Lab (S/L3) – Tunnel Testing of a 3-D Wing Unified Engineering 27 Feb 04

Learning Objectives

- Measure lift, drag, moment from load cell data, using reference-axis conversions
- Perform lift and drag predictions for a 3-D wing, and compare to measurements
- Use smoke visualization to see tip vortices
- Interpret tufts and acoustic-probe noise to detect flow separation

Secondary Objectives, for Flight Competition Project

- Get familiar with wing performance parameters for 3-D wings
- Get experimental data for stock Dragonfly wing, to serve as a baseline for redesign work

Experimental Rig

- Test Article: Dragonfly wing in WBWT
- Instrumentation:
 - Tunnel's pitot-static probe
 - Wing load cell
- Wing parameters:

 $S = 448 \text{ in}^2$ wing area b = 47 in wing span $c_{\text{avg}} = 9.5 \text{ in}$ average chord e = 0.95 span efficiency, estimated

Test Conditions

Nominal tunnel speeds: V = 10, 15, 20 mph Angles of attack: $\alpha = -2^{\circ} \dots 20^{\circ}$, in increments of 2° .

Raw Data Acquired

- $q_{\infty}, p_{\infty}, T_{\infty}$ for each (V, α) point, from tunnel's pitot-static probe
- Six load-cell voltages for each (V, α) point
- Observe flow separation regions indicated by tufts, expected at lowest and highest α
- Observe of tip vortices with smoke wand

Data Recording

• All flow properties and cell voltages are sampled continuously at ~ 1 Hz, and stored to an Excel file

• One Excel file will contain all α points for one nominal V (or all three V's if you choose). You must manually snip out the multiple-data lines for each α , and average these to get data for a single (V, α) point. • Data labels for voltages are:

$$\begin{array}{rcl} (F_x)_{\mathrm{Volt}} &= \mbox{``Lift''} \\ (F_y)_{\mathrm{Volt}} &= \mbox{``Drag''} \\ (F_z)_{\mathrm{Volt}} &= \mbox{``Sideforce''} \\ (M_x)_{\mathrm{Volt}} &= \mbox{``Yaw''} \\ (M_y)_{\mathrm{Volt}} &= \mbox{``Roll''} \\ (M_z)_{\mathrm{Volt}} &= \mbox{``Pitch''} \end{array}$$

Data processing

• Convert cell voltages into F_x , F_y , M_z using the appropriate 3×6 subset of the 6×6 JR-3 load cell calibration matrix (given on separate sheet).

• Convert F_x , F_y , M_z , into L, D, $M_{c/4}$, with $\Delta X = 1.5$ in , $\Delta Y = -2.0$ in.

$$L = -F_x \cos \alpha + F_y \sin \alpha$$
$$D = -F_x \sin \alpha - F_y \cos \alpha$$
$$M_{c/4} = -M_z + F_x \Delta X - F_y \Delta Y$$

- Convert all units into a common unit system of your choice
- Compute C_L , C_D , C_M for each (V, α) point
- Compute c_{avg} Reynolds number for each nominal tunnel speed

Prediction calculations

- Compute c_d, c_ℓ, c_m polars with XFOIL for test Reynolds numbers Airfoil coordinate file: /mit/drela/Public/dfly.dat
 This was abtained by tracing and digitizing an actual Descently wing a
 - This was obtained by tracing and digitizing an actual Dragonfly wing cross-section.
- Assume $C_L = c_\ell$
- Compute $C_D = c_d + C_{Di}$ for each polar point
- Assume $C_M = c_m$
- Compute $\alpha_{3D} = \alpha + \alpha_i = \alpha + C_L/(\pi AR e)$ for each polar point.

Lab Report Contents

- Name of author, and members of the lab group
- Abstract
- Sketch of experimental setup, showing key dimensions
- Plots of $C_L(\alpha)$, for measurements and predictions, the latter being $C_L(\alpha_{3D})$
- Plots of $C_D(C_L)$ for each Reynolds number, for measurements and predictions, overlaid
- Plots of $C_M(C_L)$, for measurements and predictions
- Estimates of uncertainty and errors in results.
- Discussion of data and comparison with predictions

ZX Cell center at (4.0", -2.0")

•

. i de la companya de la

2

.

•

.

.

.

. .

.

.

•

14 MAR 01

JR3 Sensor Model No. 20E12A-I25 15L30 Ser. No. 2230 Nominal Diameter: 2.0" Nom. Height: 1.25" Nom. Weight: 0.4 lbs

Load Settings Load Ratings L	loads u	1	
	Loads used		
Fx 15.0 lbs 15. lbs	15.0	lbs	
Fy 15.0 lbs 15. Lbs	15.0	lbs	
Fz 30.0 lbs 30. lbs	30.0	lbs	
Mx 30.0 in-1bs 30. in-1bs	27.5	in-lbs	
My 30.0 in-1bs 30. in-1bs	27.5	in-lbs	
Mz 30.0 in-1bs 30. in-1bs	27.5	in-lbs	

Factory Shunt Voltage Vector

Fx	Fy	Fz	Mx	My	Mz
5 .259	5.235	5.246	5.715	5.703	5.415

Calibration Matrix:

Multiply the calibration matrix by the sensor output voltage vector to determine the calibrated loads in lb and in-lb.

$ \begin{array}{r} 1.7357 \\ -0.0116 \\ -0.1519 \\ 0.0493 \\ 0.0503 \\ 0.0503 \end{array} $	0.0094 1.7403 0.1234 -0.0118 -0.0291	0.0252 - 0.0007 3.5511 - 0.0766 - 0.0834	-0.0402 0.0012 0.0282 3.4583 0.0010	-0.0060 -0.0752 -0.1533 -0.0023 3.5586	$0.0962 \\ -0.0054 \\ -0.0218 \\ 0.2041 \\ -0.1969 \\ 2.6100$	Fx Volts Fy Volts Fz Volts Mx Volts My Volts Mz Volts
-0.0317	0.0068	0.0258	-0.0372	-0.0069	3.6100	Mz_Volts_