16.422

Human Supervisory Control

Nuclear and Process Control Plants

Massachusetts Institute of Technology

Process Control Plants

- Continuous or batch processing
- Examples: Electricity generation (nuclear power plants), refineries, steel production, paper mills, pasteurization of milk
- Characterized by:
 - Large scale, both physically and conceptually
 - Complex
 - High risk
 - High automation
- Remote vs. direct manipulation of plant equipment

Three Mile Island

- March 28th, 1979
- Main feedwater pump failure, caused reactor to shut down
- Relief valve opened to reduce pressure but became stuck in the open position
 - No indication to controllers
 - Valve failure led to a loss of reactant coolant water
- No instrument showed the coolant level in the reactor
- Operators thought relief valve closed & water level too high
 - High stress
 - Overrode emergency relief pump

Three Mile Island

- Automation worked correctly
- Confirmation bias: people seek out information to confirm a prior belief and discount information that does not support this belief
 - At TMI, operators selectively filtered out data from other gauges to support their hypothesis that coolant level was too high

Process Control Human Factors Challenges

• Control room design

- Increasing automation requires cognitive support as opposed to manual control support
- Human-machine interface design
- Team decision making
- Standardized procedures vs. innovation
- Trust & confidence

Supervisory Process Control Tasks

- Monitor process
- Detect disturbances, faults, & abnormalities
- Counter disturbances, faults, & abnormalities
- Operating procedures must be followed
- Communications
 - A log must be kept
 - Other team members (shift changes)
- Emergency procedures
- Training and retraining

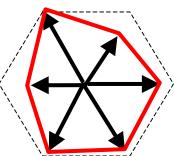
Cognitive Demands When Monitoring Process Control Plants

- Vigilance
 - Continuous vs. time share
 - Active vs. passive monitoring
- Memory
- Selective attention
- Visual attention/perception
- System complexity
- System reliability
 - Critical vs. non-critical components

Cognitive Demands, cont.

- Display and control design
 - Lack of referent values
 - Lack of emergent features
 - Lack of integrated information
- Alarm system design
 - Nuisance alarms
 - Cycling around limits
 - Desensitization
- Automation design
 - Lack of appropriate feedback
 - Direct vs. indirect cues

Coping Strategies


- Increase desired information salience and reduce background noise
 - Clearing and disabling alarms
 - Cross checking with other reactors
- Create new information
 - Operators manipulated set points for earlier alarms
- Offload cognitive processing onto external aids
 - Leaving doors open & sticky notes
- Deviations from "approved" procedures

Advanced Displays in Process Control

- Classical displays (bar graphs, meters, annunciators) are being replaced with computerized displays
 - Keyhole effect
 - Temporal considerations
 - Integration of information
- Flexible & adaptable displays
 - Local vs. global problems
- Configural & Ecological displays

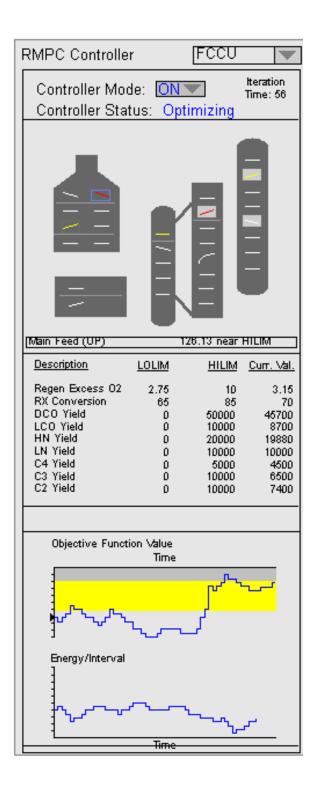
Configural Displays

- Separable vs. integral vs. configural
- Gestalt principles in design
- Emergent features

