

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139

16.01/16.02 Unified Engineering I, II Fall 2003

Systems Problem 7

Name: _			(min)
	Due Date: 10/30/03	SP7	
		Study	

Announcements:

Fluids Lab 1 (SPL8) – Assignment

Wind Tunnel Pitot Measurements

Learning Objectives

- Practice acquiring and reducing wind tunnel data
- Practice using pitot probe relations (Bernoulli, etc)
- Familiarization with tunnel test procedures

Experimental Rig

Test Article: F-16 model in Wright Brothers Wind Tunnel Instrumentation:

- Tunnel's pitot-static probe
- Hand-held pitot-static probe
- Tunnel's force balance

Test Conditions

Nominal tunnel speed: 50 mph

Angles of attack: $\alpha = 0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$

Raw Data Acquired

```
p_{\infty}, p_{o_{\infty}} (from tunnel's pitot-static probe)

p(x), p_o(x) (along nose centerline, using hand-held pitot probe)

Lift, Drag (from tunnel balance)
```

Normalized Data Presented

```
Top and bottom centerline C_p(x) for each \alpha. (All 8 curves on one plot) C_L(\alpha), C_D(\alpha)
```

Analysis

Propose locations of static ports on centerline, and how their measured p's could be used to best estimate p_{∞} and hence V_{∞} for any α . You may assume that $p_{o_{\infty}}$ is known accurately on the aircraft (since this is easy to measure).