
16.50 Lecture 12

Subject: Nozzle flow of reacting gases

In the last two lectures we discussed the phenomena that occur in the combustor, and how to 
estimate the properties of the gas in the (near) stagnation state there. Suppose now that we
have determined the composition of the gases in the rocket chamber, and we wish to compute
the flow through the nozzle, taking account of chemical reactions.

There are three things that we must account for, that were not included in the simple model
based on ideal gas behavior.  The first is that the composition of the gas is not necessarily 
constant in the flow, so that all the properties that are composition dependent must be treated 
as variables along the flow direction.  These include the specific heats, the gas constant R and 
the ratio of specific heats γ.  Second, the sum of the thermal enthalpy and the kinetic energy is
no longer constant because there can be exchange of chemical energy and thermal energy. 
But if the enthalpy is defined as in the previous two lectures, i.e., including in it the chemical 
enthalpy of formation, then the sum of it and the kinetic energy is indeed conserved.
Finally, because of this energy exchange between chemical and kinetic, there can be a change
in the entropy of the flow. Fortunately we can neglect this entropy change in some important
special cases, as will be explained.
 
To take these effects into account quantitatively we may proceed as follows:
 
The chamber condition is specified by Tc, pc and the mole (yi), or mass (xi), fractions of the
various chemical constituents.  As explained in the last two lectures we can compute all the
thermodynamics properties of the gas per unit mass at chamber conditions:

Hc =! xiH
!

i  ;   Hi = (!hi(Tc ) + H f i
) / Mi

T dT pS S i
c =! xi i  Si = " cpi ! R

T i ln (S
Tr r

where it will be recalled that xi is the mass fraction of species i and therefore
! xi = 1  

Notice also that each enthalpy Hi is now per unit mass, and so is Hc.
 
To deal with the flow we note first that energy conservation for the gas flow gives

u2
Hc = H(T,p) + 2      (1)

which replaces the ideal gas energy equation
u2

(cpTc = cpT + 2  )  

p i, cpi per unit mass)
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We must have some statement about the variation of the entropy, since in general the transfer 
of energy from chemical to thermal takes place at a finite rate and there is therefore an 
entropy increase. 
But there are two limiting cases for which the entropy change is very small 

 
a) chemical equilibrium 
b) frozen flow 

The case of Chemical Equilibrium will be approached if the reactions occur fast enough to 
keep up with the temperature and pressure changes caused by the expansion (flow time >> 
reaction time), so the chemical energy is transferred through an infinitesimal !T , and 

  S = ! xi( p, T)Si( p, T ) = Sc (2e) 

and the xi are determined by Equilibrium at the local T & p. Re-calculating all these mass 
fractions is clearly a tedious task, but conceptually not very different from what was done for 
the chamber conditions, with the major difference that Entropy per unit mass, rather than 
Enthalpy per unit mass is now constrained.  
 
In the case of Frozen Flow the reactions occur so slowly that the xi are fixed at their chamber 
values (flow time << reaction time).  In this case there is no chemical energy release and 
again

S =! xi(pc,Tc )Si (p, T ) = Sc (2f) 

These are two limiting cases, which provide upper and lower limits for the velocity u, at a 
given p, since the case of Equilibrium Flow gives the maximum thermal energy availability 
for conversion to kinetic energy, while the Frozen Flow case gives the minimum. 
 
In these calculations, the entropy per unit mass Si of one species at (p,T) is related to that per 
mol, Si(p,T) = S ˜ i(p,T) / Mi , and this can be calculated from tabulated “standard molar 
entropies”, which are at p=1atm, as    

S ˜ i(p,T) = S ˜ 0
i (T) !"ln(pi(atm)); pi = pyi   (2g) 

It is important to note that the conservation laws for both energy and entropy are per unit 
mass. Thus it is the total energy and the entropy of a fixed mass of gas that is conserved.  At 
times it will be convenient to write the relations in terms of moles of the constituents (using 
yi rather than xi) but a fixed mass of gas may contain different numbers of moles at different 
points in the flow, so if we use the yi we must be careful to keep track of the changes in the 
number of moles. 
 
 To go from mole fractions  to mass fractions or vice-versa, 
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i = iMi ; y x
! yiM

i = i / Mi

i ! xi / Mi

For example for a mixture of H2 + H20 
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The above are all the relationships we need, so let us see how we proceed, for given chamber 
conditions, pc and Tc. 

a) Compute xi (pc,Tc)
Hc 
Sc

b) Select a value of p<pc.  We can treat p as the independent variable, finding all the
other properties as functions of it.   If we wish to find the conditions at the nozzle exit
then the pressure is the exit pressure, p=pe.

c) From the Entropy equation (2e or 2f),  find T
T p r !1

(This replaces 
"

T   = (p  )  of the Ideal Gas model) 
c c

1) For Frozen Flow, since xi (p,T) = xi (pc,Tc) are known, Eqs. (2f) and (2g) 
contain only T as an unknown, and can be solved iteratively at each p (this 
replaces the enthalpy conservation iteration we did in the chamber). 
 
2) For Equilibrium Flow, we still have s = sc, but now we don't know the xi, 
so we have to solve for them at each p, as noted above.

A. Assume a T 
B. Compute the yi (and xi) from Kpi(T)
C. Compute S(T,p) and Iterate on T until it equals
Sc(Tc,pc). 

d) In either Fozen or Equilibrium cases, having T and xi(T,p) compute H(T,p), then
the velocity is given by

u2

2   = Hc - H(T,p)
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These procedures enable you to describe the flow in the nozzle with p as the independent
variable. Having u, p, T we can find ρ and hence ρu and the variation of the nozzle area
with p.  In particular, to find the throat area we can compute ρu for a set of values of p 
near (1/2)pc and by plotting them determine the p that maximizes ρu.  This is the throat
pressure, and the maximum value of ρu defines c* = pc / (!u)t

 
Normally, of course, such calculations are handled by standardized computer programs.  
They all follow the logic outline above although the numerical procedures may become 
quite complex because of considerations of stability etc.  You don't need to know all the 
details, but it is important that you understand the logic they follow.  As we say, Garbage 
In-Garbage Out.  Be sure you know what the computer is doing.
 
A very widely used suite of codes for thermochemical problems in aerospace is the CEA 
set, available at http://cearun.grc.nasa.gov.
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