints is selected and closed-
form solutions are obtained the design of a generator is fixed. In our example
this means we specify the dimensions [d(x1), and w(xz) ]. Now, if we wish to
operate this channel with a different set of inlet conditions, magnetic flux
density, and/or applied voltage, we can no longer, in general, determine how
the properties vary along the channel by literal integration. Instead, we must
integrate numerically. Thus, if we wanted to fix the inlet properties to the
channel we designed in our example and to find the output current and power
as a function of load resistance for the range from open-circuit to short
circuit, our solution in closed form would represent only one point on the
curve. The remainder of the points would have to be found by numerical
integration.

The preceding analysis of a variable-area MHD machine with a com-
pressible working fluid is the basic technique in the study of electromechanical
coupling in conduction-type MHD generators. Several types of machine have
been built or proposed.* A cutaway drawing of one machine is shown in Fig.
13.2.8 and a photograph in Fig. 13.2.9.

* T. R. Brogan, "MHD Power Generation," IEEE Spectrum, 1, 58-65 (February 1964).
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Fig. 13.2.8 Cutaway drawing of Avco Mark V rocket-driven, self-excited MHD power generator. Oxygen and fuel are burned in the
combustion chamber to create a 5000'F electrically conducting gas which flows through the channel, where it interacts with the magnetic
field to generate power. The magnet coil is excited by part of the generator output. For a gross power output of 31.3 MW, 7.7 MW are used to
energize the field coils. (Courtesy of Avco-Everett Research Laboratory, a division of Avco Corporation.)

Courtesy of Textron Corporation. Used with permission.
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Fig. 13.2.9 Photograph of Avco Mark V generator described in Fig. 13.2.8. (Courtesy of
Avco-Everett Research Laboratory, a division of Avco Corporation.)

13.2.3 Coupling with Propagating Disturbances

Recall from Section 12.2.3 that in the analysis of Alfvyn waves propagating
through an incompressible fluid of high electrical conductivity the fluid
motion was entirely transverse. Even though the assumption of incompressi-
bility was made, it was not necessary for the type of fluid motion described.
Thus Alfv6n waves are also found in an inviscid gas of high electrical con-
ductivity.

Because a gas is compressible, it will also transmit longitudinal (acoustic)
waves that are very much like the longitudinal elastic waves analyzed in
Chapter 11. The propagation of acoustic waves in a gas can be affected by
bulk electromechanical coupling when the gas has high electrical conductivity
and is immersed in a transverse magnetic field. These modified disturbances
are called magnetoacoustic waves. The same phenomena also occur in liquids
because liquids are slightly compressible. The effect of bulk electromechanical
coupling on acoustic waves in a liquid, however, is much less pronounced
than in a gas. Consequently, we use our mathematical model of a gas to
describe acoustic waves first and then to describe magnetoacoustic waves.

13.2.3

Courtesy of Textron Corporation. Used with permission.
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13.2.3a Acoustic Waves

As already stated, we shall study longitudinal disturbances, and thus we
assume the rectangular channel in Fig. 13.2.10, which has rigid walls per-
pendicular to the x,- and x,-axes and infinite length in the x,-direction. At
x, = 0 a close-fitting piston, perpendicular to the x,-direction, can be driven
in the x1-direction by a mechanical source. The channel is filled with a gas,
with gas constant R and specific heat capacity at constant volume c,, that
can be represented as ideal. With this arrangement, the piston will drive
disturbances that are uniform across the channel and that will propagate along
the channel. The infinite length in the x,-direction precludes reflections of the
disturbance.

It is clear from the configuration of Fig. 13.2.10 that with disturbances
driven by the piston uniformly in an x2,-x,-plane there will be no variation of
properties with x2 or x, and there will only be an x1-component of velocity v,.
Thus we can write the equations of motion for the gas in one-space-dimen-
sional forms:

conservation of mass (13.1.1)

Dip av,
D-- -- p - (13.2.64)

Dt x, '
where now

D = a- + v a (13.2.65)
Dt (at ax,

conservation of momentum (13.1.17)

P Dt = ax (13.2.66)
Dt ax,

conservation of energy (13.1.29)

Sa
p (u + v2) =- (pv1 ), (13.2.67)

Dt ax1
and the equations of state (13.1.10) and (13.1.14)

p = pRT, du = c, dT. (13.2.68)

Before proceeding to analyze the propagation of disturbances, it will be
useful to simplify the equations somewhat. First, we use the equations of state
to eliminate u and then T from the conservation of energy.

cv Drlp , Dcl1 0
p+ pDv Dt - (p v ). (13.2.69)

R Dtp Dt ax



Electromechanical Coupling with Compressible Fluids

Fig. 13.2.10 Configuration for studying propagation of longitudinal (acoustic) disturb-
ances in a gas.

Next, the conservation of momentum equation simplifies this expression to

PRD 1p -P a 1  (13.2.70)

Finally, the conservation of mass equation eliminates the space derivative of
v, and the derivative on the left is expanded to obtain

D -p _ yp D- p (13.2.71)
Dt p Dt

An equation of the same form can be obtained for three-dimensional varia-
tions of properties.

Equations 13.2.64, 13.2.66, and 13.2.71 are sufficient to describe the
propagation of disturbances through the gas; these equations, however, are
nonlinear. For the remainder of this section, we assume that the disturbances
involve small perturbations from an equilibrium condition such that the
equations can be linearized. Thus we represent the three relevant variables
in terms of equilibrium quantities (subscript o) and perturbation quantities
(primed)

P = Po + p', (13.2.72a)

P = Po + P', (13.2.72b)

v, = 1. (13.2.72c)

At equilibrium the gas is at rest; thus the equilibrium value of v, is zero.
Substitution of (13.2.72a-c) into (13.2.64), (13.2.66), and (13.2.71) and

I~-·^II·L*·I~··--CI---I
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retention of only linear terms in the perturbation quantities yield

ap' av'
p' Po 1, (13.2.73)

at 0a-x

av; ap'
Po L p' (13.2.74)at ax

p'= YPo p'. (13.2.75)
Po

In obtaining (13.2.75), the linearized version of (13.2.71) has been integrated
and the constant of integration set to zero because both perturbation quan-
tities are zero at equilibrium.

Elimination ofp' and p' from (13.2.73) to (13.2.75) yields a single equation
with vi as the unknown:

a2 v' ypo0 a2vS- (13.2.76)
at" Po axi "

This is a wave equation (see Section 11.4.1) that describes longitudinal

(acoustic) waves that propagate with a sound speed given by*

a, = (YP) (13.2.77)

Refer now to Fig. 13.2.10. We specify that the piston be driven with small
amplitude oscillations such that the velocity of the gas at x1 = 0 is con-
strained to be

v;(0, t) = V,, cos cot. (13.2.78)

Because the channel is infinitely long in the xj-direction, disturbances will
propagate only in the positive x_-direction (there are no reflected waves).
Thus the velocity of the gas at any point along the channel for steady-state
conditions is

v'(x1, t) = Vm'cos (ot - -x . (13.2.79)
a,

That this is a solution of (13.2.76) which satisfies the boundary condition of
(13.2.78) can be verified by direct substitution.

We can now use (13.2.79) in (13.2.73) to find the perturbation density

p'(xl, t) = p cos cot - - x . (13.2.80)
a, a,

* This is the same speed as that given by (13.2.11).
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U1 P

Fig. 13.2.11 Density and velocity variations in a sound wave of frequency w propagating
in the positive xq-direction.

Sketches of the variation of density and velocity as functions of space at a
given instant of time are shown in Fig. 13.2.11. Note that the velocity and
density perturbations are in phase and that the whole pattern propagates in
the positive x1-direction with the acoustic speed a,.

It is clear from the nature of the wave equation (13.2.76) that sound waves
propagate in our assumed perfect medium without dispersion. Thus all the
techniques and conclusions of Section 9.1.1 apply equally well to sound
waves.

It is also worthwhile at this point to comment that no heat conduction
term appears in the conservation of energy equation. This is the model
that best describes sound waves from the audio-frequency range up to the
megacycle per second range.

In modeling the slight compressibility of liquids to describe mechanical
behavior during moderate changes in pressure the temperature is immaterial.
Consequently, the conservation of energy equation and the thermal equation
of state are dropped, and the mechanical equation of state is conventionally
written as*

dp-= dp, (13.2.81)
P

where K is the compressibility. For small perturbations about an equilibrium
with the definitions of (13.2.72a,b) (13.2.81) can be linearized and integrated
to obtain

p' = - p'. (13.2.82)
KPo

* See, for example, H. B. Callen, Thermodynamics, Wiley, New York, 1960, pp. 344-349.
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If this expression is used in place of (13.2.75) with (13.2.73) and (13.2.74),
it will be found that a wave equation like that of (13.2.76) will result and
(ypl/po) will be replaced by (1/Kpo). Thus for a liquid with density po and
compressibility K the acoustic speed is

a, - . (13.2.83)

With this modification all the results already obtained for acoustic waves in
inviscid gases hold equally well for acoustic waves in inviscid liquids.

In this mathematical development we used a lossless fluid model with the
mathematical result that a plane disturbance propagates with no attenuation.
In all real fluids viscosity (mechanical loss) dissipates energy and damps
disturbances. In most practical problems, however, the damping is slight
and can be treated mathematically as a perturbation of the lossless analysis,
much like the process used to introduce electrical losses in transmission lines.t
Although the problem of viscous damping of acoustic waves is not analyzed
in this book, the concept and mathematical model of viscosity is introduced
in Chapter 14, and it is a straightforward process to include viscous terms as
perturbations on the lossless analysis and evaluate viscous damping of
acoustic waves.

13.2.3b Magneloacoustic Waves

Now that we have described the physical nature and mathematical char-
acterization of ordinary acoustic waves, we add bulk electromechanical
coupling to see how acoustic waves are modified to magnetoacoustic waves.
The physical system to be used is the rectangular channel of Fig. 13.2.10,
with electric and magnetic modifications, as illustrated in Fig. 13.2.12. The
channel is fitted with pole pieces and an excitation winding which produce,
at equilibrium, a flux density that is uniform throughout the channel and has
only an xz-component:

B = i,B,. (13.2.84)

The walls of the channel that are perpendicular to the x,-axis are made of
highly conducting electrodes. The movable piston is also made of highly
conducting material.

Because of the high conductivity of the gas, the electrodes, and the piston
and because of the presence of an applied magnetic field, the electromagnetic
part of this system is represented by a quasi-static, magnetic field system.

t See, for example, R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy
Transmission andRadiation, Wiley, New York, 1960, Chapter 5, p. 179.
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Movable pisto
made of highl
conducting
material o--

Fig. 13.2.12 Configuration for studying propagation of magnetoacoustic disturbances in
a highly conducting gas.

Moreover, the assumed symmetry in the problem (including a neglect of
fringing effects at the ends and edges of the channel) leads to the conclusion
that, as in the preceding section, all variables are independent of x, and x3 .
Furthermore, the gas velocity has only an x1-component v1 , the highly
conducting electrodes cause the electric field intensity to have only an
x3-component E3 , the current density in the gas thus also has only an xz-
component,* and the perturbation magnetic field induced by current flow
in the gas has only an x,-component. Summarizing these statements about
electromagnetic quantities, we have

E = i3E3(xz, t), (13.2.85a)

J = i3JA3(x, t), (13.2.85b)

B = i2[Bo + B2(x 1, t)]. (13.2.85c)

I n order to describe mathematically the dynamic nature of magnetoacoustic
waves, we must modify (13.2.64) to (13.2.68) to include electromechanical
coupling terms and add the electromagnetic equations necessary for a
complete description.

* As we shall see subsequently, there is longitudinal current in the electrodes to satisfy
V-J = 0.
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First, the momentum and energy equations (13.2.66) and (13.2.67) must
be modified to include coupling terms, thus:

conservation of momentum (13.1.17) is

Dav1 ap
p - J3(Bo + B2), (13.2.86)

Dt ax,

and conservation of energy (13.1.29) is

D, a
P - (u + -v_) = (p 1) + J3 E,. (13.2.87)

Dt ax,
Next, recognizing that the equilibrium flux density Bo is not a function of

time or space, the relevant electromagnetic equations are:

Ampere's law (1.1.1)*

1 aBB S_ J 3, (13.2.88)
P0o xZ

Faraday's law (1.1.5)*
aE ,a(13.2.89)

ax, at
and Ohm's law J' = aE' written ast

J3 = a[E3 + vl(Bo + B2)]. (13.2.90)

Note that V -B = 0 is automatically satisfied by the functional form of B
that results in this problem.

The equations necessary for describing magnetoacoustic disturbances are
(13.2.86) to (13.2.90), plus the conservation of mass (13.2.64) and the
equations of state (13.2.68). As in the case of acoustic waves, these equations
are nonlinear; thus we assume perturbations small enough to allow us to
linearize the equations of motion. Again we represent the relevant variables
in terms of equilibrium quantities (subscript o) and perturbation quantities
(primed).

P = Po + p', (13.2.91a)
P = Po + P', (13.2.91b)
T= To + T', (13.2.91c)
vI = v;, (13.2.91d)

B2 = Bo + B,, (13.2.91e)

J3 = J3, (13.2.91 f)
E, = E3. (13.2.91g)

* Table 1.2, Appendix G.
t See Table 6.1, Appendix G.
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Note that velocity, current density, and electric field intensity have zero
equilibrium values.

First, linearization of Ohm's law (13.2.90) in the limit where a --* o gives

E, = -vBo. (13.2.92)

Substitution of this result in (13.2.89) yields

1 aB' aov
B - a2 - (13.2.93)

Bo  t ax

Linearization of (13.2.64) (conservation of mass) and division of the result
by Po yields

1 ap' Bv'1 ap(13.2.94)
Po at ax1

Subtraction of (13.2.94) from (13.2.93) and integration with respect to time
(recognizing that for equilibrium conditions all perturbation quantities go
to zero) yields

2- (13.2.95)
B0  p0

This shows that perturbations in flux density follow perturbations in mass
density. This is formal mathematical acknowledgment that for a -- oo the
time constant for diffusion of magnetic flux lines through the gas goes to
infinity and the flux lines are essentially frozen into the material.

It can be verified by following a process similar to that for (13.2.69) to
(13.2.71) for small-signal linearized equations that (13.2.71) still holds for
perturbation quantities:

Dip' yPo DIP'p- (13.2.96)
Dt Po Dt

Integration of this expression and use of (13.2.77) to define acoustic speed
a, yield

p' = a,~p'. (13.2.97)

Linearization of the conservation of momentum (13.2.86) yields

av; ap' B0 aB,
Po• (13.2.98)at axi go a8i

In writing this equation, we have used (13.2.88) to eliminate J1.
The use of (13.2.97) to eliminate p' from (13.2.98) and the use of (13.2.95)

to eliminate B2 yield
av; 2 B0

2 ap'
Po a, + ' (13.2.99)at l oPopo ax

I_ _ I__·
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The use of this expression and the linearized conservation of mass (13.2.94)
to eliminate p' yields the single equation for v":

-2 B(a, a 1+ B 0 V (13.2.100)
at ( oPo+ 8x2 "

Comparison of this result with (13.2.76) for ordinary acoustic waves shows
that (13.2.100) describes longitudinal waves that propagate without dis-
persion with a propagation speed a given by

a= (a, + B/o . (13.2.101)

These waves are called magnetoacoustic waves and a is the magnetoacoustic
velocity because the propagation speed is given by (13.2.101) as a combination
of the acoustic velocity a, and another velocity !B,212/[o,p,, which depends on
magnetic flux density. This other velocity is numerically equal to the Alfvtn
velocity ab obtained for transverse electromechanical waves and defined in
(12.2.88).

Provided we replace a, with a, as defined in (13.2.101), all the comments
made about acoustic waves in the preceding section hold true for magneto-
acoustic waves. Because of the bulk electromechanical coupling, it will be
instructive to study the physical makeup of a magnetoacoustic wave. To
provide a basis for comparison with ordinary acoustic waves we assume the
same driving function we used for the acoustic wave example, namely, that
the piston at x, = 0 is driven with small amplitude at angular frequency o
such that the gas velocity at xz = 0 is

v (0, t) = Vm cos ot. (13.2.102)

The gas velocity at any point in the gas is then

vi(x 1, t) = Vm cos (ot - a x . (13.2.103)

This can be verified as the solution by seeing that the boundary condition
(13.2.102) and the differential equation (13.2.100) are both satisfied. In
addition, the infinite length in the x,-direction results in no reflected waves
traveling in the negative x,-direction.

We now use the conservation of mass (13.2.94) and (13.2.95) to write

B2(x,, t) p'(xl, t) m ( (3204)- PO -a cos ot - -a x . (13.2.104)
Bo Po a a

Finally, we use (13.2.88) to evaluate J3:

J,(xl, t) = Buoa n sin (wt - - x . (13.2.105)
oa 2 a
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X2 out of
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Fig. 13.2.13 Gas and electromagnetic variables in a magnetoacoustic wave of frequency w
propagating in the positive xz-direction.

The variables described by (13.2.103) to (13.2.105) are illustrated for one
instant of time in Fig. 13.2.13. As time passes, this pattern propagates with
speed a in the positive x,-direction. In describing J3 the density of lines
indicates the intensity of the current density, and for B' the density of the
circles indicates the strength of the flux density. We already know that B' is
excited by Ja. This can be verified by the right-hand rule or by (13.2.88).
Also, as indicated by (13.2.95), the perturbation flux density and mass
density are linearly related. Thus, when the gas is compressed, magnetic flux
lines are compressed. This compression of flux lines induces a current
density J3, which interacts with the equilibrium flux density to produce a
force that resists the compression. This makes the gas essentially less com-
pressible, raises the effective continuum "spring constant," and makes the
propagation velocity greater than the ordinary acoustic velocity.

CCt
,CC.

C_

C_
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It is clear from the pattern of current density in Fig. 13.2.13 why the highly
conducting electrodes are necessary to close the current paths and maintain
the one-dimensional nature of the problem.

In the example the waves were driven mechanically by a piston; they could
have been driven equally well by local perturbations in flux density or current
density. Furthermore, these waves can interact with an electric circuit that
couples either to the flux density or to the current density. Thus magneto-
acoustic waves provide the opportunity for continuum electromechanical
coupling between a channel of highly conducting gas and an electric circuit.*

Although viscosity provides the loss mechanism that ultimately damps
ordinary acoustic waves, magnetoacoustic waves are damped both by viscosity
and by electrical losses that result from current flow in the presence of
finite conductivity. In virtually all cases in which magnetoacoustic waves
can be excited experimentally electrical losses predominate as the damping
mechanism, and it is the limited electrical conductivity of gases that restricts
the possibilities for practical utilization of magnetoacoustic waves for electro-
mechanical coupling. This limitation is explored extensively in the literature.t

To illustrate the kinds of conditions necessary for the propagation of
magnetoacoustic waves, we select conditions in which the waves have been
excited and detected":

Helium gas, Po = 0.0016 kg/m3 ,

Bo = 0.32 Wb/m 2, T, = 15,000°K,

R = 2080 J/kgoK, Po = 0.5 x 105 N/m2 (1 atm).

y = 1.67,

The extremely high temperature is necessary to achieve high enough con-
ductivity that will allow magnetoacoustic wave propagation without excessive
damping. Needless to say, this was a pulsed experiment. From the data given
the sound velocity is

as= (2 - 7240 m/sec.
\ Pol

The AlfvIn velocity is

ab =(o 7150 m/sec.

* H. A. Haus, "Alternating Current Generation with Moving Conducting Fluids," J.
Appl. Phys., 33, 2161 (June 1962).
t G. L. Wilson and H. H. Woodson, "Excitation and Detection of Magnetoacoustic
Waves in a Rotating Plasma Accelerator," AIAA,Vol. 5, No. 9, Sept. 1967, pp. 1633-1641.
$ Wilson and Woodson, loc. cit.
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The magnetoacoustic velocity is

a = Va,_ + a, = 10,200 m/sec.

It is clear from these numerical values that in a gas a moderate flux density
will yield a magnetoacoustic velocity that is considerably greater than the
ordinary acoustic velocity; thus the electromechanical coupling in the wave
is easily made strong.