A Process Control Design Case Study

- Model-Based Predictive Control (MPC) of a refinery plant
- Multi-input & multi-output automatic controllers
 - Optimize the process based on maximizing production and minimizing utility cost.
 - Higher levels of automation human less in the loop
- Three variable types
 - CVs Controlled Variables process variables to be kept at setpoints or within constraints (20-30 variables).
 - MVs Manipulated Variables Variables (typically valves) that are adjusted to achieve CVs while optimizing (6-8 variables).
 - DVs Disturbance Variables Variables that can measured but not controlled, e.g., ambient air temp. (2-3 variables)
- Humans have difficulty monitoring, diagnosing, controlling these advanced systems

REGEN BED TEMP Detail Display


•	CV 1	DETAIL
RX / REGEN CTL	ON OFF WARM	OPTIMIZING
TAG 25ATCV01 DESC REGEN BEI SOURCE 25ATCV01.		LINEAR OBJ COEF -1.00
PV VALUE 579.3 PRED VAL 579.36	STATUS GOOD	QUAD OBJ COEF0.00DESIRED CV VAL0.00SCALING FACTOR0.329
FUTURE 579.38 SS VALUE 581.36 SETPOINT	SP.LIM TRACKS PV UPDATE FREQUENCY CRITICAL CV CONTROL THIS CV	
LO LIMIT 400.00 ACTIVE 400.00] # OF BAD READS AI	PERFORMANCE RATIO 1.00
HI LIMIT <u>600.00</u> ACTIVE 600.00	LO LIMIT RAMP RAT HI LIMIT RAMP RAT UNBIASED MODEL PY	TE 10.000 SETPOINT GAP 0.00
	CV MV DV SPLY DISPLY DISPLY	STATUSMVCVGAIN/TRENDMESGTUNINGTUNINGDELAYDISPLY

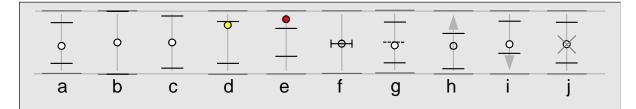
Gain/Delay Matrix – The Goal State

			ON	ILINE GAIN	AND DELAY	CHANGE		
RX	/ REGEN CTL	ON	OFF	WARM	OPTIMIZING			
CV	DESCRIPTION		MV01 M	V02 MV03 M	V04 MV05 M	V06 MV07 M	W08 MV09 M	V10 DV01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	REACTOR BED T REGEN BED TEM REGEN EXCESS (RX/REGEN DELT REGEN CAT SLV SPENT CAT SLV STRIPPER LEVEI BLOWER AMP'S WET GAS RPM'S FEED HDR-PRES FRAC BTMS TEM FRAC DELTA PR BLOWER VLV OP WET GAS VLV O RX PRED OCTAN	P D2 A P DP DP L S P ESS P		2.0 -3.5 -1.0 -1.0 2.0 -3.0 1.0 7.2 3.0 3.0 -7.3 -7.3 4.4 6.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.1 -0.5 4.2	0.25 6.1 -0.5 0.25 -0.7 0.70 -2.0 -2.0 1.5 6.2 -9.0 -9.0 25 7.0	0.25 0.25 <t< td=""></t<>
Ga: Ga:	in Multiplier in		<u>.000</u> .750	Deadtime Deadtime	Bias 0.000 0.000		dtime 2.00	0
APP ME	LCN PROCESS	CV SPL	MV	DV	STATUS	MV C UNING TUN	V GAIN/	TREND DISPLY

