\qquad

Problem 1 - A generic queue

Prof. I. Kristina Lundqvist
Spring 2004

Question 1 (30)	
Question 2 (5)	
Question 3 (10)	
Question 4 (10)	
Question 5 (10)	
Question 6 (10)	
Question 7(15)	
Question 8 (10)	
Total 100	

You have 55 minutes to take this examination. Do not begin until you are instructed to do so. This is a closed book examination. No external materials are permitted, including calculators or other electronic devices. All answers must be written in the examination paper. This examination consists of 8 questions and 12 pages (not including this cover page). Count the number of pages in the examination paper before beginning and immediately report any discrepancy to the invigilator. Should you need to do so, you may continue your answers on the back of pages.

Do not forget to write your name on each page.

```
    . generic
Size : Positive;
            type Item is private;
            package Queue is
            procedure Enqueue (
E : in
Item )
            procedure Enqueue (
            procedure Dequeue (
            E: out Item)
Overflow, Underflow : exception;
end Queue;
. end Queue
-- package body for generic queue implementation
package body Queue is
            type Table is array (Positive range <>) of Integer;
            Space : Table (1 .. Size);
            Head: Natural \(\quad:=1\)
            ail: Natural:= 1
            procedure Enqueue (
            begin
if Tail>
in Size
then
                raise Overflow;
                end if;
                Space(Tail) := E
            nd Enqueue;
        procedure Dequeue(
            E : out Item ) is
        if Head \(=0\) then
            raise Underflow
            end if;
        E := Space(Head)
            Head:= Head - 1;
            if Head \(/=0\) then
                for I in Head+1 .. Tail-2 loop
                    Space(I):= Space(I+1).
                end loop;
            Tail:= Tail -1;
                end if;
        end Dequeue,
    . end Queue
```

Part a. Will the generic package compile? Justify your answer.
Given that there are no syntax errors in the code listing shown above.
The package will not compile, because the queue is defined as an array of integers, while enqueue and dequeue are both trying to add a generic element.
\qquad

Part b. Can you create two instances of the package i.e. a character queues and integer queues from the code shown above. (Answer with one word: yes or no) (3 points)

No
Part c.
(6 points)
(i) If yes in part b, Define the Ada95 instantiation for a character queue and an integer queue.

This gets six points even if Parts a, b were wrong
Character Queue
package Queue_Char is new Queue(
Size => 5,
Item => Character);

Integer Queue

package Queue_Int is new Queue(
Size => 5,
Item => Integer);
(ii) If no in part b, Which line(s) in the specification or body do you have to change? List the line number and modification to be made.
4. type Table is array (Positive range <>) of Integer;

Has to be changed to:
4. type Table is array (Positive range <>) of Item;

Part d. handle overflow.

Hint: How do you check if the queue is full or empty?

```
procedure Enqueue (
        Element : in Item ) is
begin
    if Tail+1 = Head then
        raise Overflow;
    end if;
    Space(Tail) := Element;
    Tail:= Tail+ 1;-- moves tail to the next location
    if Tail = Size then -- make the tail
            Tail :=1;
    end if;
exception
    when Overflow =>
        Put_Line("Circular Queue is full");
end Enqueue;
```

\qquad
\qquad

Problem 2 - Induction Proo
(5 points)
Prove using induction that the sum of the first \mathbf{n} positive integers is $\mathbf{n}^{*}(\mathbf{n}+\mathbf{1}) / \mathbf{2}$
$1+2+3+. .+\mathrm{n}=\mathrm{n} *(\mathrm{n}+1) / 2$

Base Case
When $\mathrm{n}=1$,
$\begin{array}{rll}\mathrm{n} *(\mathrm{n}+1) / 2 & = & 1^{*}(2) / 2 \\ & =1\end{array}$

Induction Hypothesis: Let the theorem be true for $\mathrm{j}=\mathrm{n}$.