Magnetoacoustic waves can also be excited in conducting liquids such as
liquid metals; however, because of the high density of liquids it is difficult
to obtain an Alfv6n velocity large enough to affect appreciably the propaga-
tion velocity of longitudinal disturbances. It is easy to show that the propaga-
tion velocity of magnetoacoustic waves in conducting liquids is still given by

a = a,2 + ab,

where a, is the sound velocity given by (13.2.83) and a, is the Alfvyn velocity
given by (12.2.88).

To determine how much the propagation velocity of a longitudinal dis-
turbance can be affected in a conducting liquid by an applied magnetic field
consider mercury for which the sound velocity and density are

a, = 1410 m/sec,

p0 = 13,600 kg/m 3.

The flux density necessary to give an Alfvyn velocity that is 10 per cent of the
sound velocity is

Bo = 18.5 Wb/m 2.

This flux density (185,000 gauss) is obtainable at present only in large, high-
field research magnets and it is a factor of 10 higher than obtainable with
conventional iron-core electromagnets. A less dense liquid metal like sodium
or potassium would require less flux density. For obtainable fields, however,
the effect of a magnetic field is still small. Conducting gases, on the other
hand, have low enough densities that the Alfv6n velocity can be greater than
the sound velocity at moderate flux densities, as we illustrated earlier.

In general, the propagation of disturbances in conducting fluids immersed
in magnetic fields involves complex combinations of ordinary acoustic
waves (longitudinal waves) and Alfv6n waves (transverse waves) both
propagating along magnetic field lines, and magnetoacoustic waves (longi-
tudinal waves) propagating normal to magnetic field lines. These separate
component waves couple through electromagnetic and gas variables

13.2.3
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and are all damped by loss mechanisms. Thus the analysis of a disturbance,
in general, is quite complex. Nonetheless, many phenomena can be under-
stood in terms of the simple component waves we have studied
separately.

13.3 DISCUSSION

In this chapter we have gone one step further in the analysis of electro-
mechanical interactions between electrical systems and conducting fluids by
using a compressible fluid model. The effects of compressibility on the basic
conduction-type MHD machines were shown. Compressible fluids were
shown to propagate longitudinal (acoustic) waves, and under appropriate
conditions (long enough magnetic diffusion time) these waves can be modified
significantly by the presence of a transverse magnetic field. Although the
phenomena described and the techniques used in their analyses have impor-
tant engineering applications, they were also intended to be indicative of
the techniques available for the study of still other types ofelectromechanical
interactions with fluids.

In Chapter 14 we introduce viscosity, another fluid-mechanical effect.
We limit the discussion to incompressible fluids to highlight the principal
effects of viscosity in MHD systems.

PROBLEMS

13.1. A static compressible fluid is subject to a gravitational force per unit volume - pg
(Fig. 13P.1). Under the assumption that the fluid has a constant temperature To and that
the fluid is a perfect gas so that p = pRTfind the distribution of density p(xl). The density
at x1 = 0 is Po.

Fig. 13P.1

13.2. The MHD generator illustrated in Fig. 13P.2 uses a gas with constant specific heat
capacities c, and c,, and constant scalar conductivity a. The dimensions are defined in the
figure and it is assumed that the inlet values of all quantities are known. The loading factor
K is to be held constant and the magnetic flux density is adjusted to satisfy the relation
B 2(z) A(z) = Bi2Ai. For the constraint that the pressure be constant along the channel
determine how the velocity v varies as a function of z.
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T
di

z z=

Fig. 13P.2

13.3. The dc MHD generator of Fig. 13P.3 has constant width w between the electrodes,
and the magnetic flux density Bo is constant along the length of the channel. The gas is
assumed ideal with constant specific heats and with constant electrical conductivity. The
inlet quantities pi, pi, Ti, and vi are assumed known. The electrodes are short circuited
together.

(a) Find the channel depth d(z) necessary to maintain the temperature constant
along the channel.

(b) Find the mass density variation along the channel for the channel geometry
found in part (a).

13.4. For the MHD generator of Fig. 13P.4 assume that all inlet quantities are known
(Pi, Pi, Ti, di, wi, Ai) and that the working gas has constant, scalar conductivity a and ratio
of specific heats 7. We apply a magnetic flux density Bo, which is constant, over the length
of the channel. We now specify that we wish to design a channel such that the loading
factor K will be constant along the length of the channel.

(a) For maintaining constant Mach number M along the channel find the following
functions of z that satisfy the given conditions:

A(z) d(z) w(z) v(z) p(z) T(z)

A i ' d i ' wi ' vj ' pi ' Ti

(b) Repeat part (a) for maintaining constant velocity v along the channel.
(c) Assume that the given data is

y = 1.4, a = 40 mhos/m, R = 240 J/kg°K,

P i = 5 x 105 N/m2, pi = 0.7 kg/m 3 , Ti = 30000 K,

vi = 700 m/sec, wi = 0.4 m di = 0.2 m.

K = 0.5, Bo = 4 Wb/m 2

For the generators of parts (a) and (b) find the length of generator necessary to
reduce the total enthalpy per unit mass (c,T + jv2) by 10%.

.· __ ___
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K-* W

z=1

rcuit

z=0

Fig. 13P.3

-z=1

Fig. 13P.4

13.5. An MHD generator (Fig. 13P.4) uses an ideal gas with a constant ratio of specific
heats y = 1.4 and a constant, scalar, electrical conductivity a = 50 mhos/m. At the inlet
to the MHD generator channel the parameters and variables are adjusted to have the values

Bi = 4 Wb/m 2 , vi = 700 m/sec,

Pi = 0.7 kg/m3, Mi2 = 0.5,

Pi = 5 x 10" N/m 2 , di = 0.5 m

wi = 1 m,
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The aspect ratio of the channel is to remain constant so that the electric and magnetic
fields will vary as

B(z) E(z) w(z) d(z) [A(z)]ý- '

B. ET w, LdI L Ad

where A is the channel cross sectional area. For the conditions specified and for a loading
factor K = 0.5 complete the following:

(a) Find the area as a function of znecessary to keep the gas velocity constant.
(b) For the channel of part (a) specify the length I necessary to reduce the gas tem-

perature by 20 percent; that is, find I such that T(I)/T i = 0.8.
(c) Calculate and plot curves of p(z), p(z), T(z) and M 2(z) over the length of the

channel.
(d) Calculate the total electrical power drawn from this generator under the

conditions given.

13.6. An ion propulsion device is represented schematically in Fig. 13P.6. The lateral
dimensions are much larger than the separation of the accelerator electrodes so that
fringing fields can be neglected. Ions, each having a charge q and mass m are injected with
negligible initial velocity at x = 0. The system opert.es in the steady state in the space-
charge-limited mode, in which case the solution for the electric field between the electrodes
is

4V

and the solution for the charge density between the electrodes is

4 co Vo
Pe = 9 L4x%

The charge on each ion does not change during the acceleration process; that is,

Pe _ q
Pm m

II
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where Pm is mass density. The pressure in the ion gas is negligibly small. For steady-state
operation complete the following:

(a) Find the velocity of the ion gas as a function of x between the electrodes.
(b) Find the magnitude and direction of the force that must be supplied by the fixed

support to keep the accelerator system at rest.

13.7. In Fig. 13P.7 a liquid is placed between rigid walls and a movable piston. The liquid
has a speed of sound a. The system is uniform in the x2- and x.-directions (8/ax 2 = a8/8a =

0). Assuming that the piston is moved by a velocity source V = V, cos cot at xz = -L,

Rigid walls

Movable piston
i Depth D

V(-L, t)=
Vo cos Wt

xx

Fig. 13P.7

complete the following:
(a) Find the pressure in the liquid at x, = -L. Take the equilibrium pressure inside

and outside the liquid as Po-
(b) At what frequencies will there be resonances in the pressure, p(-L, t)?

13.8. A perfectly conducting compressible inviscid fluid fills the region 0 < x2 < d as
shown in Fig. 13P.8. When the fluid is static, it is permeated by a magnetic field H = HJis.
The fluid is set in motion by a piston at x1 = -L having velocity as shown, and is con-
strained at x, = 0 by a piston having mass M.

(a) Derive a differential equation (one equation in one unknown) for the velocity
v,(xz, t). Use a linearized analysis.

(b) Find the velocity of the piston, which in equilibrium is at x1 = 0, under the
conditions shown in Fig. 13P.8.

Movable piston
a a having x2-xaS 0 area A and
x2 --x= mass M \

Movable piston
having velocity
V = V. cos Wt

u -r--. Perfectly conducting, I
-L compressible, inviscid / O

liquid having density p
and acoustic velocity a

Pressure = pl
= constant

-710717

Fig. 13P.8

i

r 0
Equilibrium magnetic

field H = H013

X2

x2 = dP
, /fffJff
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a a = 0 Movable piston
ax - ax o-r--o having area A,

Movable

having velocity
V = Vcos wt Equilibrium magnetic

field H = Hoi 3

iX2

x2 = d

Pressure = Pl
= constant

0
Perfectly conducting
compressible inviscid
liquid having static density p.
and acoustic velocity a

Fig. 13P.9

13.9. The region 0 < x2 < d in Fig. 13P.9 is filled with a perfectly conducting inviscid
compressible fluid. When the fluid is static, it is permeated by a magnetic field H = Hi,.
The fluid is excited by a piston at x1 = -L with velocity v(t), as shown, and constrained at
x1 = 0 by a movable massless insulating piston connected to a dashpot.

(a) Derive a differential equation (one equation in one unknown) for the velocity
vl(x1 , t). Use a linearized analysis.

(b) The system is to be used as a delay line in which the object is to delay a signal by
a fixed time without distorting the signal. If the signal is to be transmitted delayed
and undistorted to xz = 0, the backward traveling wave must be eliminated by
choosing a specific value for the dashpot coefficient B. Find this value in terms of
the appropriate constants of the system.

13.10. The system shown in Fig. 13P.10 consists of a cylinder of cross-sectional area A,
containing aliquid of compressibility Kand equilibriumdensity p, at equilibriumpressurepo
The fluid is constrained at x = 0 by the closed end of the cylinder and at the other end by a
rigid piston of mass M and thickness A. The equilibrium length of the liquid in the x-
direction is L1 .The left face of the piston is connected to a thin elastic rod of cross-sectional
area A s, modulus of elasticity E, and equilibrium density p,. The equilibrium length of the
elastic rod is L 2. The left end of the elastic rod is driven by a stress source T, + Ts(t), where
T,(t) < To . For small-signal dynamic operation around an equilibrium point the general
solutions are for the elastic rod: -- (L1 + L 2 + A) < x < -- (L1 + A), T(x, t) and v,(x, t);
for the fluid -L, < x < 0, p(x, t) and v,(x, t). Assume that except for constants to be
determined by boundary conditions these solutions are known. Set up the equations that
describe all the boundary conditions necessary for specializing constants in the general
solutions. Note. You are not required to solve these equations.

-- X

To + T,(t)

x=0

Fig. 13P.10

I
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13.11. A slightly compressible inviscid fluid flows with a steady velocity Vo in the x-direction
(Fig. 13P.11). The motions are in the x-direction and only a function of (x, t). The velocity
of sound in the fluid is as.

(a) Find the dispersion equation for small disturbances in the form of p = Re
[!Pej(•t•-kx)].

(b) Under what condition will the phases of both waves propagate in the positive
x-direction ?

Sound velocity = as

Fig. 13P.11

13.12. A static, inviscid fluid of conductivity a is immersed in a uniform magnetic field Ho
(Fig. 13P.12). In the limit in which a -- co, it is possible for magnetoacoustic plane waves
to propagate along the x-axis. In this problem investigate the consequences of having a
finite conductivity a.

y

a aI H0 dv a: =0

z

Fig. 13P.12

(a) Write the linearized equations ofmotion for perturbations that are compressional
(along the x-axis) and depend only on (x, t). (You need not combine these
equations.)

(b) Consider solutions of the form vx = Re [6e j (
V

t -
k

X
)] and find the dispersion rela-

tion between w and k. Show that in the limit a -+co the lossless dispersion equa-
tion is retained.

(c) Show that when a is small there are two pairs of waves, each pair consisting of
a forward and backward traveling wave. What would you call these waves?

(d) Consider the case in which a is very large but finite (slight losses) and in which
the excitation is sinusoidal ()o is real). Find an approximate expression for the
rate at which waves decay in space. Hint. Write the dispersion equation in the
form

02 f(o, k)k2 = -'
a2 a

where a is the phase velocity of magnetoacoustic waves. When a is large but
finite, the second term can be approximated by making k 2

_ (w2/a 2). (Why?)

I



Chapter 14

ELECTROMECHANICAL COUPLING
WITH VISCOUS FLUIDS

14.0 INTRODUCTION

In Chapters 12 and 13 mathematical descriptions of lossless fluids are
presented in a study of several basic types of electromechanical interaction
with fluids. In the introductory section (12.0) of Chapter 12, we indicated that
viscosity can have some marked effects on electromechanical interactions,
especially when the system involves the flow of a fluid near a solid boundary.
In this chapter the earlier fluid models are generalized to include the effects
of fluid mechanical losses (viscosity), and the generalized models are used
to study the effects of viscosity on some electromechanical interactions.

In our considerations of viscosity we limit our attention to incompressible
fluids. The viscous effects we shall study also occur in compressible fluids,
and the incompressible model we shall use is often employed to estimate the
effects of viscosity on the flow of compressible fluids. Nonetheless, our model
does not include mechanical losses due to longitudinal (dilatational) dis-
tortion of the fluid, and thus it is inadequate for a study of the effects of
viscosity on longitudinal disturbances such as acoustic and magnetoacoustic
waves. At the appropriate point in the development we indicate how the
necessary extension can be made.

Our model for viscous fluids is restricted to Newtonianfluids whose stress-
strain rate relations are linear. This model is a good representation of most
fluids of interest in electromechanical interactions. It is analogous to the
model of a linear resistance in electric circuits. Non-Newtonian fluids require
suitable nonlinear models.*

* R. R. Long, Mechanicsof Solids andFluids, Prentice-Hall, Englewood Cliffs, N.J., 1961,
pp. 69-72.
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14.1 VISCOUS FLUIDS

In Section 12.1.4 the mechanical interaction force between adjacent fluid
particles in an inviscid fluid is represented by the hydrostatic pressure p.
When a viscous fluid is at rest, the mechanical interaction of adjacent
particles is still described by a hydrostatic pressure. With the fluid in motion,
it is subjected to pressure forces just as an inviscid fluid is, but, in addition,
there is a force due to friction between adjacent particles that are in relative
motion. The effects of this friction force are accounted for mathematically
by defining a fluid viscosity.

14.1.1 Mathematical Description of Viscosity

A simple, one-dimensional example helps to introduce a derivation of the
stress-tensor (hence force density) that represents the fluid friction.t Figure
14.1.1 shows a viscous fluid contained between parallel plates. We can
imagine such a situation in which the system has large dimensions in the xx-
and x3-directions. The plates are set into steady relative motion by externally
applied forces. The viscous fluid near the upper plate tends to move with it.
Similarly, the fluid at x2 = 0 tends to move with the lower plate. Forces have
to be applied to the two plates to maintain relative motion and, when steady-
state conditions exist, there must be equal and opposite forces acting on the
two plates, as indicated in Fig. 14.1.1. If each plate has the area A, there is a
shear stress (force per unit area), given by

T12 -. (14.1.1)
A

Plate moving in x1 -
Soi-fitr with veloi+t

d

-L

X2 V1 (xl, d, x3)= v.

f

xýý = d -1

X2 = 0 _X1osfli

- * -VI

Shear stresses exerted by Plate moving in x-
the plates on the fluid direction with velocity

v1 (x1, 0, X3) = Vb

Fig. 14.1.1 Simple example of shear flow.

t This example is considered in more detail in Section 14.1.3.
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x2 + a
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x2

T
1 2

.• (x2+ A)

121 '12 1

Fig. 14.1.2 Equilibrium for a small element of fluid of thickness A.

Experiments show that for a variety of fluids the shear stress T1 2 applied to
the fluid by the plates is directly proportional to the difference of the plate
velocities and inversely proportional to the plate spacing d:

T1 2 = - . (14.1.2)

The constant of proportionality y is defined as the coefficient of viscosity.
This constant y describes a Newtonian fluid. A non-Newtonian fluid does
not exhibit the linear relation between velocity difference and shear stress.

An experiment of this kind leads us to postulate that for a certain type of
fluid flow an element of fluid of infinitesmal thickness, shown in Fig. 14.1.2,
is held in equilibrium by the shear stress T,1 , where

T1, = lim P lV,(X2 + A) - 1(2) , (14.1.3)
A-o L A " X2

Moreover, because the torque on the infinitesmal element must be zero,

T21 = T 1 2 . (14.1.4)

From (8.1.10)* we conclude that the force density due to viscosity in our
simple one-dimensional problem is

a2v,
F1 = .a (14.1.5)

Because the motion is steady and the pressure is uniform, this force density
F1 must be zero. Two boundary conditions are then required to integrate
(14.1.5). Our intuition tells us that the fluid moves with (sticks to) a contiguous
boundary; for example, in Fig. 14.1.1 the constants are determined by the
conditions that

vl(d) = va,
v1(0) = vb,

* See Table 8.1, Appendix G.

14.1.1
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and it follows that
(va - Ub)

v= - x 2 + vb.
d

Of course, the force density and stress tensor deduced are of limited
validity. The steps outlined, however, serve to indicate the approach that
is now used to establish a stress tensor of more general validity. The similarity
of this example and the one-dimensional elasticity problem of Section 9.1*
suggest that we approach the problem of deriving the viscous stresses
by the same techniques that were used to find the elastic stress tensor.
Equation 14.1.3 emphasizes the basic difference between fluid and elastic
media. Rather than a linear relation between stress and strain, as we found
in dealing with elastic media [see (11.2.32)], we now find a linear relation
between stress and rate of strain. Hence we can establish the viscous stress
tensor in two steps: first, we relate the velocity to the rate of strain, which is
defined in a way analogous to that in Section 11.2.1 for strain, and, second,
we introduce the empirical relationship between stress and the rate of strain.
We can then find the force density from the stress tensor by simply taking the
divergence of the stress tensor (8.2.7)t.

14.1.1a The Strain-Rate Tensor

The strain-rate tensor, like the strain tensor, is defined by geometrical
considerations. It is defined in such a way that its components represent those
types of fluid flow that would be expected to give rise to a viscous stress.
Because the relation between stress and strain rate (as found in the laboratory)
is linear, it is possible to superimpose various types of deformation rates to
describe an arbitrary deformation rate. Our development now parallels that
used in connection with the strain tensor which described elastic media
(Section 11.2.1).

A one-dimensional flow, such as that used to introduce this section, is
shown in Fig. 14.1.3a. If we now consider the flow in the neighborhood of
point A, the velocity field may be divided into a pure translation, as shown
in Fig. 14.1.3b, and the flow of Fig. 14.1.3c. A pure translation cannot give
rise to a viscous stress, for the particles that interact with those at A from
above or below or to the right or left are moving at the same velocity as those
at point A.

Now, in turn, we can divide the remaining flow field into two parts, as
shown in Fig. 14.1.4. There is now a part that represents a rigid-body
rotation about point A and a part that we call a shearflow. Viscous stresses
would not be expected to arise from rigid-body rotation any more than they
would from rigid-body translation. Hence a flow with the character of that
shown in Fig. 14.1.4c must be related to the viscous stress.

* See Table 9.2, Appendix G.
t Appendix G.
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x2 AV

(a) (b) (c)

Fig. 14.1.3 Decomposition of flow into rigid-body translation of point A and flow with

respect to that point.

It is worthwhile to recall the attributes of a flow field v(x1 , X2, xs, t) that
correspond to rotation. Clearly, if fluid is rotating about point A, the line
integral of v along a contour C that encloses point A is some finite number,
say F.

dv - =f(vx v) . n da = . (14.1.6)

We have used Stokes's theorem to transform the line integral to an integral
over the surface enclosed by the contour C. From (14.1.6) it is apparent that
the magnitude of the rotation about a point is proportional to V x v. For
the simple flow field shown in Figs. 14.1.3 and 14.1.4 there is only an i,-
component of the curl, and that is

(V xv),= (14.1.7)
axi ax2)

A

aurI -

c/-*

, X2 ýi_
2

A

I.