The Display Redesign

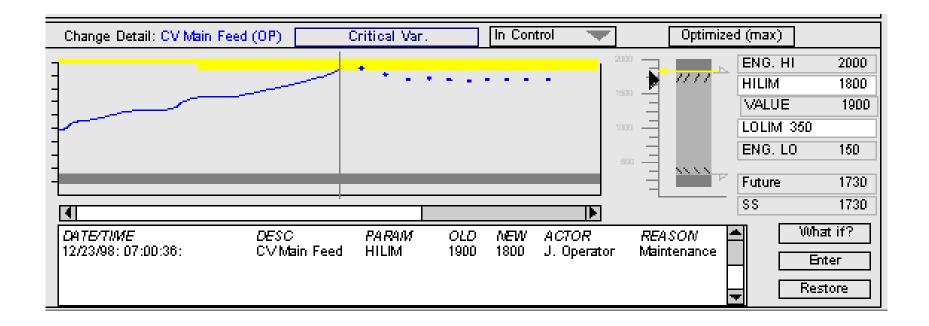
RMPC Controller	FCCU		∕ ™≣	stox 🔨 PV Det	ail 🗸 Tre	nds VParam	eters						
Controller Mode: ON		Iteration						M	vs			DV	
Controller Status: O		Time: 56				Rogan Air	Main Food	O2 Feed	Rogan Prass	Riser Temp	Main Food Tomp	CFU Feed Valve	V. Res FC Valve
	prinzing			C\∕s		•	. .	÷	+		9	a	P
_				Rigen XS 02				+ 3.76	+ 0.45				
				Hater XS 02 DCO Yield		+ 0.37	+ 0.00	+ 0.33	+ 0.18	+ 0.05			+ 0.01
				LCO Yield		+0.57	- 0.00	+0.55	+ 0.77	- 0.08	+ 0.00	- 0.00	- 0.10
				HN Yield			+ 0.00		- 0.84	+ 0.05		+ 0.00	+ 0.08
				LN Yield	+-+-	- 0.38		- 0.43	+ 4.55	+1.23	- 0.09	- 0.11	+0.64
		_	Н	Crimid C3 Yeld	 ● 		+ 0.01		- 6.02 + 2.34	+ 0.47			+0.74
		-		C2 Yield			- 0.00		+ 2.54	- 0.17			- 0.25
				Cat/OI	→~								
-				Rx Canvasian	 —₀								
_				Rogen Air (OP)									
Main Feed (UP)	126.13 near i			Main Food (OP) Hrr Fuol Food (OP)	 −4 →%0−								
Description LOLIM	<u>HILIM</u>	Curr. Val.		Holtor Fuel FD	<u> </u>								
Regen Excess 02 2.75	10	3.15		O2 Food (OP)				+ 3.76	+ 0.45				
RX Conversion 65 DCO Yield 0	85 50000	70 45700		Flans Press.	 −•−		+ 0.00		+ 0.18	+ 0.05			
LCO Yield D	10000	8700		Rogen Press Fresh Cat. Viv DP		+ 0.37	- 0.00	+ 0.33	+ 0.77	- 0.08	+ 0.00	- 0.00	+ 0.01 - 0.10
HN Yield 0 LN Yield 0	20000 10000	19880 10000		Sport Cat. Viv DP			+ 0.00		- 0.84	+ 0.05		+ 0.00	+ 0.08
C4 Yield 0	5000	4500		Regen Bed Temp	+-•+-	- 0.38		- 0.43	+ 4.55	+1.23	- 0.09	- 0.11	+0.64
C3 Yield D C2 Yield D	10000 10000	6500 7400	Ш	Frish Cat Viv Pos.	-+-		+ 0.01		- 6.02	+ 0.47			+0.74
	10000			Sport Cat. Viv Pos.			- 0.00		+ 2.34	- 0.17			- 0.25
						•							
Objective Function Value				Change Detail:	CV Mai	n Feed (OP)	Cri	tical Var.	In Cor	ntrol 🔍 🔫	" Opt	timized (max)	
Time	-						<u> </u>				2000	ENG. H	
	سرايماً	<u></u>			-					- I		HILIM VALUE	1800 E 1900
			H		_						I	LOLIM	
			15								-	ENG. L	
			17	_				_			··· - ···		
Energy/Interval			T								-	Future SS	1730 1730
				-									
	~			Ж <i>ТЕ/ТІМЕ</i> 2/23/98: 07:00):36:	DESC CVM			<i>OLD NEW</i> 1900 1800	ACTOR J. Operato	REASON r Maintenar		What if?
1 1 V ' ' ' V												HL	Enter
Time													Restore

Supporting Monitoring


16.422 —

- Overview display
 - Alerts
- Easy recognition of problems
 - Summary
 - Direct manipulation
- Representation Aiding
 - Trend information depicted graphically
 - Variable state as well as optimization history
 - Color important

