KEY CONCEPTS FOR MATERIALS AND STRUCTURES Handout for Spring Term Quizzes

Basic modeling process for 1-D structural members

- (1) Idealize/model make assumptions on geometry, load/stress and deformations
- (2) Apply governing equations (e.g. equations of elasticity)
- (3) Invoke known boundary conditions to derive constitutive relations for structure (load-deformation, load-internal stress etc.)

Analytical process for 1-D structural members

- (1) Idealize/model assumptions on geometry, load/stress and deformations
- (2) Draw free body diagram
- (3) Apply method of sections to obtain internal force/moment resultants
- (4) Apply structural constitutive relations to relate force/moment resultants to
 - a) internal stresses
 - b) deformations (usually requires integration invoking boundary conditions)

Elastic bending formulae

Based on convention for positive bending moments and shear forces:

for continuous loading, q,
$$q = \frac{dS}{dx}$$
, $S = \frac{dM}{dx}$

Bending of a symmetric cross section about its neutral axis (mid plane for a cross-section with two orthogonal axes of symmetry).

$$\sigma_{xx} = -\frac{Mz}{I}$$
 $M = EI\frac{d^2w}{dx^2}$ $\sigma_{xz} = -\frac{SQ}{Ib}$

where σ_{xx} is the axial (bending) stress, M is the bending moment at a particular cross-section, I is the second moment of area about the neutral axis, z is the distance from the neutral axis, E is the Young's modulus of the material, w is the deflection, x is the axial coordinate along the beam, σ_{xz} is the shear stress at a distance z above the neutral axis, S is the shear force at a particular cross, section, Q is the first moment of area of the cross-section from z to the outer ligament, b is the width of the beam at a height b above the neutral axis.

Second moment of area $I = \int_{A} z^2 dA$

Standard solutions:

Rectangular area, breadth b, depth h: $I = \frac{bh^3}{12}$ Solid circular cross-section, radius R: $I = \frac{\pi R^4}{4}$

Isosceles Triangle, depth h, base b: $I = \frac{bh^3}{36}$

(note centroid is at h/3 above the base)

Parallel axis theorem:

Unified Engineering M&S Quiz Handout, 2002

If the second moment of area of a section, area A, about an axis is I then the second moment of area I' about a parallel axis, a perpendicular distance d away from the original axis is given by:

$$I' = I + Ad^2$$

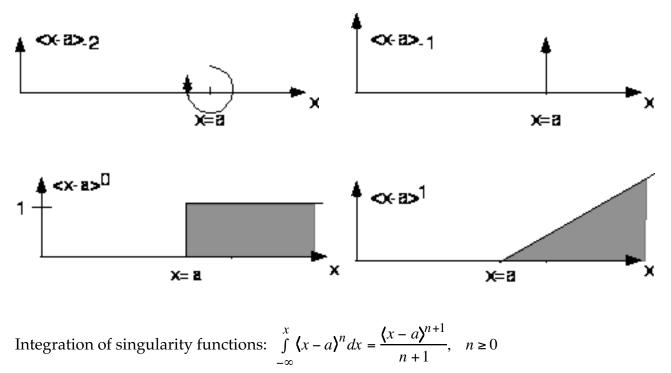
First moment of area

The first moment of area of a section between a height z from the neutral plane and the top surface (outer ligament) of the section is given by:

$$Q = \int_{A,z}^{h/2} z dA$$

Standard solutions for deflections of beams under commonly encountered loading

Configuration	End slope dw/dx (x=L	End deflection,) w(L)	Central deflection, w(L/2)
M	$\frac{ML}{EI}$	ML ² 2 <i>EI</i>	
	$\frac{PL^2}{2EI}$	PL ³ 3EI	
	$q_0 L^3$ 6 <i>EI</i>	q ₀ L ⁴ 8EI	
	<i>PL</i> ² 16 <i>EI</i>		Р <i>L</i> ³ 48 <i>EI</i>
	$q_0 L^3$ 24 <i>EI</i>		5q ₀ L ⁴ 384 <i>EI</i>



 $\int_{-\infty}^{x} \langle x - a \rangle_{-2} dx = \langle x - a \rangle_{-1} \qquad \qquad \int_{-\infty}^{x} \langle x - a \rangle_{-1} dx = \langle x - a \rangle^{0}$

in a plane perpendicular to a principal direction.