"7

Contour C

~N1

x2 Au
2

r"

A

I

I.-

*1r

0 X1
(a) (b) (c)

Fig. 14.1.4 Decomposition of flow into rotation and shear components: (a) total flow
with respect to point A; (b) rigid-body rotation; (c) shear flow,
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In our one-dimensional example we found that the stress TI, is proportional
to av/,lax [see (14.1.3)]. We can however, write this derivative as

av_ 1 / V av2 a 1 +a 2)
S1[ • • v-+ Iv, (14.1.8)

ax2, a2 ax, 2 ax2 ax1
and we see that it includes the rotation of (14.1.7). Equation 14.1.8 is the
analytical representation of Fig. 14.1.4. Our point is that it is reasonable to
define as the component of the shear rate e12

1 v -a v (14.1.9)
a2x2, ax

since it represents the only part of the deformation rate that is not (locally)
a rigid-body translation or rotation. From the symmetry of the zx- and z,-
coordinates it follows that e12 = e 21. Although our remarks have been made
for flow fields in the 1-z2,-plane, they apply equally well with other com-
binations of the coordinates. Hence we define

eI vc)a (14.1.10)

Although so far we have discussed the situation in which i j in (14.1.10),
those components given by i = j also represent a rate of deformation that
was not present in our simple example. If V . v # 0, it is possible for the fluid
to execute a motion of the kind illustrated in Fig. 14.1.5b. There the fluid
in the region of the point A is either expanding or contracting. We can
characterize this dilatational motion by the three terms of the divergence,
recognized as d,, when i = j. The mechanism by which a dilatational motion
can produce a viscous stress is not defined by the simple experiment dis-
cussed in the introduction to this section It is therefore not surprising that
we find it necessary to define (and measure by some other means than a shear
flow) a second coefficient of viscosity. It is important to recognize that the
strain-rate, defined by (14.1.10), unlike the strain approximatedby (11.2.10),
involves no approximations about magnitudes of motion.

We can arrive at our definition of the strain-rate tensor in a more precise
fashion by considering the relative velocity of fluid at two adjacent points
in the flow field. For this purpose we define two points in a cartesian coordinate
system which are at r and r + Ar, where

r = i1 zx + i2x2 + i3Xz = ii=i,

Ar = iI Ax2+ i2, Ax + i Ax3, = ii Axi.

These coordinate vectors are shown in Fig. 14.1.6.
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Fig. 14.1.5 Illustration of shear and dilatation at point A: (a) shear; (b) dilatation.
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Fig. 14.1.6 System for defining rate of strain.
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To find the velocity of the particle at r + Ar with respect to the particle at
r we expand the velocity in a Taylor series about the coordinate r and
(because we are interested only in the region near r) keep only linear terms.
For the ith component we obtain

av.
Av i = v,(r + Ar, t) - v,(r, t) = ~Ax,. (14.1.11)

ax.

We add and subtract 1(avjaxzi) Axz on the right side of this expression to
obtain

A 1= Ax,ij 1 av.\Avj, Axv, -+- +a !, Ax,. (14.1.12)

The first term on the right represents rigid-body rotation with no rate of
deformation, whereas the second term on the right represents the flow field
left after translation and rotation have been subtracted out. (We removed
the translation when we considered the diference between velocities at
neighboring points.) The second coefficient of Axi in (14.1.12) is the strain
rate (14.1.10). We have shown that, given the components of j,,at the point
r, we can specify (except for the rotation) the difference in velocity between
that point and a neighboring point an infinitesimal distance Ar away.

The strain-rate tensor is related to the velocity vector in exactly the same
mathematical way that the strain is related to the displacement vector.
Hence a proof that ii is, in fact, a tensor could begin with our knowledge
that the velocity v is a vector and would follow identically the steps given in
Section 11.2.1b, which prove that the strain is a tensor.

14.1.1b Stress-Strain-Rate Relations

At the beginning of this section we discussed a simple experiment that
provided the relationship between the rate of shear strain and the shear
stress,

Tij = 2 pe2j, i 0j. (14.1.13)

It is possible to make a simple argument that this relation remains correct
in the presence of a normal stress. Figure 14.1.7 shows a hypothetical situation
in which we imagine that a normal stress T,1 results in a strain rate ,,12If
we rotate the coordinate axes as shown in this figure, the normal stress
remains unchanged in magnitude and direction but the resulting strain rate
has reversed its sign. It is concluded that the rates of shear strain must be
independent of the normal stresses. (This is a formal statement that, given a
T11 , symmetry requires that the resulting rate of shear strain can be neither
positive nor negative, hence must be zero.)
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x3

X2 /
> x1
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Fig. 14.1.7 Hypothetical situation in which a normal stress results in a shear strain rate.

Similarly, it is found that the dilatational strain rates depend only on the
normal stresses. If k1 and k2 are experimentally determined constants, then

el = klTii - k2(T22 + T3a),

e22 = kiT 22 - k 2(T1 q + T33), (14.1.14)

e33 = klT33 - k2(T 22 + T11).

A dilatational strain-rate e4 is shown in Fig. 14.1.8. Intuitively, we expect
this type of flow to be caused by the stresses T11 , as shown in Fig. 14.1.8a,

x2

Tnl T11

1'

/ I-
(a)

x2

)

X3 X3

Fig. 14.1.8 Example of a dilatational strain rate showing two possible normal stresses.
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or by normal stresses T22 and Ts3, probably reversed in sign and not neces-
sarily with the same magnitude as T11. From symmetry we expect T,2 and
Ts, to have an equivalent effect on the strain rate du, so that there are only
two constants in each of the relations (14.1.14). Because the fluid is isotropic,
the equations must have the same form for strain-rate in each of the axis
directions.

Again, a simple argument shows that shear stresses should not appear
in (14.1.14). Suppose that a shear stress T12 resulted in a normal strain rate e,,,
as shown in Fig. 14.1.9. A change of coordinates generated by rotating the
original system about a 450 axis in the x 1-x2 plane results in a fluid element
subject to the same shear stress but displaying a strain rate d,2 (as viewed in
the first coordinate system) rather than e,,. Symmetry and the isotropy of the
fluid require that the dilatational strain rates depend only on the normal
stresses.

A simple example is now used to illustrate that the experimentally deter-
mined constants k, and k, in (14.1.14) are not independent of the coefficient
/u in (14.1.13).

Example 14.1.1. A fluid is subject to a stress T12 = T1 = TOin the xI, x 2, x3 -coordinate
system. Show that the stress and strain rate in a coordinate system Xz,zx, xl defined by
x/ = aijzj, where

1 1

a,= -1 1 , (a)

0 0 1 (a)
have only normal terms and find the relation between kl,k , and~ that must therefore exist.

Equation 14.1.13 shows that

e12 = e=' all other components = 0 (b)2/z
Because the stress and strain rate are tensors, we can find them as expressed in the x', x4,
x3-coordinate system by using the transformations

Ti/ = aikajITk'c
(c)

eiJ = aikajlekl.
Hence we find that

[ o0 ] 0
"0T =- To (d)

0 0 0
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x1

Fig. 14.1.9 Hypothetical situation in which a shear stress results in a dilatational strain
rate.

It follows from these equations and (14.1.14) that

Tf 1
e -- k,T + k 2 To or k + k2 (e)

2y 2--'

which is the desired relationship between y, kl, and k 2.

14.1.1c The Equations of Fluid Dynamics as Modified by Viscosity

Equations 14.1.14 allow us to find the stress components T,1 , T2,, and T3,
in terms of the strain-ratecomponents ell, e22, and 3,,. This result and (14.1.13)
provide a concise expression for the viscous stress in terms of the strain
rates:

Tij = 2i(eij) + acjt6 kk (14.1.15)

We have used (e) in Example 14.1.1 to define the experimentally determined
constant at in terms of the constants k, and k 2:

k2
a =(14.1.16)

(k, + k2)(kl - 2k 2) (14.1.16)

The numbers y and a are physical constants that characterize the viscous
properties of a fluid. The constant o, however, will not be found in the
literature but rather a constant, which is a linear combination of at and u,

is defined as the second coefficient of viscosity q.*

q = a + (U. (14.1.17)

* See, for example, K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersionof Ultra-
sonic Waves, Academic, New York, 1959, pp. 353-361.
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Reference to (14.1.10) shows that

avk
ekk - = V ; (14.1.18)

axk

thus the second coefficient of viscosity affects dilatational motion and has a
damping effect on longitudinal disturbances (acoustic waves).

As stated earlier, we shall restrict our treatment of viscosity to examples
with incompressible fluid models for which V . v = 0. Thus (14.1.15) is
simplified to the form

Tij = 2pej. (14.1.19)

Equation 14.1.19 is that part of the stress on an element of incompressible
fluid created by viscous effects. The total stress of mechanical origin must
include the hydrostatic pressure p [see (12.1.34)] and may be written as

( 8av, Bai\
Tijm  -6ijp + P-V + . (14.1.20)axi ax])

We now use this stress tensor to write the conservation of momentum for an
incompressible fluid in a form that includes the viscous force density [see
(12.1.14), (12.1.15), and (12.1.19)]:

P - = F e +Pg- + + . (14.1.21)
Dt axi axi a8xi xi

The order of partial differentiation is immaterial; thus

a Iaa av, a= = (V -v),ax aax1  axax ax
which is zero for an incompressible fluid. Consequently, (14.1.21) assumes
the simpler form

Dv- F= + pg- ap + i a (14.1.22)
Dt ax, ax, \ax

In vector form this equation is

Dv
p - = Fe + pg - VP +, V2v. (14.1.23)

Dt

Equation 14.1.22 or 14.1.23 is called the Navier-Stokes equation of fluid
mechanics; for an incompressible fluid this force equation is used with a
conservation of mass equation to describe the fluid dynamics. Of course,
boundary conditions and the force density of electric origin Fe must be known.

_



Ci..lar- nýf .-r A

oundary

Fig. 14.1.10 Geometry for deriving boundary conditions.

14.1.2 Boundary Conditions

We specify that a boundary exists between media a and b, as illustrated
in Fig. 14.1.10. The unit vector n, which is normal to the boundary, is
positive from medium b to medium a and has components n,, n2, and ns in
the cartesian coordinate system ax, X2 , and xa. Subscripts a and b are used to
denote parameters and variables in the two media.

In order for the boundary to separate the two media, the velocities at the
boundary must satisfy the relation

n v f = nR Vb = V,. (14.1.24)

This merely states that the normal component of velocity must be continuous
at the boundary. Furthermore, the fluid particles at the boundary must have
the same normal component of velocity as the boundary; otherwise the media
are interdiffusing or they are moving apart. The result of (14.1.24) can be
derived formally from the conservation of mass.

We now define a right circular cylindrical volume V with end surfaces of
area A and height 6, as illustrated in Fig. 14.1.10. The volume Vis assumed
to be small enough that in its vicinity the boundary is essentially plane. The
volume is oriented so that the ends of area A are parallel to the boundary
and the boundary intersects the volume as illustrated in Fig. 14.1.10. We
make the further restriction that 6 be so small that the lateral area of the
cylindrical surface will be much smaller than the area A.

We use the conservation of momentum as expressed by (12.1.21)

p -- = (14.1.25)
Dt 8x,

to integrate throughout the volume V:

fp dV =f dV =f Tn, da. (14.1.26)V Df , cz,

·-1-·1111 ___ ___
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When we let the volume V go to zero, the restriction of finite mass density
and finite acceleration makes the left side zero. The result is

0 = (Tf - Tiib)nj. (14.1.27)

This expression states that the traction (Tn,)must be continuous at a surface.
Another type of boundary condition that must be specified is the condition

that holds for a viscous fluid in contact with a solid surface. This situation
is depicted in two dimensions in Fig. 14.1.11. We select our coordinate
system so that the normal n to the surface is in the x,-direction and the
velocity of the fluid parallel to the boundary is in the x,-direction. We
assume no externally applied body forces (no electromagnetic or gravity
forces). The condition in (14.1.24) indicates that the fluid adjacent to the
boundary can have no normal component

V2 = 0. (14.1.28)

The condition in (14.1.27) indicates that the traction at the surface must be
continuous:

T1b = Y 
x , (14.1.29a)

T2
b = -p, (14.1.29b)

73b = 0. (14.1.29c)

Equation 14.1.29b gives the normal component of traction on the solid
surface due to the fluid, and it is just the negative of the pressure. Equation
14.1.29a gives the tangential component of traction due to the fluid. Thus,
if we know how v1 varies with x2 , we can calculate the viscous stress trans-
mitted to the solid surface.

Although (14.1.29a) expresses the derivative of the velocity at the boundary,
we also need to know the velocity at the boundary. We specify that the relative
tangential velocity at the boundary is zero,

(va - Vb) X n = 0, (14.1.30)

where va is the velocity of the fluid and Vb is the velocity of the boundary.
The physical reasoning to justify this condition is as follows: a viscous fluid

X2

n = 12 Viscous
( fluid [- - - v

(b) Solid surface

Fig. 14.1.11 A boundary between a viscous fluid and a solid surface.



exhibits friction when it flows along a solid surface, although this surface
friction may have a different constant than the bulk coefficient of viscosity.
If there were any tangential slippage at the boundary, it would represent an
impulse in (Ova/8x,) at the boundary, and with a finite friction coefficient
it would require an infinite surface shear force. We conclude that there can
be no slippage between a viscous fluid and a solid boundary.

14.1.3 Fluid-Mechanical Examples

Now that we have established the momentum equation and boundary
conditions that describe incompressible viscous fluid flow it is appropriate
to study some fluid flow examples without electromechanical coupling to
establish ideas concerning the principal effects of viscosity that will show up
later in electromechanical examples.

We consider again the example introduced in Section 14.1.1. The system
is shown in Fig. 14.1.12. A viscous fluid is constrained between two parallel
rigid plates separated by a distance d. The lower plate is fixed and the upper
plate is made to move in the x1-direction with constant velocity vo. The fluid
can be considered homogeneous and incompressible, V *v = 0, and has a
coefficient of viscosity u. The hydrostatic pressure is constrained to be con-
stant throughout the fluid, the system is in the steady state, and the plates
are large enough in the x,- and rx-directions that we can neglect edge effects.
Neglect the force of gravity. We want to find all components of velocity
between the plates and the tangential traction applied to the plates by the
fluid.

From (14.1.23), the momentum equation is:

p(v. V)v = pV2v.
The upper plate is driven in the x1-direction so we expect that v, = 0.
Furthermore, the large dimensions in the x, and x3 directions allow us to
assume

alax, z alaxa = o.

Moving plate

V1

X2 d

Fixed plate

Fig. 14.1.12 A simple example of shear flow.

14.1.3 Viscous Fluids
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The use of these assumptions with V - v = 0 and the boundary condition at

X, -= dyield
V2 = 0.

The momentum equation thus reduces to

0 = a%1

Integration of this equation twice yields:

v1 = ClX + C2.

The requirement of continuous tangential velocity at a boundary (14.1.30)
gives

at x2 =0, v, = 0, C2 = 0,

at x 2 = d, v = vo, C1 =
d

Thus

V1 = Vo •
d

This profile, referred to as plane Couetteflow, is sketched in Fig. 14.1.12.
The use of (14.1.27) yields for the tangential component of traction

at X2 = 0, T 1 = -~ 1 ,

at X2 = d, Tr1 =-L -

It is apparent that the viscous traction tends to oppose the relative motion
of the two plates as we intuitively expected.

The type of flow described in this example is used in a device specifically
designed to measure the coefficient of viscosity. It consists of two concentric
cylinders with a small annular space between them. One cylinder is fixed and
the other can be rotated about its axis. The fluid is introduced into the space
between the cylinders, and the torque required to rotate one cylinder at a
particular speed is measured. This torque is used with the known lever arm
and the expression for surface traction to calculate the viscosity.

As a second example, consider the pressure-driven, steady flow of an
incompressible viscous fluid between two fixed parallel plates separated by a
distance 2d, as illustrated in Fig. 14.1.13. The lateral extent of the plates
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Fig. 14.1.13 Two-dimensional viscous flow.

is large enough compared with 2d that we can neglect edge effects. We
orient our coordinate axes x1 and a2 so that there is no flow or variation of
velocity along x,. We assume that there is only an zz-component of velocity
and show that this satisfies the differential equations and the boundary
conditions.

In this case our assumptions are

V2 = vS = 0, -0.
ax3

With these assumptions V - v = 0 reduces to

v = 0, (14.1.31)
ax,

and we can write the xl-component of (14.1.22) as

0 p 'vl0= + -. (14.1.32)

When we take the partial derivative of this expression with respect to x,
and use (14.1.31), we find

_ 0, (14.1.33)

which shows that dp/axx is constant. Setting

p = _ Ap (14.1.34)
ax1  I

where Ap is the pressure difference impressed across the length I in the
xj-direction (the pressure decreases with x• so that the. flow is in the positive
x1-direction), we can write (14.1.32) as

a2vl Ap
t 1 . (14.1.35)

~--I·-~I~-~----·-···~··111~---
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Integrating this expression twice with respect to zxyields

v, = X-2 + ClX2 + C2 . (14.1.36)
2pl

We first use the symmetry condition that dv,/dX2 = 0 at z2 = 0 to set C1 = 0.
We then use the boundary conditions that v, = 0 at zX = -d to obtain

Ap d2

2C1l

The final result, referred to as plane Poiseuilleflow, is

Ap
v, = Ap(d 2 - x 2•). (14.1.37)

2yul

The parabolic velocity profile indicated by (14.1.37) is sketched in Fig. 14.1.13.
It can be shown by direct substitution that this solution also satisfies the
x 2- and x3-components of (14.1.22).

14.2 ELECTROMECHANICAL COUPLING WITH VISCOUS FLUIDS

To illustrate in simple contexts how viscosity affects electromechanical
coupling and vice versa we reconsider the two examples of the preceding
section with electromechanical coupling added. In both cases we apply
magnetic fields and assume that the fluids have high enough electrical con-
ductivity that a quasi-static magnetic field system is the appropriate electro-
magnetic model.

14.2.1 Electromechanical Coupling with Shear Flow

The system to be analyzed is shown in Fig. 14.2. lb. It consists of two parallel,
highly conducting plates, separated by an incompressible conducting liquid
with conductivity a and coefficient of viscosity u. The plates and liquid are
both nonmagnetic. The lower plate is fixed and the upper plate is moving
with velocity vo in the x,-direction. A uniform flux density Bo is applied (by
a system not shown) in the x.-direction and a uniform current density J, is
injected in the x2-direction. The system is operating in the steady state
(a/at= 0). This is a representation of a liquid metal brush like those used
in the acyclic generator of Fig. 6.4.13. (See Fig. 14.2.1a.) Our use of a plane
geometry is a simplification based on the fact that the thickness d of the fluid
is very small compared with the radius of curvature. Our analysis allows
assessment of the effect of Bo on the characteristics of the brush, primarily
the voltage drop of the brush and the losses, both electrical and mechanical,
that heat the fluid.
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Moving, highly-conducting
(o(--o) plate

Fluid
x2 cond.o 2J ( 13 Bo V

viscosity , l J.

Out of Fixed, highly-conducting
paper (r-- ) plate

(b)

Fig. 14.2.1 Configuration for analyzing the effect of electromechanical coupling on shear
flow. (a) physical system, (b) mathematical approximation.

Recognizing that this planar model is a representation of an annular
system that closes on itself in the xl-direction and that the system is sym-
metrical, we conclude that no properties can vary with zx; thus

a =0.

ax1
Furthermore, the system is large enough in the xz-direction that we can
neglect end effects. The current paths external to the fluid close in such
a way that the field induced by current density J.according to Ampere's
law is only in the x• -direction. With these assumptions about the system

14.2.1
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we can specify the relevant variables as

v = ilv1(x 2 ), J = i2J (14.2.1)

E = iE 2(x2 ), B = i3Bo + il B1(x3 ).

These explicit functional dependences will be shown to satisfy the relevant
differential equations and boundary conditions as the analysis proceeds.

With the variables defined above and the restrictions cited earlier, the 1,-
component of the momentum equation (14.1.22) is

a2 v,
0 = JoB v + a 2 (14.2.2)

aX22

The quantities Jo, Bo, and / are constants and v, varies only with x2 ; con-
sequently, (14.2.2) is integrated twice to obtain

v = JB2 x2- + ClX2 + C2 , (14.2.3)
21z

where C1 and C2 are constants of integration to be determined by boundary
conditions. The boundary condition of (14.1.30) which requires no slippage

yields at x2 =0, v- = 0,

at x2 = d, v, = vo.