Supporting Diagnosing


			DVs						
		Rogon Air	Main Flood	O2 Feed	Regar Press	Riser Temp	Main Food Tomp	CFU Feed Valve	V. Ros FC Val
CVs	-	•		+	-0-		0	a	P
Region XIS Q2	[+ 3.76	+ 0.45				
Hoster XS 02	[+ 0.00		+ 0.18	+ 0.05			
DOD Yield	o	+ 0.37		+ 0.33	- 1.21				+ 0.01
LOD Yield	ľ		- 0.00		+ 0.77	- 0.08	+ 0.00	- 0.00	- 0.10
HN Yield	[+ 0.00		- 0.84	+ 0.05		+ 0.00	+ 0.08
LN Yield	┝╍⊢║	- 0.38		- 0.43	+ 4.55	+1.23	- 0.09	- 0.11	+ 0.64
C4hidd	_ + ●[+ 0.01		- 6.02	+ 0.47			+ 0.74
C3 Yield	_→_[- 0.00		+ 2.34	- 0.17			- 0.25
C2 Yield	⊸—[
Cie/Oi	-≫-[
Rx Conversion	•[
Ragen Air (OP)	<u> </u>								
Main Food (OP)	├ d								
Hr Fud Food (OP)	-≫								
Heater Fuel FD	— <u>•</u> —								
O2 Food (OP)	-			+ 3.76	+ 0.45				
Flans Prose.	L		+ 0.00		+ 0.18	+ 0.05			
Regar Press		+ 0.37	0.00	+ 0.33	- 1.21	0.00			+ 0.01
Frish Cat. Viv DP			- 0.00		+ 0.77	- 0.08	+ 0.00	- 0.00	- 0.10
Sport Cat. Viv DP		0.00	+ 0.00	0.40	- 0.84	+ 0.05	0.00	+ 0.00	+ 0.08
Rogen Bed Temp	┝╍┝┝	- 0.38	1.0.04	- 0.43	+ 4.55	+ 1.23	- 0.09	- 0.11	+ 0.64
Frish Cat Viv Pas.	-4-1		+ 0.01		- 6.02 + 2.34	+ 0.47		II	+ 0.74

Representation Aiding in Diagnosis

- a. Normal state, both operator and hard engineering limits shown
- b. Normal state, operator limits = engineering limits
- c. Normal, no engineering hard limits defined
- d. Current state within 1% of operator limits
- e. Current state exceeded operator limits
- f. Normal state, variable constrained to setpoint.
- g. Value "wound-up", valve fully closed or open
- h. Negative linear coefficient (maximize value)
- i. Positive linear coefficient (minimize value)
- j. Non-zero quadratic coefficient (resting value)

Supporting Interaction

- Performance over time
- Important to provide "logging" ability
- What-if

Decision Aid Design

- An assistant versus a coach
 - What-if's (a form of preview)
 - Narrowing a solution space
 - Recommendations
 - Critiquing
- Problems
 - Clumsy automation?
 - Will they work in all situations?
 - Codifying rules and updating them
 - Plant upgrades & system evolution
 - Especially tricky in intentional domains
 - Automation bias
- Interactivity in decision support

References

- N. Moray, "Human Factors in Process Control," in Handbook of Human Factors and Ergonomics, edited by G. Salvendy, pp.1944 - 1971, 1997.
- C. Burns, "Putting It All together: Improving Display Integration in Ecological Displays," *Human Factors*, vol. 42, pp. 226-241, 2000.
- R. Mumaw, E. M. Roth, K. Vicente, and C. Burns, "There is more to monitoring a nuclear power plant than meets the eye," *Human Factors*, vol. 42, pp. 36-55, 2000.
- S. Guerlain, G. Jamieson, P. Bullemer, and R. Blair, "The MPC Elucidator: A case study in the design of representational aids," *IEEE Journal of Systems, Man, and Cybernetics*, vol. 32, pp. 25-40, 2002.