M4 Concept Question 1

A beam length L, cross sectional dimensions b (width in y direction) and h (thickness in z direction) such that $\mathrm{L} \gg \mathrm{b}$, h is loaded by a distributed load, q , applied over an area of $b \times b$, near its tip.

An estimate for the magnitude of $\square_{z z}$ in the beam would be:

1. $\square_{z z}=0$
2. $\square_{z z}=\frac{q}{b}$
3. $\square_{z z}=q \frac{L}{h}$
4. $\square_{z z}=q$
5. $\square_{z z}=q \frac{h}{\mathrm{~b} L}$
6. Some other answer
7. I don't know/don't understand.

M4 Concept Question 2

A beam length L, cross sectional dimensions b and h such that $L \gg b$, h is loaded by a distributed load, q, over an area of approximately $b x b$ (i.e $\left.\square_{z z} \sim q / b\right)$ near its tip.

An estimate for the magnitude of $\square_{x x}$ at the root of the beam ($x=0$) would be:

1. $\square_{x x} \square 0$
2. $\square_{x x} \square \frac{L}{h} \square_{z z}$
3. $\square_{x x} \square \frac{h}{L} \square_{z z}$
4. $\square_{x x} \square \square_{z z}$
5. $\square_{x x} \square$
6. Some other answer
7. I don't know/don't understand.