Inductive Step:

$$
\text { When } \mathrm{j}=\mathrm{n}+1 \text {, then }
$$

$$
\text { Sum } \quad=\quad 1+2+3+. .+n+(n+1)
$$

$$
=\quad \mathrm{n} *(\mathrm{n}+1) / 2+(\mathrm{n}+1) \quad[\text { By Induction Hypothesis }]
$$

$$
=\quad\left(\left(\mathrm{n}^{2}+\mathrm{n}\right)+(2 \mathrm{n}+2)\right) / 2 \quad[\text { Arithmetic }]
$$

$$
=\quad\left(\mathrm{n}^{2}+3 \mathrm{n}+2\right) / 2 \quad[\text { Arithmetic }]
$$

$$
=\quad(\mathrm{n}+1)^{*}(\mathrm{n}+2) / 2 \quad[\text { Arithmetic }]
$$

By theorem
Sum $\quad=\quad(\mathrm{n}+1)^{*}(\mathrm{n}+2) / 2$
Hence
For all $\mathrm{n} \geq 1$, the sum of the first \mathbf{n} positive integers is $\mathbf{n}^{*}(\mathbf{n}+\mathbf{1}) / \mathbf{2}$

Problem 3 - Variant record
(10 points)
Define a variant record to holds aircraft information for two different types of aircraft
Fighters and Bombers
Both kinds of Aircraft have three common fields
ID is of type integer
Call_Sign is a string of maximum 20 characters
Aircraft_Type is an enumerated type with values 'fighter' and 'bomber'
In addition to the three common fields, Fighter Aircraft have fields:

```
Aircraft_Mach is a record with field
            Top_Mach of type float
            Cruise_Mach of type float
Max_Range is of type integer
```

In addition to the three common fields, Bomber Aircraft have fields:
Crew_Size of type positive
Payload of type integer
type Aircraft_Type is(Fighter, Bomber);
type Fighter Mach is record
Top_Mach : Float;
Top_Mach : Float;
end record;
type Aircraft_Record(Kind: Aircraft_Type) is
record
ID : Integer
Call_Sign: String(1..20);
Type : Aircraft_Type;
case Kind is
when Fighter =>
Aircraft_Mach : Fighter_Mach;
Max_Range : integer;

when Bomber=>

Crew_Size: Positive;
Payload : integer;
end case;
end record;
\qquad

Part a. Define recursive algorithms to traverse a tree in preorder and postorder (6 points) Fill in the preconditions (constraints/input parameters), postconditions(result/ouput parameters)

Traverse Preorder

Preconditions: root node of tree

Postconditions: displayed the tree by traversing preorder
Constraints : the tree is assumed to be well formed (no dangling references).

Pseudocode:

1. If root $=$ null then exit program
2. display root.element.
3. traverse the left subtree using root.Left Child as the root.
4. traverse the right subtree, using root.Right_Child as the root

Traverse Postorder

Preconditions: root node of tree
Postconditions: displayed the tree by traversing in postorder
Constraints : the tree is assumed to be well formed (no dangling references).

Pseudocode:

1. If root $=$ null then exit program
2. traverse the left subtree using root.Left Child as the root
3. traverse the right subtree, using root.Right_Child as the root.
4. display root.element.

Part b. For the given tree shown below: What is the inorder traversal of the tree.
(4 points)

[^0]Name: \qquad

Problem 5 - Proof

(10 points)

Part a. What is a fully connected graph?
(3 points)
A fully connected graph is a graph in which every node is connected to every other node. A fully connected graph with n nodes is denoted by K_{n}.

Part b.

(7 Points)
Prove that the sum of the degrees of all nodes in a fully connected graph of n nodes is $\mathbf{n}^{*}(\mathbf{n}-\mathbf{1})$

Base Case

When $\mathrm{n}=1$, the graph has one node and no edges, so the degree is zero.

$$
\begin{array}{rll}
\mathrm{n} *(\mathrm{n}-1) & = & 1 * 0 \\
& = & 0
\end{array}
$$

Induction Hypothesis: Let the theorem be true for a graph with n nodes.

Inductive Step:

When the graph has $\mathrm{n}+1$ nodes, the $(\mathrm{n}+1)^{\text {th }}$ node has to be connected to the remaining n nodes of the fully connected graph, and hence has degree n . The n nodes of the Kn graph have their degree increased by 1 . Hence the total increase to the sum of the degrees is $2 *$ n.

$$
\begin{array}{lll}
= & \mathrm{n} *(\mathrm{n}-1)+2 * \mathrm{n} & \\
= & \text { [By Induction Hypothesis] } \\
= & & {[\text { Arithmetic }]} \\
= & (\mathrm{n}+1) * \mathrm{n} & {[\text { Arithmetic }]}
\end{array}
$$

By theorem
 By theorem Sum of all the degrees of the nodes of a fully connected graph with $n+1$ nodes is $\mathrm{n}^{*}(\mathrm{n}+1)$
 Hence

