Problem M1 (Materials and Structures)

The figure (a) below shows a 2-dimensional structure consisting of a pair of springs, CA and $A B$ joined at point A. A force F is applied in a symmetric manner so that angles FAC and FAB are both 120°. Angle CAB is also 120°. The springs are joined or attached by hinges at A, B and C which can rotate freely. Your task is to determine the displacement of point A . You can assume that the springs are sufficiently stiff that the deflections and the displacements are small, so that the geometry of the structure will not change significantly due to the loading.

(i) Determine the forces in the springs. Assume that the springs can be replaced by reaction forces, $R_{A B}$ and $R_{A C}$ acting in the same directions as the springs (i.e at angles of 30° to the line $A C$) as shown in figure (b). Apply equilibrium to calculate the forces $R_{A B}$ and $R_{A C}$.
(ii) Calculate the extension of each spring. You can assume that the extension of the each of the springs is determined by the spring constant, k, and the force in the spring R, such that the spring will elongate by an amount, δ, according to: $R=k \delta$
(iii) Calculate the deflection (displacement) of point A. Use the results from part (b) as the extension of the springs. Use trigonometry, and the knowledge that the springs each remain attached at C and B and are joined at A, to calculate how much point A displaces.

