KEY CONCEPTS FOR MATERIALS AND STRUCTURES
 Handout for Spring Term Quizzes

Basic modeling process for 1-D structural members

(1) Idealize/model - make assumptions on geometry, load/stress and deformations
(2) Apply governing equations (e.g. equations of elasticity)
(3) Invoke known boundary conditions to derive constitutive relations for structure (loaddeformation, load-internal stress etc.)

Analytical process for 1-D structural members

(1) Idealize/model - assumptions on geometry, load/stress and deformations
(2) Draw free body diagram
(3) Apply method of sections to obtain internal force/moment resultants
(4) Apply structural constitutive relations to relate force/moment resultants to
a) internal stresses
b) deformations (usually requires integration - invoking boundary conditions)

Elastic bending formulae

Based on convention for positive bending moments and shear forces:

Bending of a symmetric cross section about its neutral axis (mid plane for a cross-section with two orthogonal axes of symmetry).

$$
\sigma_{x x}=-\frac{M z}{I} \quad M=E I \frac{d^{2} w}{d x^{2}} \quad \sigma_{x z}=-\frac{S Q}{I b}
$$

where $\sigma_{x x}$ is the axial (bending) stress, M is the bending moment at a particular cross-section, I is the second moment of area about the neutral axis, z is the distance from the neutral axis, E is the Young's modulus of the material, w is the deflection, x is the axial coordinate along the beam, $\sigma_{x z}$ is the shear stress at a distance z above the neutral axis, S is the shear force at a particular cross, section, Q is the first moment of area of the cross-section from z to the outer ligament, b is the width of the beam at a height b above the neutral axis.

Second moment of area $I=\int_{A} z^{2} d A$
Standard solutions:
Rectangular area, breadth b, depth h: $I=\frac{b h^{3}}{12}$ Solid circular cross-section, radius R: $\quad I=\frac{\pi R^{4}}{4}$
Isosceles Triangle, depth h , base $\mathrm{b}: I=\frac{b h^{3}}{36} \quad$ (note centroid is at $\mathrm{h} / 3$ above the base)

Parallel axis theorem:

If the second moment of area of a section, area A, about an axis is I then the second moment of area I^{\prime} about a parallel axis, a perpendicular distance d away from the original axis is given by:

$$
I^{\prime}=I+A d^{2}
$$

First moment of area
The first moment of area of a section between a height z from the neutral plane and the top surface (outer ligament) of the section is given by:

$$
Q=\int_{A, z}^{h / 2} z d A
$$

Standard solutions for deflections of beams under commonly encountered loading

Configuration

$q 0$

Central deflection, $\mathrm{w}(\mathrm{L} / 2)$ dw/dx (x=L) w(L)
$\begin{array}{ll}M L & M L^{2} \\ E I & 2 E I\end{array}$

$$
\begin{array}{ll}
\frac{P L^{2}}{2 E I} & P L^{3} \\
& 3 E I
\end{array}
$$

$\begin{array}{cc}q_{0} L^{3} & q_{0} L^{4} \\ 6 E I & 8 E I\end{array}$
$P L^{2}$
$P L^{3}$
$16 E I$
$48 E I$
$q_{0} L^{3}$
$5 q_{0} L^{4}$
$384 E I$

Singularity functions

Integration of singularity functions: $\int_{-\infty}^{x}\langle x-a\rangle^{n} d x=\frac{\langle x-a\rangle^{n+1}}{n+1}, \quad n \geq 0$

$$
\int_{-\infty}^{x}\langle x-a\rangle_{-2} d x=\langle x-a\rangle_{-1} \quad \int_{-\infty}^{x}\langle x-a\rangle_{-1} d x=\langle x-a\rangle^{0}
$$

in a plane perpendicular to a principal direction.