$\forall \mathrm{n} \geq 1$, the sum of the degrees of a fully connected graph with \mathbf{n} nodes $=\mathbf{n} *(\mathbf{n}-\mathbf{1})$

Problem 6 - Logic

(10 points)
Part a. Formally prove $\mathbf{T} \rightarrow \neg(\mathbf{P} \vee \mathbf{R})$, given the following hypothesis 1 and 2:
(2 points)

1. $\mathrm{P} \vee \mathrm{R} \rightarrow \mathrm{S}$
2. $\mathrm{T} \rightarrow \neg \mathrm{S}$
3. $\neg S \rightarrow \neg(P \vee R)$
[contrapositive of 1]
4. $\mathbf{T} \rightarrow \neg(\mathbf{P} \vee \mathbf{R})$
[2,3 Transitivity of ->]

Part b. Translate the following four sentences of English into the language of predicate logic. $\mathbf{E}(\mathbf{x})$ represents x is even, and $\mathbf{O (x)}$ represents x is odd.

1. 2 is even

Even(2)
2. Not every integer is even
$\exists \mathrm{x} \neg \operatorname{Even}(\mathrm{x})$
3. Some integers are even and some are odd
$\exists x \exists y(\operatorname{Even}(x)$ and $\neg \operatorname{Even}(y))$
4. If an integer is not even, then it is odd
$\neg \operatorname{Even}(\mathrm{x}) \rightarrow \operatorname{Odd}(\mathrm{x})$
\qquad
\qquad

Problem 7
(15 points)
Part a. Convert the following POS (Product of Sum) expression into SOP (Sum of Product) form.
(5 points)
Hint: Think about negation
$(A+B+C) \cdot(\bar{A}+\bar{B}+\bar{C}) \cdot(A+\bar{B}+\bar{C}) \cdot(A+\bar{B}+C)$
Negating the expression above,
$(\bar{A} \bullet \bar{B} \bullet \bar{C})+(A \bullet B \bullet C)+(\bar{A} \bullet B \bullet C)+(\bar{A} \bullet B \bullet \bar{C})$
These are the 0 's, from the crib sheet, the 1 's can be found.
$(\bar{A} \bullet \bar{B} \bullet C)+(A \bullet \bar{B} \bullet \bar{C})+(A \bullet \bar{B} \bullet C)+(A \bullet B \bullet \bar{C})$
Part b. Simplify the SOP expression derived above using K-Maps (5 points)

| $\bar{B} \bullet \bar{C}$ | $\bar{B} \bullet C$ | $B \bullet C$ | $B \bullet \bar{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| A | | | |
| 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |

Simplified Expression is $(\bar{B} \bullet C)+(A \bullet \bar{C})$
Part c. What are the minterms that go into a four-variable K-Map (5 points)

Problem 8 - Multiple choice
(10 points)
Multiple Choice Questions. For each question, select the correct answer from the choices, and write the chosen letter in the box provided next to each question.

Answer

1. Prof. Dewar mentioned during his guest lecture that "Visual Basic" still is one of the two most commonly used programming languages, which of the following languages is the other of the top 2 most used programming languages in the world?

a. Java
b. C
c. Cobol
d. Ada
2. Heidi Perry explained four commonly used Software Life Cycles, which four?

C

a. The Waterfall, Incremental, Acquisition, and Spiral models
b. The Niagara, Incremental, Evolutionary, and Spiral models
c. The Waterfall, Incremental, Evolutionary, and Spiral models
d. The Niagara, Incremental, Revolutionary, and Spiral models
3. What is "cyclomatic complexity"?
a. Number of independent paths needed to execute all statements and conditions in a program at least once
b. A theoretical measure used in complexity theory, that describes the asymptotic lower bound of a function in terms of another, usually simpler, function
c. A measure of the number of times a recursive function will recursively cal itself/be executed.
\qquad
4. Coupling is a property of a collection of software modules. Which out of the following versions of coupling has the highest/worst coupling?
a. Stamp coupling: Two modules are stamp coupled if they
communicate through a composite data structure
b. Content coupling: Two modules are said to be content coupled \longrightarrow when they share code
c. Data coupling: Two modules are data coupled if they communicate via a parameter
d. Common coupling: Two modules are said to be common coupled when both reference the same shared/global data
5. I would like to have 2 free points on this quiz
a. Yes
b. Yes please
c. Yes, pretty please
d. No, I believe that Nothing is for free in life!

[^0]: 8,4,9,2,5,1,10,6,3,11,7,12