The use of these two conditions to evaluate C1 and C2 in (14.2.3) leads to
the resulting velocity

v = o -L + 1 . (14.2.4)
d 2y d d( d

The first term is just the linear variation obtained in Fig. 14.1.12 with no
electromechanical coupling. The second term is a parabolic profile that
results from the electromechanical coupling. The second term can be positive
or negative, depending on the sign of the product JoBo. The two terms in
(14.2.4) are sketched with the composite profile for two conditions in
Fig. 14.2.2. The J x B force density in the zx-direction is uniform; con-
sequently, the parabolic profile is expected from the results of the second
example of Section 14.1.3, which was driven by a constant force density due
to a pressure gradient (see Fig. 14.1.13). It is clear from Fig. 14.2.2 that the
magnetic force can have a marked effect on the profile, even reversing the
velocity in Fig. 14.2.2b. The profiles indicate more shear strain rate with
the magnetic force than without; thus, as we shall see subsequently, we
can expect increased fluid mechanical losses.

At this point it is well to note that there is an x, component of J x B
(JoB1 ). Because Bx is excited by Jo it depends only on x3, thus the xz component

C
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-Do 0 Uo -V

X2 Jo 0o /

XI

(b)

Fig. 14.2.2 Velocity profiles resulting from uniform magnetic force density applied to
shear flow. The profiles are sketched for !JoBo1 = 8pvo/d 2: (a) JoBo > 0, J x B force density
is in direction of vo ; (b) J.Bo < 0, J x B force density is opposite to v0 .

of force density depends only on x3. With end seals on the brush there can be
no flow in the x, direction and the force density is balanced by a pressure
gradient in the x8 direction. This pressure variation will not affect the flow
pattern because the fluid is incompressible.

To evaluate the system of Fig. 14.2.1 for use as a liquid metal brush for
carrying current from a fixed to a moving member we must evaluate the
voltage across the brush, the mechanical force needed to maintain the steady
motion, and the total power input to the brush that must be removed by heat
transfer to maintain acceptable brush temperature in the steady state.

Voltage V has the polarity defined in Fig. 14.2.1, and is related to the
electric field intensity by

V f Es dx,. (14.2.5)

Ohm's law for a moving fluid (12.2.18) yields

E2 = -ý + vBo. (14.2.6)
of orc dnsiy dpeds nlyons,.Wit ed salsonthebruh her ca b

· ___IU1L _·~

14.2.1



Electromechanical Coupling with Viscous Fluids

The use of this expression, with (14.2.4) for v1, in (14.2.5) and evaluation of
the integral lead to

J d JoBo2 d3
V = od + Bvo + (14.2.7)

a 2 12/z

The first term is just the voltage that results with Jo in the fluid at rest. The
second term can be interpreted as the speed voltage generated by the linear
velocity variation of simple shear flow (see Fig. 14.2.2). The last term is the
speed voltage generated by the parabolic velocity profile of Fig. 14.2.2.

The electrical power input Pe per unit area in an xx-x,-plane is found by
taking the product

J 2 d Jo,'Bo d3

Pe = JV= -2- d + JB,,v - + (14.2.8)
a 2 12y

The first and third terms are always positive, but the second term can be
negative, in which case the brush can act as an MHD generator and produce
net electrical power. This is not a practical source of power, but it does
indicate the nature of possible electrical characteristics of liquid metal
brushes in the presence of a magnetic field.

The traction (force per unit area) that must be applied to the upper plate
to maintain the steady motion is found from (14.1.29a) to be

T i x,=" (14.2.9)

The use of (14.2.4) in this expression yields

vo JoBo dr7 = Z d (14.2.10)
d 2

The second term is negative because, as indicated in Fig. 14.2.2a, the J x B
force drives the fluid faster and tries to accelerate the upper plate, thus
requiring a negative component of traction to maintain steady velocity.

The mechanical input power p,, per unit area is found as

Vo" JoBovo d
PM,= 71Vo= P (14.2.11)

d 2

Once again the brush may actually produce net mechanical power.
To find the total power per unit areap, put into the brush electrically and

mechanically we add (14.2.8) and (14.2.11) to obtain the result.

vo2 Jo2Bo2 d3
PA = Pe + Pm = -2 d + u -E- + (14.2.12)

a d 12i

The total power input is always positive, even though (14.2.8) and (14.2.11)
indicate that there may be net electrical output or net mechanical output.
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In (14.2.12) the first term is simply the Joule loss associated with current in
the conducting fluid; the second term is the viscous loss that would result
from simple shear flow; and the third term results from the electromechanical
coupling.

It should be clear from the form of (14.2.12) that for a system in which the
quantities a, p, Jo, vo, and B, are known there is a brush thickness that
minimizes brush losses. This optimum brush thickness can be found by a
straightforward application of differential calculus. We shall not carry out
this process here. Rather, we shall assume liquid metal brush parameters
typical of configurations used in practice and compare the brush properties
with those of carbon brushes. At the same time we shall assess the effects of
electromechanical coupling on the liquid metal brush.

The parameters assumed for the liquid metal brush are given in Table
14.2.1. Substitution of these quantities into (14.2.7) and (14.2.12) yields

V = 0.015 + 0.15Bo + 83.3B,2 V,
pt = 2.26 x 104 + 1.25 x 10sBo2 W/m2.

Table 14.2.1 Parameters Assumed for Liquid Metal Brush

Material Mercury
Conductivity a = 106 mhos/m
Viscosity p = 1.5 x 10- 3 kg/m-sec
Current density Jo = 1.5 x 106 A/m 2

Velocity v,, = 30 m/see
Brush thickness d = 10-2 m

These two quantities are plotted on logarithmic scales as functions of flux
density B0 in Fig. 14.2.3. The characteristics of a metal-graphite brush of the
type normally used for slip rings* are also shown. The metal-graphite brush
operates at only one tenth the current density of the liquid metal brush; thus
for the same total current the solid brush will require 10 times as much
contact area. At very low flux density the liquid metal brush has a voltage
drop roughly two orders of magnitude lower than that of a solid brush, and
the power loss per unit area is three orders of magnitude lower. When the
flux density gets to the range of 0.1 to 1 Wb/m2 the liquid metal brush per-
formance deteriorates rapidly as flux density increases. The curves of Fig.
14.2.3 demonstrate clearly the superiority of liquid metal brushes with
respect to contact drop and losses, but they also demonstrate that magnetic
fields can degrade the liquid metal brush performance markedly.

In this example we have demonstrated how electromechanical coupling

* The characteristics of the metal-graphite brush were taken from Standard Handbook for
Electrical Engineers, A. E. Knowlton, ed., McGraw-Hill, New York, 9th ed., 1957,
Sections 4-234 and 8-120.

_II_·______ ·_II _ _··_
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10- 4  10-3 10-2 10-1
Bo (Wb/m 2)

(a)

10-4 10- 10-2 10-1 1
Bo (Wb/m 2)

(b)
Fig. 14.2.3 Voltage and brush loss as functions of applied flux density for liquid metal
brushes compared with metal graphite brushes: (a) brush voltage; (b) total brush loss.

can have a considerable effect on the behavior of a fluid mechanical system
in a configuration of practical significance. In the next section we treat another
configuration in which electromechanical coupling can have significant
effects.

14.2.2 Electromechanical Coupling with Pressure-Driven Flow
(Hartmann Flow)

In this section we consider the effects of viscosity on fluid flow in a rec-
tangular channel. The electrical conductivity of the fluid is high enough to
justify a magnetic field system model and the fluid is subjected to transverse
magnetic field and current. Thus this example allows us to assess the effects

1
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Fig. 14.2.4 Configuration for studying Hartmann flow.

of viscosity on the conduction-type MHD machines considered in Chapters
12 and 13 and to determine the conditions under which the inviscid fluid
models used there are accurate.

The flow pattern to be analyzed is conventionally called Hartmann flow
and will be studied in the configuration of Fig. 14.2.4. The channel has a
length 1, a width w, and a depth 2d. The aspect ratio of the channel is quite
large

w
->> 1,
2d

and we are interested in the flow properties near the center of the channel.
Thus we can neglect variations with x,. The sides of the channel that lie in
the x,-x2 planes are highly conducting electrodes and can be connected to an
external circuit with the result that there can be net current flow across any
x1-x2 plane.

The fluid is assumed to be incompressible with coefficient of viscosity It
and electrical conductivity a. There is an applied flux density Bo,

Bo - i2Bo, (14.2.13)

and we assume that the magnetic flux density due to current flow in the fluid
is negligible compared to Bo (low magnetic Reynolds number). We also
assume steady flow.

We neglect end effects, and thus we are considering the two-dimensional
problem in Fig. 14.2.5. The symmetry of the simplified problem allows us
to assume the following forms for the variables:

v = ixv1(x 2), (14.2.14a)

E = i3Es(x2), (14.2.14b)

_ _ ______

14.2.2

J = iSJ3(X2). (14.2.14c)
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x2 dx

p(0) p()

Fig. 14.2.5 Two-dimensional configuration for Hartmann flow.

All of these variables are functions of x, only, as indicated. It should be clear
at this point that our example is simply the one shown in Fig. 14.1.13 with
the addition of a magnetic force density. Thus we expect our result to be
similar to and interpretable in terms of the results given in Fig. 14.1.13.
From Faraday's law (1.1.5)* we obtain

dE3 = 0, (14.2.15)
dx2

from which we obtain
E3 = constant. (14.2.16)

The x3-component of Ohm's law, (12.2.18) is

J3 = a(Es + vxBo). (14.2.17)

The x1-component of the momentum equation (14.1.22) is

0 = + - JaBo. (14.2.18)

ax1 dx2

Recognizing that J, and v, are not functions of xz, we differentiate (14.2.18)
with respect to x, to obtain

a2p
--p = 0, (14.2.19)

which shows that

= constant. (14.2.20)
axZ

Denoting the pressure drop over the length of the channel as Ap,
Ap =p(O) - p(l), (14.2.21)

we can write (14.2.20)
p A (14.2.22)

ax1 1

Compare these results with (14.1.33) and (14.1.34). We assume that Ap is
* Table 1.2, Appendix G.
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maintained constant by external means; thus it represents an independent
input to the system.

We now substitute (14.2.17) and (14.2.22) in (14.2.18) and rearrange the
resulting expression to obtain

d'vl aBo2  Ap rBoE,v = + - (14.2.23)
dx2

2  
/ /4l +

Equation 14.2.16 indicates that E, is constant; thus we can solve this linear
differential equation with constant coefficients to obtain, in general,

v, = C1 sinh M 5 - + C, cosh M + Ap E3 (14.2.24)

d d B•Bl21 Bo

where we have defined the Hartmann number M as

M=B Bd d() (14.2.25)

We must now apply the boundary condition that at

x, = -d, v1 = 0. (14.2.26)

This imposes the requirement that v, be an even function of x2; thus

C1 = 0, (14.2.27)

and the constant C2 is then given by

-1 /Ap Ez\
C2- co \E . (14.2.28)

cosh M oBo21 B)

We now use (14.2.27) and (14.2.28) to write (14.2.24) as

v, ( Ap _ E3 [1  cosh M(x2/d)] (14.2.29)

\Bo21 B0! cosh M

To complete the solution for the velocity profile we must specify the value
of the electric field E,. We can fix E, by the application of a terminal voltage
as we did in Section 12.2.1a. Alternatively, we can fix Es by constraining the
total current that can flow across an x,-x 2 plane. To complete the present
example we assume that the external terminals are open-circuited; the
result is no net current across an x1-x, plane. Mathematically, this require-
ment can be written as

dJ3 dx, = 0. (14.2.30)

_·I II
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We use (14.2.17) with this expression to obtain

Bod
E3 = , v1 dx 2. (14.2.31)

2d J

We now use (14.2.29) in (14.2.31), evaluate the integral, and solve for E,
to obtain

E3 = - Ap IM cosh M - sinh M (14.2.32)

arlBo \ sinh M

Substitution of (14.2.32) into (14.2.29) and simplification yield

Ap M[cosh M - cosh M(x/d)] (14.2.33)
ioB21 sinh M

It will be easy to interpret our results if we assume that the mechanica
properties are fixed and vary the applied magnetic field to vary M. For this
purpose it is more useful to write (14.2.33) in the form

Ap d2 cosh M - cosh M(xlzd) (14.2.34)
V1  ul l M sinh M (14.2.34)

As a check on this expression, it is easily verified that the limit taken as
M - 0 yields the same velocity profile as in the second example of Section
14.1.3 (see Fig. 14.1.13). This is as it should be, for when M -- 0 in (14.2.34)
this profile is achieved by eliminating electrical and retaining only viscous
effects.

To interpret the meaning of the profile shape of (14.2.34) we assume a
system of fixed dimensions, with a fluid of fixed properties and constrain the
pressure drop Ap to be fixed. We now vary the applied flux density Bo and
ask how the shape of the profile changes. Such changes are indicated in
Fig. 14.2.6, in which the profiles are plotted for three values of M. Note that
the profile for M = 0 is the same as that plotted in Fig. 14.1.13.

To interpret the results of Fig. 14.2.6 we observe first that in the absence
of electromagnetic forces the velocity profile is parabolic. This is the profile
given with viscous effects alone. When electromagnetic forces are present,
any local variation of velocity will generate circulating currents that interact
with the applied magnetic field to reduce the local velocity variations. Thus
the presence of the applied magnetic field tends to make the velocity uniform.
When the applied magnetic field is large (M large), the velocity is uniform
near the center of the channel and varies appreciably in the vicinity of the
walls where the velocity must go to zero. Whether the velocity profile is flat
or parabolic depends on the value of the Hartmann number M given by
(14.2.25) as

M = B0 d _•.

I _
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2piu1

Apd2
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X2

d

Fig. 14.2.6 Variation of velocity profile with Hartmann number.

For low values of M viscous forces predominate and the profile tends to be
parabolic. For high values of M electromagnetic forces predominate and the
velocity profile tends to be flat. Thus the Hartmann number is interpreted
as a measure of the relative magnitude of electromagnetic and viscous
forces. It is clear that for high values of M the model of uniform flow velocity
used earlier in Section 12.2.1a is valid over most of the channel width. We
consider this situation subsequently with more precision.

It is evident from the curves of Fig. 14.2.6 that with a fixed pressure drop
the volume flow rate of the fluid is reduced by the presence of an applied
magnetic field. If we designate the volume flow rate by iPo1, it is given by

= w vi dx, m'/sec. (14.2.35)

We now use (14.2.34) in this expression, perform the integration, and
simplify to obtain

2Apd 3w 3(M coth M - 1) (14.2.36)
= 3l M2

·.---l~---·CI~--·lll11111---
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1

1

3 1 l•Vl 0
2Apd3 w

0

0

M

Fig. 14.2.7 Variation of volume flow rate with Hartmann number.

In the limit as M -- 0 the volume flow rate becomes

2Ap d3 w

3,ul

which is the volume flow rate in the presence of viscous forces only. The
expression of (14.2.36), normalized to the value for M - 0,

31plVl 3
uI --= 3 (M coth M - 1), (14.2.37)

2Ap d3W M2

is plotted as a function of M in Fig. 14.2.7. It is evident from the curve of
Fig. 14.2.7 that the presence of a magnetic field that yields an appreciable
Hartmann number will markedly reduce the volume flow rate for a given
pressure drop.

To ascertain the order of magnitude of Hartmann number that can be
obtained with real conducting fluids consider liquid mercury which has

a = 106 mhos/m, u = 1.5 x 10- 3 kg/m-sec

If we consider a system with a channel depth of 2 cm,

d = 10-2 m,
and an applied flux density of

B o = 1 Wb/m 2 = 10,000 gauss,

^
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the resulting Hartmann number is

M = 260.

Thus the flow of mercury under these conditions is very strongly affected by
electromagnetic forces. The same is true of other liquid metals.

Alternatively, a seeded combustion gas would be used in the variable-area
channel considered in Section 13.2.2. This system would have approximately
the following constants,

a = 40 mhos/m, u = 10-5 kg/m-sec,

B, = 4 Wb/m 2, d = 10- 1m,

and a Hartmann number
M = 800.

Thus, even with an ionized gas with its very small conductivity, this large
Hartmann number indicates that magnetic forces predominate over viscous
forces.

To be more precise about how viscosity affects a conduction-type MHD
machine we remove the constraint of no net current and operate the system
in Fig. 14.2.4 as we did the MHD machine in Section 12.2.1a. In the present
system the channel depth is 2d, whereas in Fig. 12.2.3 the channel depth is d.
Redefining the quantities for the inviscid fluid model to account for this
difference, we have [see (12.2.21), (12.2.22), and (12.2.24)] for the inviscid
model

internal resistance, R, -- , (14.2.38)
2old

voltage equation, IRi = voBw - V, (14.2.39)

IB
pressure drop, Ap = , (14.2.40)

2d

where I and V are defined in Fig. 14.2.4 and vo is the fluid velocity for an
inviscid fluid model.

We now remove the constraint of no net current (14.2.30) and instead
specify that the electric field intensity be given in terms of the terminal
voltage as

V
E, = - . (14.2.41)

From Ohm's law (14.2.17) the current density becomes

J = c - -+ viB (14.2.42)
(Vw

14.2.2
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and the terminal current is

I =fd Jl dx 2. (14.2.43)

Substitution of (14.2.42) into (14.2.43) yields

Vd
I = + alBo v dx 2. (14.2.44)

When the space average velocity is defined

1 d
(v ) - vI dx2, (14.2.45)

2d J-d

we can write (14.2.44) in the form

IR, = - V + Bow(v1). (14.2.46)

This expression is the same as (14.2.39) for the inviscid model except that vo
for the inviscid case is replaced by average velocity in the viscous case.

The most important aspect of viscosity in an MHD machine is how much
of the pressure gradient goes into viscous losses and how much is balanced
by the magnetic force density. To answer this question we evaluate the
average velocity by using (14.2.29) in (14.2.45) to obtain

=( p V tanh
(v) + 1 tah M) (14.2.47)

OB,21 B,,w) ( M )

The use of this result in (14.2.46) and solution for Ap yield

S=B1/2d + (BalV/w)(tanh M/M) (14248)
1 - tanh M/M

Noting that the first term in the numerator is the pressure drop in an inviscid
machine, as given by (14.2.40), we write the ratio

Ap 1 + (V/IR,)(tanh M/M)
-- , (14.2.49)

Ap, tanh M
M

where Api is the ideal pressure drop given by (14.2.40). This ratio is plotted
as a function of Hartmann number M in Fig. 14.2.8 with

V

IR

which is the condition for maximum electrical power extraction from the
flowing fluid. Note that the Hartmann number axis is a logarithmic scale.
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Ap
Api

Hartmann number M

Fig. 14.2.8 Ratio of actual pressure drop and ideal pressure drop for an MHD generator
loaded to extract maximum electric power.

It is clear that the error is large for a small Hartmann number with a pressure
drop 22 per cent more than the ideal for M = 10. At M = 100 the error is
2 per cent, and at M = 1000 the error is 0.2 per cent. This shows that for a
Hartmann number of the order of 100 or larger the inviscid fluid model used
to analyze MHD machines in Chapters 12 and 13 is quite accurate with
respect to the neglect of the effects of viscosity.

14.3 DISCUSSION

In this chapter we have added the effects of viscosity to the mathematical
description of incompressible fluids. In the process we have indicated how
this description is modified for compressible fluids. We have analyzed and
discussed two applications of the equations to steady flow problems in which
viscous effects and electromechanical coupling compete; and one or the
other can predominate, depending on the relative values of the critical
parameters.

It is a straightforward process to extend the techniques of this chapter to
dynamic situations; for example, we can use the description of viscosity
in this chapter to study viscous damping of the Alfvyn waves defined and
analyzed in a lossless system in Section 12.2.3.



Electromechanical Coupling with Viscous Fluids

PROBLEMS

14.1. Rework the example of Sec. 14.2.1 with the applied flux density in the X2 direction.
Assume that no current can flow in the x3 direction. In particular obtain expressions for
velocity profile (like Eq. 14.2.4), voltage (like Eq. 14.2.7), traction (like Eq. 14.2.10), and
total power per unit area (like Eq. 14.2.12). Make plots of voltage and loss per unit area
for the constants of Table 14.2.1 and compare the results with those plotted in Fig. 14.2.3.

