M4 Concept Question 1

A beam length L, cross sectional dimensions b (width in y direction) and h (thickness in z direction) such that L>>b,h is loaded by a distributed load, q, applied over an area of b x b, near its tip.

An estimate for the magnitude of σ_{zz} in the beam would be:

1.
$$\sigma_{zz} = 0$$

- 2. $\sigma_{zz} = \frac{q}{b}$ 3. $\sigma_{zz} = q\frac{L}{h}$

$$4. \quad \sigma_{zz} = q$$

5.
$$\sigma_{zz} = q \frac{h}{bL}$$

- 6. Some other answer
- 7. I don't know/don't understand.

M4 Concept Question 2

A beam length L, cross sectional dimensions b and h such that L>>b,h is loaded by a distributed load, q, over an area of approximately b x b (i.e $\sigma_{zz} \sim q/b$) near its tip.

An estimate for the magnitude of σ_{xx} at the root of the beam (x = 0) would be:

1. $\sigma_{xx} \approx 0$

2.
$$\sigma_{xx} \approx \frac{L}{h} \sigma_{zz}$$

3.
$$\sigma_{xx} \approx \frac{h}{L} \sigma_{zz}$$

4.
$$\sigma_{xx} \approx \sigma_{zz}$$

5.
$$\sigma_{xx} \approx \infty$$

- 6. Some other answer
- 7. I don't know/don't understand.