14.2. A viscous liquid flows through a circular pipe, as shown in Fig. 14P.2. At the inlet
the pressure is uniform and equal top1 ,and at the outlet it is still uniform, butp2 .The volume
rate of flow is Qm/lsec. Under the assumption that the flow is axisymmetric and steady and
that the velocity is low enough that the fluid can be considered incompressible, find the
velocity profile vz(r). Hint. Look for solutions where v = v2(r)iz and p = p(z).

Fig. 14P.2

14.3. The channel shown in Fig. 14P.3 contains a viscous fluid of conductivity a moving in
the xz-direction. You are to analyze this problem using the Hartmann flow solutions
(Section 14.2.2). The highly conducting electrodes are connected by a load resistance R.

(a) Given the pressure drop from inlet to outlet, the dimensions of the system, field
Bo, and conductivity a, what is the power dissipated in the resistance?

(b) What value of R should be used to dissipate the largest possible power in the
load?

(c) If the fluid is mercury, Bo = 20,000 gauss, d = 1cm, I = 1 m, and w = 10 cm,
what is the Hartmann number? What is the value of the optimum resistance
found in part (b)?

Perfectly conducting

Fig. 14P.3



Appendix F

GLOSSARY OF
COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are
introduced; grouped symbols are accompanied by their respective references.
The absence of a section reference indicates that a symbol has been applied
for a variety of purposes. Nomenclature used in examples is not included.

Symbol Meaning Section

A
Ai
(At, A;;)

A,
a
a, (a.,a,)
ab

(a, b, c)
a1
a,

B, Br, B,

B, Bo,B0

(Br, Bra, Brb, Br,)

(Br., (Bri)av]
b
b
C
C, (Ca, Cb), Co
C
C
(C+,C-)

cross-sectional area
coefficient in differential equation
complex amplitudes of components of nth

mode
cross-sectional area of armature conductor
spacing of pole faces in magnetic circuit
phase velocity of acoustic related waves
Alfv6n velocity
Lagrangian coordinates
constant coefficient in differential equation
instantaneous acceleration of point p fixed

in material
damping constant for linear, angular and

square law dampers
magnetic flux density
induced flux density
radial components of air-gap flux

densities
radial flux density due to field current
width of pole faces in magnetic circuit
half thickness of thin beam
contour of integration
capacitance
coefficient in boundary condition
the curl of the displacement
designation of characteristic lines

5.1.1

9.2.1
6.4.1
8.5.1
13.2.1, 11.4.1
12.2.3
11.1
5.1.1

2.2.1c

2.2.1b, 4.1.1, 5.2.2
1.1.1a, 8.1, 6.4.2
7.0

4.1.4
6.4.1
8.5
11.4.2b
1.1.2a
2.1.2, 7.2.1a, 5.2.1
9.1.1
11.4
9.1.1



Glossary of Commonly Used Symbols

Meaning

C,

c,

D
d
da
df,

dl
dT,,
dV
E
E

E, Eo
E,

Et
ell, eil

Fij
F
F

f
fPFofff,ifff ,f,.fi

f
ff
G
G
G
G
g
g,g
(H, ,., H,, H,)
h
I, 1,(it, I),lf

(i, il , i4 .... , ik),
(ia,, ia,br, i0,
ia,(iYa,ib,id,(if, id),Or,, id)

specific heat capacity at constant pressure
specific heat capacity at constant volume
electric displacement
length
elemental area
total elemental force on material in rigid

body
elemental line segment
torque on elemental volume of material
elemental volume
constant of motion
Young's modulus or the modulus of

elasticity
electric field intensity
magnitude of armature voltage generated

by field current in a synchronous
machine

induced electric field intensity
strain tensor
strain-rate tensor
magnetomotive force (mmf)
force density
complex amplitude off(t)
amplitude of sinusoidal driving force
equilibrium tension of string
driving function
force

arbitrary scalar function
scalar function in moving coordinate

system
three-dimensional surface
integration constant
a constant
shear modulus of elasticity
speed coefficient
conductance
air-gap length
acceleration of gravity
magnetic field intensity
specific enthalpy
electrical current

electrical current

13.1.2
13.1.2
1.1.1a

1.1.2a

2.2.1e
1.1.2a
2.2.1c
1.1.2b
5.2.1

9.1
1.1.1a, 5.1.2d

4.1.6a
7.0
9.1, 11.2
14.1.1a
13.2.2
1.1.1a
5.1.1
9.1.3
9.2
5.1.1
2.2.1, 2.2.1c, 3.1,

5.1.2a, 3.1.2b, 8.1,
9.1

6.1

6.1
6.2
11.4.2a
5.1.2c
11.2.2
6.4.1
3.1
5.2.1
5.1.2c, 12.1.3
1.1.1a
13.1.2
10.4.3, 12.2.1a, 4.1.2,

6.4.1
2.1, 4.1.3, 6.4.1, 4.1.7,

6.4.1, 4.1

Symbol Section



Symbol

is

i,

(i 't, ), (J, , i2 is,3)
J, Ji

j
K
K, Kf
K
Ki
k, k5, (kr, kj)
k
k
k.
(L, LI, L2), (La, Lf),
Lm, (Lo, L2),
(4, L., L.0), L..

L
1I

1,1,,
M
M
M
M
M
M, M,
M
m

N
N
Pn

nt

n

P
P
P
P
P
PsOPoa'PMPr

Q
q, q, q,

R, RA, Ro

Appendix F

Meaning

unit vector perpendicular to area of
integration

unit vector normal to surface of
integration

unit vectors in coordinate directions
current density
moment of inertia
products of inertia

loading factor
surface current density
linear or torsional spring constant
induced surface current density
wavenumber
summation index
maximum coefficient of coupling
nth eigenvalue
inductance

length of incremental line segment
value of relative displacement for which

spring force is zero
length
Hartmann number
mass of one mole of gas in kilograms
Mach number
mass
number of mechanical terminal pairs
mutual inductance
magnetization density
mass/unit length of string
number of electrical terminal pairs
number of turns
number density of ions
integer
unit normal vector
polarization density
power
number of pole pairs in a machine
power per unit area
pressure
power

electric charge
electric charge

radius

Section

6.2.1

6.2.1
2.2.1c
7.0, 1.1.la
5.1.2b, 4.1.1, 2.2.1c
2.2.1c
4.1.6a
13.2.2
7.0, 1.1.1a
2.2.1a
7.0
7.1.3, 10.1.3, 10.0
2.1.1
4.1.6b
9.2
2.1.1, 6.4.1, 2.1.1,

4.2.1,4.1.1, 4.2.4

6.2.1
2.2.1a

14.2.2
13.1.2
13.2.1
2.2.1c
2.1.1
4.1.1, 4.2.4
1.1.1a
9.2
2.1.1
5.2.2
12.3.1
7.1.1
1.1.2
1.1.la
12.2.1a
4.1.8
14.2.1
5.1.2d and 12.1.4
4.1.6a, 4.1.6b, 4.1.2,

4.1.6b
7.2.1a
1.1.3 and 2.1.2, 8.1,

2.1.2

I __



Glossary of Commonly Used Symbols

Meaning

R, Ra, Rb, Rf, Rr, R,
(R, R,)
R,
Rm
r
r
r

rm
S
S
S
S

Sz

(s, smT)
Si

T
T
T, T, TP, Tem, Tm,

To,T,

t
t'
U
U

It

U

a - X0 )

u- 1(t)
V, Vm
V
V, VP V., V,
V

resistance
gas constant
electric Reynolds number
magnetic Reynolds number
radial coordinate
position vector of material
position vector in moving reference frame
center of mass of rigid body
reciprocal modulus of elasticity
surface of integration
normalized frequency
membrane tension
transverse force/unit length acting on string
complex frequency
slip
ith root of characteristic equation, a

natural frequency
period of oscillation
temperature
torque

surface force
mechanical stress tensor
the component of the stress-tensor in the

mth-direction on a cartesian surface with
a normal vector in the nth-direction

constant of coulomb damping
initial stress distribution on thin rod
longitudinal stress on a thin rod
transverse force per unit area on

membrane
transverse force per unit area acting on

thin beam
time
time measured in moving reference frame
gravitational potential
longitudinal steady velocity of string or

membrane
internal energy per unit mass
surface coordinate
unit impulse at x = xo
transverse deflection of wire in x-direction
unit step occurring at t = 0
velocity
volume
voltage
potential energy

13.1.2
7.0
7.0

2.2.1c
6.1
2.2.1c
11.5.2c
1.1.2a
7.2.4
9.2
9.2
5.1.1
4.1.6b
5.1.1

5.2.1
13.1.2
2.2.1c, 5.1.2b, 3.1.1,

4.1.6b, 4.1.1, 6.4.1,
6.4.1

8.4
13.1.2

8.1
4.1.1
9.1.1
9.1.1

9.2

11.4.2b
1.1.1
6.1
12.1.3

10.2
13.1.1
11.3
9.2.1
10.4.3
5.1.2b
7.0, 13.2.3
1.1.2

5.2.1

Symbol Section



Symbol

V, V

(v, v1, ... vk)
v'
, 
(va, Vb, Vc),

Vy, VoC,Vt
Vn

Vo
v,

2

Vs

v,

V

(WI, WM)

(W', wM, W')

WI,

W

w

w'

X
(xI 1,X, 2 ,....,xk)

X
xP

(x, )(a1 , X2, X3), (X,Y, Z)
(a, y, z')

(m,fl)

(V, ),

cc6(2
2, 2o, '0AoArAs

6( )

6
6

Appendix F

Meaning

velocity
voltage
voltage

velocity of surface in normal direction
initial velocity distribution on thin rod
phase velocity
relative velocity of inertial reference frames
'fV for a string under tensionf and

having mass/unit length m
longitudinal material velocity on thin rod
transverse deflection of wire in y-direction
energy stored in electromechanical

coupling
coenergy stored in electromechanical

coupling
hybrid energy function
width
energy density
coenergy density
equilibrium position
displacement of mechanical node
dependent variable
particular solution of differential equation
cartesian coordinates
cartesian coordinates of moving frame
constants along C+ and C- characteristics,

respectively
see (10.2.20) or (10.2.27)
transverse wavenumber
angles used to define shear strain
constant angles
space decay parameter
damping constant
equilibrium angle of torsional spring
ratio of specific heats
piezoelectric constant
angular position
slope excitation of string
amplitude of sinusoidal slope excitation
distance between unstressed material

points
distance between stressed positions of

material points
incremental change in (
displacement of elastic material
thickness of incremental volume element
torque angle

Section

2.1.1

6.2.1
9.1.1
9.1.1 and 10.2
6.1

10.1.1

9.1.1
10.4.3

3.1.1
3.1.2b

5.2.1
5.2.2
11.5.2c
8.5
5.1.2a
2.1.1
5.1.1
5.1.1
8.1, 6.1
6.1

9.1.1

11.4.3
11.2
4.1.6b
7.1.4
5.1.2b
2.2.1a
13.1.2
11.5.2c

10.2.1b
10.2.1b

11.2.1a

11.2.1a
8.5
11.1,9.1, 11.4.2a
6.2.1
4.1.6a



Glossary of Commonly Used Symbols

Meaning

6d.
(6+, &_)

E

'O

0, 6i, Om
0

0
0

(A,A1,A2, . . . I A,)

(Al, Ab, Ad)
(4T,, Aas, Ab., Ab,)(Al, A")

A
A

/., (14+, IA_)
It

Pd,

O
PD

Pg

arm
P,

as

a,,

T, T d

T

Kronecker delta
wave components traveling in the

-x-directions
linear permittivity
permittivity of free space
efficiency of an induction motor
second coefficient of viscosity
angular displacement
power factor angle; phase angle between

current and voltage
equilibrium angle
angular velocity of armature
maximum angular deflection
magnetic flux linkage

Lam6 constant for elastic material
wavelength
linear permeability
mobility
coefficient of viscosity
coefficient of dynamic friction
permeability of free space
coefficient of static friction
Poisson's ratio for elastic material
damping frequency
continuum displacement
initial deflection of string
amplitude of sinusoidal driving deflection
nth eigenfunctions
amplitudes of forward and backward

traveling waves
initial velocity of string
mass density
free charge density
surface mass density
surface of discontinuity
conductivity
free surface charge density
surface mass density of membrane
surface charge density
surface conductivity
surface charge density
surface traction
diffusion time constant
relaxation time

8.1

9.1.1
l.1.lb
1.1.1a
4.1.6b
14.1.1c
2.1.1, 3.1.1, 5.2.1

4.1.6a
5.2.1
6.4.1
5.2.1
2.1.1,6.4.1,4.1.7,

4.1.3, 4.1

11.2.3
7.1.4
I .1.la
12.3.1, 1.1.1b
14.1.1
2.2.1b
1.1.la
2.2.1b
11.2.2
10.1.4
8.5
9.2
9.2
9.2.1b

9.2
9.2
2.2.1c
1.1.la
11.3
6.2
1.1.1a
1.1.1a
9.2
7.2.3
1.1.1a
7.2.3
8.2.1
7.1.1, 7.1.2a
7.2.1a

Symbol Section
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Symbol Meaning Section

To electrical time constant 5.2.2

rM time for air gap to close 5.2.2
To time constant 5.1.3
*t traversal time 7.1.2a

electric potential 7.2
magnetic flux 2.1.1
cylindrical coordinate 2.1.1
potential for H when Jf = 0 8.5.2
flow potential 12.2

Xe electric susceptibility 1.1.1b
Xm magnetic susceptibility 1.1.1a
V the divergence of the material

displacement 11.4
Vy angle defined in Fig. 6.4.2 6.4.1
VY angular position in the air gap measured

from stator winding (a) magnetic axis 4.1.4
V electromagnetic force potential 12.2
p angular deflection of wire 10.4.3
O equilibrium rotational speed 5.1.2b

rotation vector in elastic material 11.2.1a
,n real part of eigenfrequency (10.1.47) 10.1.4
, (w, wo) radian frequency of electrical excitation 4.1.6a, 4.1.2

o natural angular frequency (Im s) 5.1.2b
to, w~ angular velocity 2.2.1c, 4.1.2
o) cutoff frequency for evanescent waves 10.1.2

coa  driving frequency 9.2

on) nth eigenfrequency 9.2
O,  natural angular frequency 5.1.3
(ar, CO) real and imaginary parts of co 10.0
V nabla 6.1
V• surface divergence 6.2.1

Ct
C ~
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Appendix G

SUMMARY OF PARTS I AND II

AND USEFUL THEOREMS

IDENTITIES

AxB.C=A.Bx C,

A x (B x C) = B(A. C)-- C(A- B)

V( + V) = VO + vv,

V. (A + B)= V .A + V- B,

Vx (A + B) =V x A + V x B,

V(#~Y) = # Vy + Y V#,

V. (vA)= A. VV + -VV A,

V.(AxB)= B.VxA--A.VxB,

V V V- V2= ,

V.V xA = 0,

V xV= 0,

V x (Vx A)= V(V - A) - V2 A,

(V x A) x A = (A. V)A - IV(A A),

V(A B) = (A- V)B + (B . V)A + A x (V x B) + B x (V x A)

V x (#A)= Vo x A + V Vx A,

V x (A x B) = A(V B) - B(V. A) + (B V)A - (A. V)B.

-I·-----·l~·l~---·U~ZI---
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THEOREMS

ý d = - ka.d

Divergence theorem Is A-n = nd .A dV

Stokes's theorem A dl =f(V x A).nda

bC~

cii

G

Sc
nda



Table 1.2 Summary of Quasi-Static Electromagnetic Equations

Differential Equations Integral Equations

Magnetic field system

Electric field system

VX H = J

V.B = 0

V.J =0

aB
V x E =

Tt

Vx E=O

V D = p

v J,- - a

aD
V x H=J,f+

(1.1.1)

(1.1.11)

(1.1.12)

(1.1.14)

(1.1.15)

H -dl = fS J n da

BB.nda = 0

J - n da = 0

E' dl =-- B.nda

where E' = E + v X B

E . dl = 0

SD -nda = fvp, dV

f J3 ' n d a = - p d Vd

H'.dl = J, -n da + D . n da

where J' = Jf - pfv

H'=H- v x D

(1.1.20)

(1.1.21)

(1.1.22)

(1.1.23)

(1.1.24)

(1.1.25)

(1.1.26)

(1.1.27)



__

Table 2.1 Summary of Terminal Variables and Terminal Relations

Magnetic field system Electric field system

Definition of Terminal Variables

Charee

A, = BB.nda

Current

i- f= Jy n'da
ýk"I

qk = f pidV

Voltage

vk E •dl

Terminal Conditions

dt

Ak = Ak(i1 ""i- ; geometry)

ik = ik '"... AN; geometry)

ik= dqk
dt

qk = qk( '...'VN; geometry)
v k = CV(ql '.qN; geometry)

Definitionof Terminal Variables



Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical
and M Mechanical Terminal Pairs*

Magnetic Field Systems Electric Field Systems

Conservation of Energy

N M
dWm = I ij dA, - f dxj

5j1 j1
N M

dW -= di + e dfe
j=1 -1

f5• = -- •-
Wax .

a (i. i; x1 .... X )f e= ax,

N

w,+ w.'=
J=1

N Jf
(a) dWe = v dq - fij dx

N I

(c) dWe >= q1 du 1+ :ý fe dxj
j=l j=1

Forces of Electric Origin, j = 1 ... , M

(eW,(ql, qN; Xl... . x ,)(e) fe = - wei qx .Sax.

Sa W(v,, . . . . .V; xl .... ,X3 1)(g) =i

Relation of Energy to Coenergy

(i) W + We = jqj
j=1

Energy and Coenergy from Electrical Terminal Relations

NlN (OWm i(A, ... j-,', 0 ... , 0; x ..... XM ) di' (k) W e .( . q 1,•, 0 ...,...

1 0The mechanical variables and can be regarded as theth force and displacement or theth torque T and angular displacement 0(n)

T7hemechanicalva riables fi and xi can be regarded as thejth force and displaement or trejth torque Tj and angular displacement Oj.



Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with
Moving Media

Differential Equations Transformations Boundary Conditions

V x H = J, (1.1.1) H' = H (6.1.35) n x (H a - Hb) = Kf (6.2.14)

V. B = 0 (1.1.2) B' = B (6.1.37) n. (Ba - Bb) = 0 (6.2.7)
field V. J! = 0 (1.1.3) J,= J, (6.1.36) n . (Jfa - Jb) + Vy• K, = 0 (6.2.9)

systems aB
V x E = - (1.1.5) E' = E + vr x B (6.1.38) n X (E a - Eb) = vn(Ba - Bb) (6.2.22)

B = Io(H + M) (1.1.4) M' = M (6.1.39)

V X E = 0 (1.1.11) E' =E (6.1.54) n (E - Eb) =-0 (6.2.31)

V.D = pf (1.1.12) D' = D (6.1.55) n (Da -- Db) = a (6.2.33)

; = Pf (6.1.56)
Electric , ao

8 1. bElectric J= - (1.1.14) J, = J= - pvr (6.1.58) n * (Ja _- Jb)+ V~. K, = -V(pl
a ) - (6.2.36)field at at

systems D
V x H = Jf + (1.1.15) H' = H - v' X D (6.1.57) n X (Ha - Hb) = K + vn X [n x (Da - Db) ] (6.2.38)

D = CoE + P (1.1.13) P' = P (6.1.59)



Appendix G

From Chapter 8; The Stress Tensor and Related Tensor Concepts

In what follows we assume a right-hand cartesian coordinate system
xL, x 2, x. The component of a vector in the direction of an axis carries the
subscript of that axis. When we write F, we mean the mth component of the
vector F, where m can be 1, 2, or 3. When the index is repeated in a single
term, it implies summation over the three values of the index

aH, 8aH 8H, aH,

andand a a a a
H, = H1 + H1 2 + Hs H V.

8X, 8ax 8x ax
This illustrates the summation convention. On the other hand, 8H,/ax,
represents any one of the nine possible derivatives of components of H with
respect to coordinates. We define the Kronecker delta 68,,, which has the values

1, when m = n,
6,, = (8.1.7)

0, when m 0 n.
The component Tn,, of the stress tensor can be physically interpreted as the

mth component of the traction (force per unit area) applied to a surface with
a normal vector in the n-direction.

ix1

x3

X2

Fig. 8.2.2 Rectangular volume with center at (z@, x, Xs) showing the surfaces and direc-
tions of the stresses T,,.

I-*··~-·····)-·LIUI··~11111



Summary of Parts I and II

The xl-component of the total force applied to the material within the
volume of Fig. 8.2.2 is

= T + , x3 Ax2 Ax3 - rT1 x -l I , x Ax2 Ax.

+12 1 2 + 3 T12\1. 2 2 1

+T (xiX2,z, x + 2 AxAX - T xx1,-4,- 2Ax3) Ax3\

(8.2.3)
Here we have evaluated the components of the stress tensor at the centers
of the surfaces on which they act; for example, the stress component T11
acting on the top surface is evaluated at a point having the same x2- and x3-
coordinates as the center of the volume but an x1 coordinate Ax1/2 above the
center.

The dimensions of the volume have already been specified as quite small.
In fact, we are interested in the limit as the dimensions go to zero. Con-
sequently, each component of the stress tensor is expanded in a Taylor series
about the value at the volume center with only linear terms in each series
retained to write (8.2.3) as

( Ax1 ITn1 Ax aT1
=T + T T11 + -1 a ,,AAx 3

2 8x 1 2 ax1

A,,x 2 T12 T 1 2+ Ax i-T Ax 1AxA+ L_ Ax,Ax,
+_x (T3 _.aT..__T13 +A 3 aTh) ATx1 Ax

2 ax, 2 ax3

or

f = + a +T-xAxAx 3. (8.2.4)

All terms in this expression are to be evaluated at the center of the volume
(x1 , x,, xa). We have thus verified our physical intuition that space-varying
stress tensor components are necessary to obtain a net force.

From (8.2.4) we can obtain the x,-component of the force density F at the
point (x 1 , X2, x3) by writing

F1 = lim T11 + + aT 13 (8.2.5)
Ax 1 Ayx,,Ax-OAxAxAxz, ax, ax2 ax,

The limiting process makes the expansion of (8.2.4) exact. The summation
convention is used to write (8.2.5) as



Appendix G

F1 = T-  (8.2.6)
ax"

A similar process for the other two components of the force and force density
yields the general result that the mth component of the force density at a
point is

F, = (8.2.7)
ax"

Now suppose we wish to find the mth component of the total force f on
material contained within the volume V. We can find it by performing the
volume integration:

=jV d v iax
When we define the components of a vector A as

A1 = T, 1 , A2 = T. 2, A3 T=3, (8.1.14)

we can write (8.1.13) as

f, = aA dV f=V9 A) dV. (8.1.15)

We now use the divergence theorem to change the volume integral to a surface

integral,
integral, f= A.nda= Anda, (8.1.16)

where n, is the nth component of the outward-directed unit vector n normal
to the surface S and the surface S encloses the volume V. Substitution from
(8.1.14) back into this expression yields

f, = sTmn, da. (8.1.17)

where T,.n, is the mth component of the surface traction T.

The traction r is a vector. The components of this vector depend on the
coordinate system in which T is expressed; for example, the vector might be
directed in one of the coordinate directions (xj, a, x3), in which case there
would be only one nonzero component of r. In a second coordinate system
(x, x', x'), this same vector might have components in all of the coordinate
directions. Analyzing a vector into orthogonal components along the co-
ordinate axes is a familiar process. The components in a cartesian coordinate
system (x', x,' xD) are related to those in the cartesian coordinate system
(x,, x, x,) by the three equations

-r = a,17 ,, (8.2.10)

where apr is the cosine of the angle between the x' -axis and the xz,-axis.

_I~ ^_ _ I_



Summnunary of Parts I and II

Similarly, the components of the stress tensor transform according to the
equation

T~, = a,,ra,,Ts. (8.2.17)

This relation provides the rule for finding the components of the stress in the
primed coordinates, given the components in the unprimed coordinates. It
serves the same purpose in dealing with tensors that (8.2.10) serves in dealing
with vectors.

Equation 8.2.10 is the transformation of a vector r from an unprimed to a
primed coordinate system. There is, in general, nothing to distinguish the two
coordinate systems. We could just as well define a transformation from the
primed to the unprimed coordinates by

7r, = b,,g, (8.2.18)

where b,, is the cosine of the angle between the x,-axis and the x,-axis. But
b,, from the definition following (8.2.10), is then also

b,, - a,,; (8.2.19)

that is, the transformation which reverses the transformation (8.2.10) is

7-,= a,7,. (8.2.20)

Now we can establish an important property of the direction cosines a.,
by transforming the vector r to an arbitrary primed coordinate system and
then transforming the components r'- back to the unprimed system in which
they must be the same as those we started with. Equation 8.2.10 provides the
first transformation, whereas (8.2.20) provides the second; that is, we sub-
stitute (8.2.10) into (8.2.20) to obtain

7, = a,,arT. (8.2.21)

Remember that we are required to sum on both p and r; for example, consider
the case in which s = 1:

T1 = (alla11 + a21a21 + a31a31)r1
+ (a1la 1U + a2 ta2 2 + aaiae)r2 (8.2.22)

+ (a1 1 ai3 + asla2 3 + aa•a33)r 3 .

This relation must hold in general. We have not specified either a,, or 7,-.
Hence the second two bracketed quantities must vanish and the first must be
unity. We can express this fact much more concisely by stating that in general

a,,a, = 6,sr (8.2.23)



Table 8.1 Electromagnetic Force Densities, Stress Tensors, and Surface Force Densities for Quasi-static
Magnetic and Electric Field Systems*

Stress Tensor T,,
Force Density Fm= 8T,nn Surface Force Density*

Description F m x=- (8.1.10) Tm = [Tmn]nn (8.4.2)

Force on media carrying Jf x B T., = pHAHn - 6emndpHkHk T = Kf x lp(H>
free current density Jy, Kf = n X [H]
p constant (8.1.3) (8.1.11) (8.4.3)

Force on media supporting pfE Tmn = eE?,En - BPnIeEiEk T = af(E)
free charge density pf, •, = n -[E]
e constant (8.3.3) (8.3.10) (8.4.8)

Force on free current plus Jf x B - ½H* H Vp T,, = pHHn
magnetization force in
which B = pH both before + V H.Hpy -- 6mn - HaHk
and after media are aP ap
deformed (8.5.38) (8.5.41)

Force on free charge plus pfE - JE *E VE T.n. = E,EEn
polarization force in which
D = E both before and + 1 V Ep - n - P E\E
after media are deformed +p a 1p

(8.5.45) (8.5.46)

Aa + Ab
* (A) -- 22

(A] Aa - A



Table 9.1 Modulus of Elasticity E and Density p for Representative Materials*

E-units of p-units of v,-unitst of
Material 10u N/m2 103 kg/m 3 m/sec

Aluminum (pure and alloy) 0.68-0.79 2.66-2.89 5100
Brass (60-70 % Cu, 40-30 % Zn) 1.0-1.1 8.36-8.51 3500
Copper 1.17-1.24 8.95-8.98 3700
Iron, cast (2.7-3.6% C) 0.89-1.45 6.96-7.35 4000
Steel (carbon and low alloy) 1.93-2.20 7.73-7.87 5100
Stainless steel (18•%Cr, 8%Ni) 1.93-2.06 7.65-7.93 5100
Titanium (pure and alloy) 1.06-1.14 4.52 4900
Glass 0.49-0.79 2.38-3.88 4500
Methyl methacrylate 0.024-0.034 1.16 1600
Polyethylene 1.38-3.8 x 10- 3 0.915 530
Rubber 0.79-4.1 x 10-i 0.99-1.245 46

* See S. H. Crandall, and N. C. Dahl, An Introductionto the MechanicsofSolids, McGraw-
Hill, New York, 1959, for a list of references for these constants and a list of these constants
in English units.
t Computed from average values of E and p.



Table 9.2 Summary of One-Dimensional Mechanical Continua

Introduced in Chapter 9

Thin Elastic Rod

a26 as26

P -2 = E-Es + F,

d8
T=E-

6-longitudinal (x) displacement
T-normal stress
p-mass density
E-modulus of elasticity

F,--longitudinal body force density

Wire or "String"

m-j- =f- 2 + S

-- transverse displacement
m--mass/unit length
f-tension (constant force)

S,-transverse force/unit length

Membrane

a / a,2e a,2 )

-- transverse displacement
am-surface mass density
S-tension in y- and z-directions

(constant force per unit length)
T,-z-directed force per unit area

G13
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Numbers preceded by letters are Appendix references. Appendices A, B, and C are in
Part One; Appendices D and E, Part Two; and Appendices F and G, Part Three.

Acceleration, centrifugal fluid, 729
centripetal, 59
Coriolis, 59
Eulerian variable, 727
fluid, 727
instantaneous, 45

Accelerator, electric field, 776
MHD, 825
particle, 608

Acoustic delay lines, 480
Acoustic waves, compressional in solid, 673

dilatational in solid, 673
elastic media, 671
fluid, 544
gases, 845
guided, 679, 683, 693
magnetic fields and, 846
membrane, 509
shear elastic, 675
string, 509
thin beam, 683
thin rod, 487, 681

Acyclic machine, 286
Air-gap magnetic fields, 114
Alfvmn velocity, 763
Alfvyn waves, 759

compressible fluids and, 841
cylindrical geometry, 767
effect of conductivity on, 772
mechanical analogue to, 766
nature of, 764
numerical example of, 771
resonances and, 771
standing, 771
torsional, 765

Amortisseur winding, 164
Ampere, 1
Ampere's law, B6, C3, E3, G3

dynamic, B9
electromechanical, 304
example of, B7
integral form of, B36, C3, E3, G3
magnetization and, B26

Amplifying wave, coupled system and, 608
electric field induced, 605
evanescent wave and, 607
space-time behavior of, 604, 606

Angular frequency, 513
Angular momentum, 248
Angular velocity, 47
Applications of electromechanics, 2
Approximations, electromechanical, 206
Armature, ac machine, 120

de machine, 141, 293
Armature reaction, 297

Astrophysics and MHD, 552
Attenuation, microwave, 561
Average power converted, salient pole ma-

chine, 155
smooth-air-gap machine, 124

Beats in space, 595
Bernoulli's equation, 738

example of, 752
Bessel functions, 408

roots of, 409
Bias, linear transducer operation and, 201

piezoelectricity and, 711
Bode plot, 206
Boundary, analytic description of, 269, 668

examples of moving, 269, 276, 279, 280,
364, 392, 397, 451, 460, 563, 574, 605,
627, 704, 783

moving, 267
well defined, 267

Boundary condition, Alfv6n waves, 769
causality and, 491, 592, 607
conservation of charge, 279, 374, 376, 394,

399
convection and, 267, 587, 598
dispersion and, 618
elastic media, 671, 676
electric displacement, 278
electric field intensity, 275, 278
electric field systems, 277, E6, G6
electromagnetic field, 267
electromechanical, 668
field transformations and, 275
geometric effect of, 280
initial condition and, 513
inviscid fluid, 752
inviscid fluid slip, 740
longitudinal and transverse, 680
magnetic field intensity, 273, 280
magnetic field systems, 270, E6, G6
magnetic field system current, 272
magnetic fluid, 774
magnetic flux density, 271
MHD, 769
motion and, 267, 491, 587, 592, 598, 607
string and membrane, 522
summary of electromagnetic, 268, E6, G6
thin rod, 493
viscous fluid, 873

Boundary layer dynamics, 602
Brake, induction, 134

MHD, 744
Breakdown, electrical, 576, 782
Breakdown strength of air, 576
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Index

Brush, dc machine, 292
liquid-metal, 316, 878
metal-graphite, 883

Bullard's equation, 336

Cables, charge relaxation in high voltage, 380
nonuniform conductivity in, 380

Capability curve of synchronous generator,
170

Capacitance, electrical linearity and, 30
example for calculation of, 32, 33
generalized, 28
quasi-static limit and, B18

Causality, boundary conditions and, 592,
607

condition of, 491, 592, 607
Center of mass, 46
Channel, variable-area MHD, 751
Characteristic dynamical times, excitation

and, 332
material motion and, 332

Characteristic equation, 181
Characteristics, wave fronts and, 618

wave propagation and, 488, 490
waves with convection and, 586

Charge, B1
conservation of, B5
net flow and flow of net, B6
test, 12
total, 29

Charge-average velocity, B5
Charge carriers, effect of motion on, 290
Charge conservation, differential form of,

B5
integral form of, B5

Charge density, B1
effect of motion on, 290, 334, 382, 387,

388, 392, 397, 401
free, 7, B28
magnetic field system and, 288

Charge distribution, effect of motion on,
334, 382, 387, 388, 392, 397, 401

Charge relaxation, 330, 370
electrical transient, 372
examples of, 372, 375
excitation frequency and, 378, 400
frequency in frame of material and, 399
general equation for, 371
lumped-parameter models for, 331, 375
magnetic diffusion and, 401
motion sinusoidal excitation with, 392
moving frame and, 381
nonuniform properties and, 378
sources of charge and, 372
spatially and temporally periodic fields

and, 397
steady motion and, 380
thunder storms, and, 388
traveling wave in a moving material and,

397
uniform properties and, 372

Choking, constant area flow, 824

Circuit breaker, transducer for a, 22
Circuit theory, 16
Coefficient, of sliding friction, 42

of static friction, 42
Coefficients of viscosity, independence of,

870
Coenergy, 73, E5, G5

electrical linearity and, 76
potential well motions and, 217

Coenergy density, electric field system, 464,
714

magnetic field system, 456
Collector rings, 120
Commutation in dc machines, 296
Commutator, 140

of dc machines, 292
Commutator bars, 142
Commutator machines, 140

ac generator, 329
brake operation of, 306
compound wound, 310
electrical power input of, 303
equation for armature of, 300
equation for field of, 297
equation of motion for, 297
generator operation of, 306
linear amplifier, 304
mechanical power output of, 303
motor operation of, 306
operation with alternating currents and,

312
properties of, 303
separately excited, 306
series excitation of, 309
shunt excitation of, 309
speed curves of, shunt excited, 310
speed regulation of, 307
summary of equations for, 303
torque-current curves of series excited, 311
torque-speed curves of shunt excited, 310
transient performance of, 306

Compensating networks, 198
Compensation in feedback loops, 198
Compressibility constant, 845
Compressibility of fluid, 725
Compressible fluids, 813

electromechanical coupling to, 820
Conduction, electrical, 7, B30

in electric field system, effect of motion
on, 371

heat, 815
motion and electrical, 284, 289

Conduction current, B6
absence of net free charge and, 374

Conduction machine, MHD, 740
variable area, MHD, 753
see also Commutator machine; DC machines

Conductivity, air and water, 388
electrical, 7
electrical surface, 7
mechanical strength and, 698
nonuniform, 380
numerical values of, 345, 377
Conductor, electric field perfect, 29, 213,



Index

390,400,401
magnetic field perfect, 18, 211, 223,

354, 401, 563
Confinement, electromechanical, 4, 407
Conservation, of charge, B5

displacement current and, B9
integral form of, B37

of energy, 63, 66
continuum, 456, 464
continuum coupling and, 455
equation, steady state, 820
fluid, 814
incompressible fluid, 757
integral form of, 819

of flux, lumped-parameter, 211, 220
perfectly conducting fluid and, 761

of mass, differential law of, 731
example of, 730
fluid, 729, 814
integral form of, 730

of momentum, fluid, 731, 814
integral form of, 733, 734
interfacial, 671
stress and, 733

Conservative systems, 213
Constant charge dynamics, 205, 213
Constant-current constant-flux dynamics,

220
Constant-current constraint, continuum, 628
Constant-current dynamics, 220
Constant flux, lumped and continuum, 212
Constant flux dynamics, fluid, 761

lumped-parameter, 211, 220
Constant of the motion, fluid, 738
Constant voltage dynamics, 204, 212, 226
Constituent relations, electromagnetic, 283,

B25
fluid, 815
fluid mechanical, 735
materials in motion and, 283
moving media in electric field systems

and, 289
moving media in magnetic field systems

and, 284
Constitutive law, mobile ion, 778

piezoelectric slab, 712
Contact resistance, MHD, 750
Contacts, sliding, 42
Continuity of space, 35
Continuum and discrete dynamics, 553
Continuum descriptions, 727
Continuum electromechanical systems, 251
Contour, deforming, 11, B32
Control, dc machines and, 291
Controlled thermonuclear reactions, 354
Convection, dynamical effect of, 584

and instability, 593
Convection current, B6
Convective derivative, 259, 584

charge relaxation and, 381
example of, 729
magnetic diffusion and, 357
see also Substantial derivative

Convective second derivative, 585
Coordinate system, inertial, 254
Corona discharge, 776, 782
Corona wind, demonstration of, 782
Couette flow, plane, 876
Coulomb's law, B1

point charge, B2
Coupling, electromechanical, 15, 60
Coupling to continuous media at terminal

pairs, 498
Coupling network, lossless and conserva-

tive, 63
Creep, failure in solids by, 704
Critical condition for instability, 568
Crystals, electromechanics of, 651

piezoelectric materials as, 711
Current, balanced two-phase, 113

conduction, B6
convection, B6
displacement, B9
electric field system, 29
free, B25
magnetization, B25
polarization, B29

Current density, B5
diffusion of, 343
distribution of, 332
free, 7

Current law, Kirchhoff's, 16
Currents as functions of flux linkages, 26
Current transformation, examples of, 226
Cutoff condition, 559
Cutoff frequency, 559

elastic shear waves, 695
membrane, 623

Cutoff waves, 556
electromagnetic plasma, 638
membrane, 623
power flow and, 637
thin beam, 684
see also Evanescent wave

Cyclic energy conversion processes, 79
Cylindrical coordinates, stress components

in, 437
Cylindrical modes, 648

Damped waves, driven response of, 577
Damper, linear ideal, 40

lumped element, 36, 40
square-law, 43, 229

Damper winding in rotating machine, 164
Damping, magnetic fluid, 750

negative, 198
spatial decay and, 560
wave dynamics with, 576

Damping constant, 41
Damping frequency, 577
DC generator, magnetic saturation in, 310

self-excited, 310
DC machines, 140; see also Commutator

machines
DC motor, self-excited, 308

series excited, 311



Index

starting torque of, 310
torque-speed curves for, 306

Definitions, electromagnetic, 7, B 1
Deforming contours of integration, 10, 18,

262, B32, 761
Degree of freedom, 49
Delay line, acoustic, 480

acoustic magnetostrictive, 708
fidelity in, 501
mechanical, 499
shear waves and, 696

Delta function, B2
Kronecker, 421

Derivative, convective, 259, 584, 726
individual, 728
particle, 728
Stokes, 728
substantial, 259, 584, 728
total, 728

Dielectrophoresis, 783
Difference equation, 620
Differential equation, order of, 180

linear, 180
Differential operators, moving coordinates

and, 257
Diffusion, magnetic, 576

magnetic analogous to mechanical, 580
of magnetic field and current, 335

Diffusion equation, 337
Diffusion time constant, 341

numerical values of, 344
Diffusion wave, magnetic, 358

picture of, 581
space-time behavior of, 359

Dilatational motion of fluid, 866
Direction cosines, definition of, 435

relation among, 439
Discrete systems, electromechanics of, 60
Discrete variables, mechanical, 36

summary of electrical, 35
Dispersion equation, absolutely unstable

wire, 567
Alfv6n wave, 769
amplifying wave, 602
convective instability, 602
damped waves, 577
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557
kink instability, 629
magnetic diffusion with motion, 357
membrane, 623
moving wire destabilized by magnetic

field, 602
moving wire stabilized by magnetic

field, 596
ordinary waves, 513

with convection, 594
on wire, 555
on wires and membranes, 513

resistive wall interactions, 609
sinusoidal steady-state, and 514
wire with convection and damping, 609

Displacement, elastic materials, 486
elastic media, 652
lumped parameter systems, 36
one-dimensional, 483
relative, 657
and rotation, 657
and strain, 658
transformation of, 659
translational, 657

Displacement current, B9
Displacement current negligible, B19
Distributed circuits, electromechanical, 651
Divergence, surface, 272

tensor, 422, G9
theorem, B4, C2, E2, G2, G9

Driven and transient response, unstable
system, 569

Driven response, one-dimensional con-
tinuum, 511

unstable wire, 568
Driving function, differential equation, 180

sinusoidal, 181
Dynamics, constant charge, 205, 213

constant current, 220
constant flux, 211, 220
constant voltage, 204, 212, 226
lumped-parameter, 179
reactance dominated, 138, 211, 220, 242,

336, 354, 368,563
resistance dominated, 138, 209, 233, 242,

336, 354, 368, 503, 583, 611
two-dimensional, 621

Dynamics of continua, x-t plane, 488, 586
omega-k plane, 511, 554

Dynamo, electrohydrodynamic, 388

Eddy currents, 342, 628
Efficiency of induction machine, 134
EHD, 3, 552, 776
EHD pump, demonstration of, 783
Eigenfrequencies, 518

electromechanical filter, 707
magnetic field, shift of, 562
not harmonic, 563, 684
wire stiffened by magnetic field, 562

Eigenfunction, 518
Eigenmode, 517

complex boundary conditions and, 533
orthogonality of, 341, 519, 520

Eigenvalues, 518
dispersion and, 562
graphic solution for, 526
kink instability, 630

Elastic beam, resonant circuit element, 688
Elastic constants, independence of, 664

numerical values of, 486
Elastic continua, 479
Elastic failure, example of electromechani-

cal, 701
Elastic force density, 667
Elastic guiding structures, 693
Elasticity, summary of equations of, 666, 668
Elasticity equations, steps in derivation of,

651



Index

Elastic material, ideal, 485
linear, 485

Elastic media, 651
electromechanical design and, 697
electromechanics of, 696
equations of motion for, 653
quasi-statics of, 503

Elastic model, membrane, 509
thin rod, 480
wire, 509

Elastic waves, lumped mechanical elements
and, 507

shear, 543
thin rod, 543
see also Acoustic waves

Electrical circuits, 16
Electric displacement, 7, B28
Electric field, effect of motion on, 334,

382, 387, 388, 392, 397, 401
Electric field coupling to fluids, 776
Electric field equations, periodic solution

to, 281
Electric field intensity, 7, B 1
Electric field system, B19

differential equations for, 8, E3, G3
integral equations for, 11, E3, G3

Electric field transformation, example of,
262

Faraday's law and, 262
Electric force, field description of, 440

fluids and, 776
stress tensor for, 441

Electric force density, 418, 463
Electric Reynolds number, 335, 370, 381,

383, 395, 399, 401, 575, 780
mobility model and, 780

Electric shear, induced surface charge and,
400

Electric surface force, 447
Electrification, frictional, 552
Electroelasticity, 553
Electrogasdynamic generator, 782
Electrohydrodynamic orientation, 785
Electrohydrodynamic power generation, 782
Electrohydrodynamics, 3, 552, 776
Electrohydrodynamic stabilization, 786
Electromagnetic equations, differential, 6,

B12, B19, E3, G3
integral, 9, B32, E3, G3
quasi-static, 5, B19, B32, E3, G3
summary of quasi-static, 13, E3, G3

Electromagnetic field equations, summary
of, 268, E6, G6

Electromagnetic fields, moving observer
and, 254

Electromagnetic theory, 5, B1
summary of, 5, E6, G6

Electromagnetic waves, B13
absorption of, B25

Electromechanical coupling, field descrip-
tion of, 251

Electromechanics, continuum, 330
of elastic media, 651
incompressible fluids and, 737

lumped-parameter 60
Electron beam, 4, 552, 600, 608

magnetic field confinement of, 601
oscillations of, 600

Electrostatic ac generator, 415
Electrostatic self-excited generator, 388
Electrostatic voltmeter, 94
Electrostriction, incompressibility -and, 784
Electrostriction force density, 465
Elements, lumped-parameter electrical, 16

lumped-parameter mechanical, 36
Energy, conservation of fluid, 814

electrical linearity and, 76
electric field system conservation of, 66
internal or thermal gas, 813
internal per unit mass, 815
kinetic per unit mass, 815
magnetic field system conservation of, 63
magnetic stored, 64
potential and kinetic, 214

Energy conversion, cyclic, 79, 110
electromechanical, 79
lumped-parameter systems, 79

Energy density, B23
equal electric and magnetic, B24

Energy dissipated, electromagnetic, B22
Energy flux, B22
Energy function, hybrid, 220
Energy method, 60, 450, E5, G5
Energy relations, summary of, 68, ES, G5
Enthalpy, specific, 820
Equation of motion, elastic media, 668

electromechanical, 84
examples of lumped-parameter, 84, 86
incomressible, irrotational inviscid flow,

738
linearized, 183
lumped mechanical, 49

Equilibrium, of continuum, stability of, 574
dynamic or steady-state, 188
hydromagnetic, 561
kink instability of, 633
potential well stability of, 216
static, 182

Equipotentials, fluid, 752
Eulerian description, 727
Evanescence with convection, 596
Evanescent wave, 556

appearance of, 559
constant flux and, 563
dissipation and, 560
elastic shear, 695
equation for, 557
example of, 556
membrane, 560, 623
physical nature of, 560
signal transmission and, 639
sinusoidal steady-state, 558
thin beam, 684

Evil, 697

Failure in solids, fatigue and creep, 704
Faraday, 1
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Faraday disk, 286
Faraday's law, B9

deforming contour of integration and, 262,
300, 315, 565, B32, E3, G3

differential form, 6, B10, E3, G3
example of integral, 262, 276, 286, 297,

315
integral form of, B10, B32
perfectly conducting fluid and, 761

Fatigue, failure in solids by, 704
Feedback, continuous media and, 548

stabilization by use of, 193
Ferroelectrics, B29

piezoelectric materials and, 711
Ferrohydrodynamics, 552, 772
Field circuit of dc machine, 141
Field equations, moving media, generalization

of, 252
Fields and moving media, 251
Field transformations, 268, E6, G6;

see also Transformations
Field winding, ac machine, 120

dc machine, 293
Film, Complex Waves I, xi, 516, 559, 571,

634
Film, Complex Waves II, xi, 573, 606
Filter, electromechanical, 2, 200, 480, 704
First law of thermodynamics, 63
Flow, Hartmann, 884

irrotational fluid, 737
laminar, 725
turbulent, 725

Flowmeter, liquid metal, 363
Fluid, boundary condition for, 725

boundary condition on, inviscid, 752
compressibility of, 725
effect of temperature and pressure on, 724
electric field coupled, 776
electromechanics of, 724
ferromagnetic, 552, 772
highly conducting, 760
incompressible, 724, 735
inhomogeneous, 735
internal friction of, 724
inviscid, 724, 725
laminar and turbulent flow of, 725
magnetic field coupling to incompressible,

737
magnetizable, 772
Newtonian, 861
perfectly conducting, 563
solids and, 724
static, 735
viscous, 861

Fluid dynamics, equations of inviscid com-
pressible, 813

equations of inviscid, incompressible, 726
equations of viscous, 871

Fluid flow, accelerating but steady, 753
around a corner, 751
potential, 751
unsteady, 746
variable-area channel, 751

Fluid-mechanical examples with viscosity,
875

Fluid orientation systems, 785
Fluid pendulum, electric-field coupled, 784

magnetic damping of, 750
Fluid pump or accelerator, 776
Fluid stagnation point, 752
Fluid streamlines, 752
Fluid transformer, variable-area channel

as, 756
Flux amplification, plasmas and, 354
Flux conservation, lumped-parameter, 211,

220
magnetic fields and, 352
perfectly conducting gas and, 849

Flux density, mechanical amplification of,
354

Flux linkage, 19, E4, G4
example of, 22, 23

Force, charge, B1
derivative of inductance and, 453
electric origin, 67, E5, G5
electromagnetic, 12
field description of, 418
fluid electric, 776
Lorentz, 12, 255, 419
magnetic, B6
magnetization with one degree of free-

dom, 451
physical significance of electromagnetic,

420
polarized fluids, 463, 572, 784
single ion, 778
surface integral of stress and, 422

Force-coenergy relations, 72, E5, G5
Force density, 7

averaging of electric, 440
averaging of magnetic, 419
divergence of stress tensor and, 422,

427, G9
effect of permeability on, 455, 456
elastic medium, 667
electric, 12, B3, 440, Gl
magnetic field systems, 419, 462, G11
electromagnetic fluid, 732
electrostriction, 465, Gil
fluid mechanical, 732
fluid pressure, 736
free current, 419, Gil
inviscid fluid mechanical, 737
lumped parameter model for, 455
magnetic, 12, 419, B9
magnetization, 448, 450, 462, Gl
magnetostriction, 461, 462, Gl
polarization, 450, 463, Gil
summary of, 448, G11

Forced related to variable capacitance, 75
Force-energy relations, 67, E5, G5

examples of, 70
Force equations, elastic media, 653
Force of electric origin, 60, E5, G5
Fourier series, 340
Fourier transform, two-dimensional, 617
Fourier transforms and series, diffusion
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equation and, 340
eigenmodes as, 517
linear continuum systems and, 511, 554,

617
linear lumped systems and, 200
mutual inductance expansions and, 108,

153
Frame of reference, laboratory, 254
Free-body diagram, 49
Free charge density, B28
Free charge forces, avoidance of, 787
Frequency, complex, 181, 554

complex angular, 554
natural, 181, 515
voltage tuning of, 704

Frequency conditions for power conversion,
111, 155

Frequency response of transducer, 204
Friction, coulomb, 42
Frozen fields, perfectly conducting gas and,

849
Fusion machines, instability of, 571

Galilean transformation, 584
Gamma rays, B13
Gas, perfect, 816
Gas constant, 816

universal, 816
Gases, definition of, 724

ionized, 813
Gauss's law, differential form of, B5

example of, B4
integral form of, B3
magnetic field, B12
polarization and, B28

Gauss's theorem, tensor form of, 423, G9
Generators, electric field, 778

electrohydrodynamic applications of, 3
hydroelectric, 152
induction, 134
magnetohydrodynamic applications of, 3
MHD, 744
Van de Graaff, 3, 383, 385

Geometrical compatibility, 53
Geophysics and MHD, 552
Gravitational potential, 733
Gravity, artificial electric, 785

force density due to, 732
waves, 794

Group velocity, 614
power flow and, 638
unstable media and, 617

Guiding structures, evanescence in, 560

Hartmann flow, 884
Hartmann number, 887
Heat transfer, EHD and, 552
Homogeneity, B27
Homogeneous differential equation, solu-

tion of, 180
Homopolar machine, 286, 312

armature voltage for, 314
speed coefficient for, 314

summary of equations for, 316
torque for, 316

Hunting transient of synchronous machine, 192
Hydraulic turbine, 151
Hydroelectric generator, 152
Hydromagnetic equilibria, 561, 571
Hysteresis, magnetic, B27

Identities, C1, El, G1
Impedance, characteristic, 497
Incompressibility, fluid, 735
Incompressible fluids, MHD, 737
Incompressible media, 380
Incremental motions, see Linearization
Independence of variables, 69, 97 (see

Problem 3.16)
Independent variables, change of, 72
Index notation, 421, G7
Inductance, calculation of, 22

electrical linearity and, 20
generalized, 17
quasi-static limit and, B18

Induction, demonstration of motional, 253
law of, B9; see also Faraday's law

Induction brake, 134
Induction generator, 134

electric, 400
Induction interaction, 367
Induction law, integral, B32; see also

Faraday's law
Induction machine, 127

coefficient of coupling for, 135
distributed linear, 368
efficiency of, 134
equivalent circuit for, 131
loading of, 137
lumped-parameter, 368
MHD, 745
power flow in, 133
reactance and resistance dominated, 137
single phase, 138
squirrel-cage, 129
starting of, 137, 139
torque in, 132
torque-slip curve of, 135
variable resistance in, 136
wound rotor, 106

Induction motor, 134
Inductor, 17
Inelastic behavior of solids, 699
Influence coefficients, MHD, 822

variable-area MHD machine, 832
Initial and boundary conditions, 513
Initial conditions, convection and, 587

one-dimensional continuum, 488, 512
Initial value problem, continuum, 488
Instability, absolute, 566

and convective, 604
aeroelastic absolute, 793
convective, 601
dynamic, 192
electrohydrodynamic, 571
engineering limitations from convective, 604
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and equilibrium, example of, 185
failure of a static argument to predict, 192
fluid pendulum, 785
fluid turbulence and, 725
graphical determination of, 184
heavy on light fluid, 571
and initial conditions, 184
kink, 627
linear and nonlinear description of, 216
nonconvective, 566
nonlinearity and, 570
omega-k plot for, 569
plasma, 553
in presence of motion, 583
Rayleigh-Taylor, 571
resistive wall, 576, 608
space-time dependence of absolute, 570
static, 182
in stationary media, 554

Integral laws, electromagnetic, 9, B32, E3,
G3

Integrated electronics, electromechanics
and, 688

Integration contour, deforming, 11, B32
Internal energy, perfect gas, 816
Invariance of equations, 256
Inviscid fluid, boundary condition for, 752
Ion beams, 552
Ion conduction, moving fluid and, 778
Ion drag, efficiency of, 782
Ion-drag phenomena, 776
Ionized gases, acceleration of, 746
Ion source, 776
Isotropic elastic media, 660
Isotropy, B27

Kinetic energy, 214
Kirchhoff's current law, 16
Kirchhoff's laws, 15

electromechanical coupling and, 84
Kirchhoff's voltage law, 16
Klystron, 601
Kronecker delta function, 421, G7

Lagrangian coordinates, 652
surface in, 669

Lagrangian description, 727
Lagrangian to Eulerian descriptions, 483
Lam6 constant, 667

numerical values of, 677
Laplace's equation, fluid dynamics and, 737

two-dimensional flow and, 751
Leakage resistance of capacitors, 377
Legendre transformation, 73
Length expander bar, equivalent circuit

for, 716
piezoelectric, 712

Levitating force, induction, 369
Levitation, electromechanical, 4, 195, 365,

370
demonstration of magnetic, 370
and instability, 574
of liquids, EHD, 552
MHD, 552

solid and liquid magnetic, 365
Light, velocity of, B14
Linearity, electrical, 20, 30, B27
Linearization, continuum, 483, 510, 556,

652, 842
error from, 224
lumped-parameter, 182

Linear systems, 180
Line integration in variable space, 64, 67
Liquid drops, charge-carrying, 388
Liquid level gauge, 416
Liquid metal brush, 878

numerical example of, 883
Liquid metal MHD, numerical example of

750
Liquid metals, pumping of, 746
Liquid orientation in fields, 785
Liquids, definition of, 724
Liquids and gases, comparison of, 724
Loading factor, MHD machine, 833
Lodestone, B25
Long-wave limit, 283, 574

thin elastic rod and, 683
Lord Kelvin, 389
Lorentz force, 419
Loss-dominated dynamics, continuum, 576
Loss-dominated electromechanics, 229, 249
Loss-dominated systems, 227
Losses, fluid joule, 815
Loudspeaker, model for, 527
Lumped-parameter electromechanics, 60
Lumped-parameter variables, summary of,

35, E4, G4

Mach lines, 624
Mach number, 624, 823
Macroscopic models, electromagnetic, B25
Magnet, permanent, 27
Magnetic axes of rotating machines, 105
Magnetic circuit, example of, 22, 23
Magnetic diffusion, 330, 335

charge relaxation compared to, 401
competition between motion and, 351
cylindrical geometry and, 408
effect of motion on, 354
electrical transient, 338
induction machines and, 746
initial conditions for, 339
limit, of infinite conductivity in, 343

of small conductivity in, 343
liquid metals and, 354
lumped-parameter models for, 331, 334,

336
sinusoidal steady-state, 358
sinusoidal steady-state with motion, 355
steady-state, 337, 347

steady-state in the moving frame, 351
traveling-wave moving media, 364

Magnetic diffusion time, 341, 772
Magnetic field, air-gap, 114

induced and imposed, 212, 286, 332
origin of earths, 336, 552

Magnetic field compression, 354
Magnetic field equations, insulating me-
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dium, 773
Magnetic field intensity, 7, B25
Magnetic field system, 6, B19

differential equations for, 6, B20, E6, G6
integral equations for, 10, B32, E3, G3

Magnetic field transformation, example of,
266; see also Transformations

Magnetic fluid, demonstration of, 777
Magnetic flux density, 7, B6
Magnetic flux lines, frozen, 763
Magnetic force, field description of, 418,

G11
stress tensor for, 422, G11

Magnetic forces and mechanical design, 697
Magnetic induction negligible, B19
Magnetic piston, 354
Magnetic pressure, 369
Magnetic Reynolds numbers, 333, 349, 351,

353, 357, 401, 628, 741, 821
MHD flow, 754
numerical value of, 354

Magnetic saturation in commutator ma-
chines, 297

Magnetic surface force, 447
Magnetic tension, 767
Magnetization, B25

effect of free current forces on, 455
Magnetization currents, B25
Magnetization density, 7, B25
Magnetization force, fluids and, 772

one degree of freedom and, 451
Magnetization force density, changes in

density and, 461
example of, 460
inhomogeneity and, 460
in moving media, 285
summary of, 448, G11

Magnetoacoustic velocity, 850
Magnetoacoustic wave, 846

electrical losses and, 860
flux and density in, 851
numerical example, in gas, 852

in liquid, 853
Magnetoelasticity, 553
Magnetofluid dynamics, 551
Magnetogasdynamics, 551
Magnetohydrodynamic conduction ma-

chine, 740
Magnetohydrodynamic generator, constant-

area, 821
variable-area, 828

Magnetohydrodynamics, 551
constant-area channel, 740
viscosity and, 725

Magnetohydrodynamics of viscous fluids,
878

Magnetostriction, 697
one degree of freedom and, 452

Magnetostriction force, incompressible
fluid and, 776

Magnetostrictive coupling, 707
Magnetostrictive transducer, terminal repre-

sentation of, 711
Mass, conservation of fluid, 729

elastic continua, quasi-static limit of, 507
lumped-parameter, 36, 43
total, 46

Mass conservation, 731
Mass density, 45

elastic materials, numerical values of, 486
of solid, 486

numerical values of, 486, G12
Mass per unit area of membrane, 509
Mass per unit length of wire, 511
Matched termination, 497
Material motion, waves and instabilities

with, 583
Matter, states of, 724
Maxwell, 1
Maxwell's equations, B12

limiting forms of, B14
Maxwell stress tensor, 420, 441, G7, Gll
Mechanical circuits, 36
Mechanical continuum, 479
Mechanical equations, lumped-parameter,

49
Mechanical input power, fluid, 756

variable-area channel, 756
Mechanical lumped-parameter equations,

examples of, 49, 51, 53
Mechanics, lumped-parameter, 35

rigid body, 35
transformations and Newtonian, 254

Membrane, elastic continua and, 509, 535,
electric field and, 574
equations of motion for, 511, 535, G13
two-dimensional modes of, 622

Membrane dynamics with convection, 584
Mercury, density and conductivity of, 750

properties of, 883
Meteorology, EHD and, 552
MFD, 551; see also MHD
MGD, 551; see also MHD
MHD, 551

compressible fluids and, 813
liquid metal numerical example of, 750
magnetic damping in, 750
transient effects in, 746, 759
transient example of, 750
variable-area channel in, 751
of viscous fluids, 878

MHD conduction machine, 821, 828
equivalent circuit for, 742
pressure drop in, 742
terminal characteristics of, 742

MHD constant-area channel, 740, 820
MHD flows, dynamic effects in, 746
MHD generator, comparison of, 839

compressibility and, 820
constant voltage constrained, 743
distribution of properties in, 827
end effects in, 797
examples of, 840, 841
Mach number in, 823
numerical example of, 826
temperature in, 823
variable-area channel, 828
viscosity and, 725, 884
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MHD machine, compressible and incom-
pressible, 825

constant velocity, loading factor and
aspect ratio, 834

dynamic operation of, 746
equivalent circuit for variable area, 756
loading factor of, 833
operation of brake, pump, generator, 744
quasi-one-dimensional, 828
steady-state operation of, 740
velocity profile of, 891

MHD plane Couette flow, 884
MHD plane Poiseuille flow, 878
MHD pressure driven flow, 884
MHD pump or accelerator, 824
MHD transient phenomena, 759
MHD variable-area channel equations,

conservation of energy and, 831, 833
conservation of mass and, 831, 833
conservation of momentum and, 831, 833
local Mach number and, 823, 833
local sound velocity and, 822, 833
mechanical equation of state and, 816, 833
Ohm's law and, 830, 833
thermal equations of state and, 820, 833

MHD variable-area machine, equations
for, 833

MHD variable-area pumps, generators and
brakes, 751

Microphone, capacitor, 201
fidelity of, 204

Microphones, 200
Microwave magnetics, 553
Microwave power generation, 552
Mobility, 289, B31

ion, 778
Model, engineering, 206
Modulus of elasticity, 485

numerical values of, 486, G12
Molecular weight of gas, 816
Moment of inertia, 36, 48
Momentum, conservation of, see Conserva-

tion of momentum
Momentum density, fluid, 734
Motor, commutator, 140, 291

induction, 134
reluctance, 156
synchronous, 119

Moving media, electromagnetic fields and,
251

Mutual inductance, calculation of, 22

Natural frequencies, 515
dispersion equation and, 517

Natural modes, dispersion and, 561
kink instability, 635
of membrane, 624, 625
overdamped and underdamped, 583
of unstable wire, 569

Navier-Stokes equation, 872
Negative sequence currents, 144
Networks, compensating, 198
Newtonian fluids, 861

ex

Newton's laws, 15, 35
elastic media and, 653

Newton's second law, 44, 50
electromechanical coupling and, 84
fluid and, 729, 731

Node, mechanical, 36, 49
Nonlinear systems, 206, 213
Nonuniform magnetic field, motion of

conductor through, 367
Normal modes, 511

boundary conditions and, 524
Normal strain and shear stress, 662
Normal stress and normal strain, 661
Normal vector, analytic description of, 269

Oerstad, 1, B25
Ohm's law, 7, B30

for moving media, 284, 298
Omega-k plot, absolutely unstable wire, 567

amplifying wave, 603
convective instability, 603
damped waves, complex k for real omega,

579
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557, 559, 597, 615, 695
moving wire, with destabilizing magnetic

force, 603
with resistive wall, complex k for real

omega, 611
with resistive wall, complex omega for

real k, 610
ordinary wave, with convection, 594

on wires and membranes, 514
ordinary waves, 514, 555
unstable eigenfrequencies and, 569
waves with damping showing eigenfre-

quencies, 582
wire stabilized by magnetic field, 557

Orientation, electrohydrodynamic, 571
electromechanical, 4
of liquids, dielectrophoretic, 785

EHD, 552
Orthogonality, eigenfunctions and, 341, 519,

520
Oscillations, nonlinear, 226

with convection, 596
Oscillators in motion, 599
Overstability, 192

Particles, charge carriers and, 782
Particular solution of differential equation,

180
Pendulum, hydrodynamic, 746

simple mechanical, 214
Perfect conductor, no slip condition on, 769
Perfect gas law, 816
Perfectly conducting gas, dynamics of, 846
Perfectly conducting media, see Conductor
Permanent magnet, in electromechanics, 27

example of, 28
as rotor for machine, 127

Permanent set, solids and, 700

__
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Permeability, 7, B27
deformation and, 459
density dependence of, 454
free space, 7, B7

Permittivity, 9, B30
free space, 7, 9, B2

Perturbations, 183
Phase sequence, 144
Phase velocity, 613

diffusion wave, 358
dispersive wave, 598
membrane wave, 512
numerical elastic compressional wave, 677
numerical elastic shear wave, 677
numerical thin rod, 486, G12
ordinary wave, 487
thin rod, 487
wire wave, 512

Physical acoustics, 553, 651
Piezoelectric coupling, 711

reciprocity in, 712
Piezoelectric devices, example of, 717
Piezoelectricity, 553, 711
Piezoelectric length expander bar, 712
Piezoelectric resonator, equivalent circuit

for, 716
Piezoelectric transducer, admittance of,

714
Piezomagnetics, 553
Plane motion, 44
Plasma, confinement of, 552

electromechanics and, 4
evanescent waves in, 561, 638
heating of, 552
lumped-parameter model for, 223
magnetic bottle for, 563
magnetic diffusion and, 408
MHD and, 553
solid state, 553

Plasma dynamics, 553
Plasma frequency, 600
Poiseuille flow, plane, 878
Poisson's ratio, 662

numerical values of, 666
Polarization, effect of motion on, 290

current, B29
density, 7, B28
electric, B27
force, 463, 571, Gl1

Polarization force, one degree of freedom,
464

Polarization interactions, liquids and, 783
Polarization stress tensor, 463, Gl
Pole pairs, 148
Poles in a machine, 146
Polyphase machines, 142
Position vector, 45
Positive sequence currents, 144
Potential, electric, B9

electromagnetic force, 738
gravitational, 733
mechanical, 214
velocity, 737

Potential difference, B10
Potential energy, 214
Potential flow, irrotational electrical

forces and, 738
Potential fluid flow, two-dimensional, 751
Potential plot, 214
Potential well, electrical constraints and, 217

electromechanical system and, 217
temporal behavior from, 224

Power, conservation of, 64
Power density input to fluid, 818
Power factor, 126
Power flow, group velocity and, 638

ordinary and evanescent waves and, 638
rotating machines and, 110

Power generation, ionized gases and, 552
microwave, 552, 553

Power input, electrical, 64
fluid electrical, 818
mechanical, 64
mechanical MHD, 743

Power input to fluid, electric forces and,
819

electrical losses and, 818, 819
magnetic forces and, 818
pressure forces and, 818

Power output, electric MHD, 743
Power theorem, wire in magnetic field, 637,

644
Poynting's theorem, B22
Pressure, density and temperature depen-

dence of, 816
hydrostatic, 735
hydrostatic example of, 736
incompressible fluids and significance of,

753
isotropic, 735
magnetic, 369
normal compressive stress and, 735
significance of negative, 753
velocity and, 753

Principal axes, 49
Principal modes, 681

elastic structure, 679
shear wave, 695

Principle of virtual work, see Conservation,
of energy

Products of inertia, 48
Propagation, 613
Propulsion, electromagnetic, 552

electromechanical, 4
MHD space, 746

Pulling out of step for synchronous ma-
chine, 125

Pump, electric field, 776
electrostatic, 778
liquid metal induction, 365
MHD, 744, 746
variation of parameters in MHD, 825

Pumping, EHD, 552
MHD, 552

Quasi-one-dimensional model, charge relaxa-
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tion, 392, 394
electron beam, 600
gravity wave, 794
magnetic diffusion, 347
membrane, 509, 648

and fluid, 793
MHD generator, 828
thin bar, 712
thin beam, 683
thin rod, 480, 681
wire or string, 509

in field, 556, 563, 574, 605, 627
Quasi-static approximations, 6, B17
Quasi-static limit, sinusoidal steady-state

and, 515, 534
wavelength and, B17
wire and, 534

Quasi-statics, conditions for, B21
correction fields for, B21
elastic media and, 503
electromagnetic, B19

Quasi-static systems, electric, 8
magnetic, 6

Radiation, heat, 815
Rate of strain, 864
Reactance-dominated dynamics, 138, 211,

220, 242, 336, 354, 368, 563, 759
Reciprocity, electromechanical coupling

and, 77
piezoelectric coupling and, 713

Reference system, inertial, 44
Regulation, transformer design and, 699
Relative displacement, rotation, strain and,

658
Relativity, Einstein, 254

Galilean, 255
postulate of special, 261
theory of, 44

Relaxation time, free charge, 372
numerical values of, 377

Relay, damped time-delay, 229
Reluctance motor, 156
Resistance-dominated dynamics, 138, 209,

233, 242, 336, 354, 368, 503, 583, 611
MHD, 750

Resistive wall damping, continuum, 583
Resistive wall instability, nature of, 612
Resistive wall wave amplification, 608
Resonance, electromechanically driven

continuum and, 533
response of continua and, 515

Resonance frequencies, magnetic field
shift of, 563

membrane, 624
natural frequencies and, 515

Resonant gate transistor, 688
Response, sinusoidal steady-state, 181, 200,

514
Rigid body, 44
Rigid-body mechanics, 35
Rotating machines, 103

air-gap magnetic fields in, 114

ex

applications of, 3
balanced two-phase, 113
classification of, 119
commutator type, 140, 255, 292
computation of mutual inductance in, 22
dc, 140, 291
differential equations for, 106
effect of poles on speed of, 149
electric field type, 177
energy conversion conditions for, 110
energy conversion in salient pole, 154
equations for salient pole, 151
hunting transient of synchronous, 192
induction, 127
losses in, 109
magnetic saturation in, 106
mutual inductance in, 108
number of poles in, 146
polyphase, 142
power flow in, 110
salient pole, 103, 150
single-phase, 106
single-phase salient-pole, 79
smooth-air-gap, 103, 104
stresses in rotor of, 697
superconducting rotor in, 92
synchronous, 119
two-phase, smooth-air-gap, 111
winding distribution of, 108

Rotating machines, physical structure,
acyclic generator, 287

commutator type, 292
dc motor, 293
development of dc, 295
distribution of currents and, 166, 169
four-pole, salient pole, 164
four-pole, single phase, 147
homopolar, 313
hydroelectric generator, 152
multiple-pole rotor, 146
rotor of induction motor, 107
rotor of salient-pole synchronous, 151
synchronous, salient-pole, 152
salient-pole, two phase, 158
salient-pole, single phase, 150
smooth-air-gap, single phase, 104
stator for induction motor, 106
three-phase stator, 145
turboalternator, 120
two-pole commutator, 294

Rotation, fluid, 865
Rotation vector, 658
Rotor of rotating machines, 104, 107, 112,

120, 146, 147, 150, 151, 152, 158,
164, 166, 169

Rotor teeth, shield effect of, 301

Saliency in different machines, 156
Salient-pole rotating machines, 103, 150
Salient poles and dc machines, 293
Servomotor, 140
Shading coils in machines, 139
Shear flow, 862, 864, 875
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magnetic coupling, 878
Shear modulus, 664

numerical values of, 666
Shear rate, 866
Shear strain, 543, 655

normal strain and, 663
shear stress and, 664

Shear stress, 543
Shear waves, elastic slab and, 693
Shearing modes, beam principal, 683
Shock tube, example related to, 276
Shock waves, supersonic flow and, 592
Sinusoidal steady-state, 181, 200, 514

convection and establishing, 592
Sinusoidal steady-state response, elastic con-

tinua, 514
Skin depth, 357

numerical values of, 361
Skin effect, 358

effect of motion on, 361
Slip of induction machine, 131
Slip rings, 120

ac machines and, 120
Slots of dc machine, 296
Sodium liquid, density of, 771
Solids, definition of, 724
Sound speed, gases, 844

liquids, 845
Sound velocity, see Velocity
Sound waves, see Acoustic waves
Source, force, 37

position, 36
velocity, 37

Space charge, fluid and, 780
Space-charge oscillations, 601
Speakers, 200
Specific heat capacity, constant pressure, 817

constant volume, 816
ratio of, 817

Speed coefficient, of commutator machine,
300

torque on dc machine and, 302
Speed control of rotating machines, 149
Speedometer transducer, 170
Speed voltage in commutator machine, 299
Spring, linear ideal, 38

lumped element, 36, 38
quasi-static limit of elastic continua and, 505
torsional, 40

Spring constant, 39
Stability, 182, 566, 583
Stagnation point, fluid, 752
Standing waves, electromagnetic, B16

electromechanical, 516, 559, 596, 771
State, coupling network, 61, 65

thermal, 816
Stator, of rotating machines, 104, 106, 120,

145, 147, 150, 152, 158, 164, 166, 169
smooth-air-gap, 103

Stinger, magnetic, 193
Strain, formal derivation of, 656

geometric significance of, 654
normal, 654
permanent, 700
shear, 543, 654

as a tensor, 659
thin rod, normal, 484

Strain components, 656
Strain-displacement relation, 653

thin-rod, 485
Strain rate, 724, 864

dilatational, 869
Strain-rate tensor, 864
Streaming electron oscillations, 600
Streamline, fluid, 752
Stress, fluid isotropy and, 868

fluid mechanical, 872
hydrostatic, 724
limiting, 700
normal, 432
shear, 432, 543
and traction, 424, G9

Stress components, 425
Stress-strain, nonlinear, 700
Stress-strain rate relations, 868
Stress-strain relation, 660, 668

thin-rod, 485
Stress-tensor, elastic media and, 667

example of magnetic, 428
magnetization, 462, G11
Maxwell, 420
physical interpretation of, 425, G7
polarization, 463, Gl1
pressure as, 735
properties of, 423, G7
surface force density and, 446, G9
symmetry of, 422
total force and, 444, G9

Stress tensors, summary of, 448, G11
String, convection and, 584

equation of motion for, 511, 535
and membrane, electromechanical

coupling to, 522
see also Wire

Subsonic steady MHD flow, 823
Subsonic velocity, 587
Substantial derivative, 259, 584, 726; see

also Convective derivative
Summation convention, 421, G7
Superconductors, flux amplification in, 354
Supersonic steady MHD flow, 823
Supersonic steady-state dynamics, 524
Supersonic velocity, 587
Surface charge density, free, 7
Surface conduction in moving media, 285
Surface current density, free, 7
Surface force, example of, 449

magnetization, 775
Surface force densities, summary of, 448,

G11
Surface force density, 445, G11

free surface charge and, 447, G11
free surface currents and, 447, G11

Surface tension, 605
Susceptance, electromechanical driving, 531
Susceptibility, dielectric, 9, B30

electric, 9, B30
magnetic, 7, B27

Suspension, magnetic, 193
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Symbols, Al, D1, F1
Symbols for electromagnetic quantities, 7
Synchronous condenser, 127
Synchronous machine, 119

equivalent circuit of, 123
hunting transient of, 192
phasor diagram for, 124, 162
polyphase, salient-pole, 157
torque in, 122, 123, 125
torque of salient-pole, two-phase, 160, 162

Synchronous motor, performance of, 126
Synchronous reactance, 123
Synchronous traveling-wave energy conver-

sion, 117

Tachometer, drag-cup, 363
Taylor series, evaluation of displacement

with, 483
multivariable, 187
single variable, 183

Teeth of dc machine, 296
Temperature, electrical conductivity and, 380
Tension, of membrane, 509

of wire, 511
Tensor, first and second order, 437

one-dimensional divergence of, 482
surface integration of, 428, 441, 444, G9
transformation law, 437, G10
transformation of, 434, G9

Tensor strain, 659
Tensor transformation, example of, 437
Terminal pairs, mechanical, 36
Terminal variables, summary of, 35, E4, G4
Terminal voltage, definition of, 18
Theorems, C2, E2, G2
Thermonuclear devices, electromechanics

and, 4
Thermonuclear fusion, 552
Theta-pinch machine, 408
Thin beam, 683

boundary conditions for, 687
cantilevered, 688
deflections of, 691, 692
eigenvalues of, 692
electromechanical elements and, 688, 691,

701, 704
equation for, 687
resonance frequencies of, 692
static loading of, 701

Thin rod, 681
boundary conditions for, 494
conditions for, 683
equations of motion for, 485, G13
force equation for, 484
longitudinal motion of, 480
transverse motions of, 682

Three-phase currents, 143
Time constant, charge relaxation, 372

magnetic diffusion, 341
Time delay, acoustic and electromagnetic, 499
Time-delay relay, electrically damped, 249
Time derivative, moving coordinates and, 258
Time rate of change, moving grain and, 727
Torque, dc machine, 302

electrical, 66

Lorentz force density and, 301
pull-out, 124

Torque-angle, 123
Torque-angle characteristic of synchronous

machine, 125
Torque-angle curve, salient-pole synchronous

machine, 163
Torque-slip curve for induction machine, 135
Torque-speed curve, single phase induction

machine, 139
Torsional vibrations of thin rod, 543
Traction, 424, 432

pressure and, 735
stress and, 432, G9

Traction drives, 310
Transducer, applications of, 2

continuum, 704
example of equations for, 84, 86
fidelity of, 203
incremental motion, 180, 193, 200
Magnetostrictive, 708

Transfer function capacitor microphone, 204
electromechanical filter, 706

Transformations, electric field system, 264
Galilean coordinate, 254, 256
integral laws and, 11, 276, 300, 315, B32
Lorentz, 254
Lorentz force and, 262
magnetic field system, 260
primed to imprimed frame, 439
summary of field, 268, E6, G6
vector and tensor, 434, G9

Transformer, electromechanical effects in, 697
step-down, 698
tested to failure, 698

Transformer efficiency, mechanical design
and, 699

Transformer talk, 697
Transient response, convective instability, 621

elastic continua, 517
MHD system, 751
one-dimensional continua, 511
superposition of eigenmodes in, 518
supersonic media, 593

Transient waves, convection and, 587
Transmission line, electromagnetic, B16

parallel plate, B15
thin rod and, 488

Transmission without distortion in elastic
structures, 696

Traveling wave, 487
convection and, 586
magnetic diffusion in terms of, 357
single-phase excitation of, 118
standing wave and, 116
two-dimensional, 622
two-dimensional elastic, 694
two-phase current excitation of, 116

Traveling-wave induction interaction, 368
Traveling-wave MHD interaction, 746
Traveling-wave solutions, 554
Traveling-wave tube, 602
Turboalternator, 120
Turbulence in fluids, 725
Turbulent flow, 43
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Ultrasonic amplification, 602
Ultrasonics in integrated electronics. 688
Units of electromagnetic quantities, 7

Van de Graaff generator, example of, 383,
385

gaseous, 778
Variable, dependent, 180

independent, differential equation, 180
thermodynamic independent, 64

Variable capacitance continuum coupling,704
V curve for synchronous machine, 125
Vector, transformation of, 434, 659
Vector transformation, example of, 435
Velocity, absolute, 44

acoustic elastic wave, 673, 677
acoustic fluid wave, 844, 846
Alfvdn wave, 763, 772
charge-average, B5
charge relaxation used to measure, 396
charge relaxation wave, 395
compressional elastic wave, 673, 677
dilatational elastic wave, 673, 677
elastic distortion wave, 675, 677
fast and slow wave, 586
light wave, B14
magnetic diffusion wave, 358
magnetic flux wave, 114
magnetoacoustic wave, 850, 852
measurement of material, 356, 362
membrane wave, 512
phase, 488
shear elastic wave, 675, 677
thin rod wave, 486, 487, 682
wavefront, 618

with dispersion, 598
wire or string wave, 512

Velocity potential, 737
Viscosity, 862

coefficient of, 863
examples of, 875
fluid, 724
mathematical description of, 862
second coefficient of, 871

Viscous flow, pressure driven, 877
Viscous fluids, 861
Viscour losses, turbulent flow, 725
Voltage, definition of, B10

speed, 20, 21
terminal, 18
transformer, 20, 21

Voltage equation, Kirchhoff, 16

Ward-Leonard system, 307
Water waves, 794
Wave amplification, 601
Wave equation, 487
Wavenumber, 357, 513

complex, 554, 607
Wave propagation, 487

characteristics and, 487, 586, 618
group velocity and, 616
phase velocity and, 613

Wave reflection at a boundary, 493
Waves, acoustic elastic, 673

acoustic in fluid, 544, 841, 842, 845
Alfv6n, 759
compressional elastic, 673
convection and, 586
cutoff, see Cutoff waves
damping and, 576
diffusion, 355, 576
dilatational, 672
dispersionless, 555
dispersion of, 488
of distortion, 675
elastic shear, 678
electromagnetic, B13, 488
electromechanical in fluids, 759
evanescent, see Evanescent waves
fast and slow, 586
fast and slow circularly polarized, 631
fluid convection and, 860
fluid shear, 760
fluid sound, 813
incident and reflected at a boundary, 494
light, B13
longitudinal elastic, 673
magnetoacoustic, 841, 846
motion and, 583
plasma, 553, 600, 638
radio, B13
rotational, 671
shear elastic, 675
stationary media and, 554
surface gravity, 794
thin rod and infinite media, 673

Wave transients, solution for, 490
Wind tunnel, magnetic stinger in, 193
Windings, balanced two-phase, 113

dc machine, 292
lap, 296
wave, 296

Wire, continuum elastic, 509, 535
convection and dynamics of, 584
dynamics of, 554
equations of motion for, 511, G13
magnetic field and, 556, 566, 627
two-dimensional motions of, 627

Yield strength, elastic, 700
Young's modulus, 485, G12

Zero-gravity experiments, KC-135 trajec-
tory and, 787
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