
16.50 
 
Subjects: Turbines; Stage characteristics; Degree of reaction 
 
Turbines behave according to the same principles of dynamic energy exchange as 
compressors.  However they differ from compressors in some important ways.  First 
since they extract energy from the flow rather than adding it, the pressure drops 
throughout a turbine. This leads to different fluid mechanical limitations than for 
compressors.  Second, because of the thermodynamic requirements, they operate in 
gases at high temperatures, so that materials and cooling requirements are of central 
importance.  We will begin by exploring the fluid-mechanical energy exchange in 
the turbine.   
 
Euler Equation: 
 
The exchange of energy is described by the Euler equation, just as for compressors.  
We will discuss here only axial flow turbines such as are generally used in aircraft 
engines, but it is important to realize that turbines in fact come in a wide variety of 
types, from extremely large hydraulic turbines for hydroelectric power generation to  
the familiar lawn sprinkler. 

 

.  

 
 Axial flow turbines use a stator blade row (usually called a nozzle row) followed by 
a rotating blade row that extracts the energy (often called the buckets).  The nozzles 
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expand the flow to a high velocity and turn it, imparting an angular momentum to 
the flow. 
The buckets generally further expand the flow, and turn it back toward the axial
direction. The combination of the two blade rows is called a Turbine Stage. 
Here we use the alphabetical notation to avoid confusion with the numerical station 
notation for the engine. Station a is equivalent to station 4 in the engine layout, and
for a single stage turbine, station c should be equivalent to station 5 in the engine. A
general stage layout is indicated at the top and two specific blade types at the
bottom. 

From the Euler equation, for the general situation, 

cp (Ttc - Ttb) = ω(vcrc - vbrb) 

Ttc ωrc rb1 - = (  vb - vc)Ttb cpTtb rc

Let us assume rb/rc = 1, and also that vc = 0 . The latter is desirable if the rotor is the 
last stage of a turbine, in order that there not be swirl in the flow entering the jet 
nozzle. 

Ttc (ωrb)
1 - = 1 - τt = vbTtb cpTtb 

Writing this in terms of Mach numbers and the flow angles indicated in the 
diagram, with vb = Vb sin !b = " RTb Mb sin !b , and !rb = " RTb MT , 

(! "1)MT MbSin#b1 - τt = (No exit swirl)! "11+ M
b 22 

Here MT is the tip Mach number of the blades and Mb is the flow Mach number. 
From this we can see that we want large MT and large Mb Sinβ for large work per 
stage. 

Degree of Reaction 

As for the compressor there are many possible design choices for the turbine.  One 
key choice is the relative amounts of pressure drop in the nozzles and buckets.  This 
is best characterized in terms of the Degree of Reaction, which we will define as the 
ratio of static enthalpy change in the rotor to that in the rotor plus stator (stage):

hb ! hcR =  
(hb ! hc ) + (ha ! hb ) 

We now use energy conservation in the moving frame of each element: 

1
2 

1
2 

ha + 1
2 

Va 
2 =  hb + 1

2 
Vb 

22V !b
to obtain the alternative interpretation 

Vc!
2 ;hb + hc + =  

2



 

     

 

 

    

 

 

 

 

       

 

 

      

       

 

      

 

 

 

   

 

 

 

    

 

 

    

 

 

(Vc')2 - (Vb')2 change in KE in rotorR = = (Vc')2 - (Vb')2 + Vb2 - Va2 Total change in KE 

Then, for constant axial velocity. 

sec2 !c '"sec
2 !b ' R = 

(sec2 !c '"sec
2 ! ' b + sec2 !b "1) 

For zero exit swirl, i.e. vc = 0. 

vc = ωr – w tanβc' = 0; tanβc' = ωr = 
MT 

w Mb cosβb 

and with this relation we can eliminate βc' from the expression for R. 

Similarly,  
ωr MTw tanβb' = w tanβb - ωr; tanβb' = tan βb - w = tan βb - Mb cosβb 

Using sec2 = 1 + tan2 we can now eliminate βb' and find 
Mb SinβbR = 1 - 2ΜΤ 

and using this to eliminate Mb Sinβb in the expression for the temperature ratio 

(γ-1)MT2 
1 - τt = 2(1-R) ( zero exit swirl)  

1 + γ2
-1Mb2  

From this result we see that  for a value of MT limited  by stresses and the
temperature and for a given value  of Mb, the temperature drop in the turbine, hence 
its work per unit of mass flow, is related to R.  As R increases the work decreases. 

An alternative often used representation is in terms of the so-called flow and power 
coefficients, φ and ψ. The definitions are 

$ht vb % vcw ; # = =! = 
"r ("r)2 "r 

For zero exit swirl, vc=0, we can also put ! = vb /("r) = Mb sin#b / MT , so that 
" R = 1! or " = 2(1! R)
2 

which very directly shows how the stage power decreases with the degree of
reaction. In terms of flow coefficient and stator exit angle, 

1R = 1! 
2 
" tan#b 
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These coefficients can all be readily visualized from a scaled velocity triangle in 
which the blade speed ωr is taken to be unity: 

Vb βb 

φ V’b

 1 
ψ/2 R 

ψ 

Drawing the velocity triangles for R= 1/2 (called 50% reaction) and for R=0 (called
Impulse),  

In the 50% reaction turbine the pressure drop in the moving blades equals that in 
the nozzles, while in the impulse turbine there is no pressure drop in the buckets. 
It all takes place in the nozzles. 

In designing the turbine we have some latitude in choosing the degree of 
reaction R. The tangential velocity of the blades, hence MT, is limited by the 
strength of materials at high temperature, so it may seem that we would like to 
use small R to maximize the temperature drop per stage.  But the efficiency of the
turbine decreases as R is decreased from R=1/2 toward R=0.  The reason is that 
the boundary layers have more tendency to separate in the moving blades for 
R=0 than for R=1/2 because for R=0 there is no pressure drop as the flow is
deflected. 

Radial variations: 

Just as for the compressor, the requirement for a constant temperature drop from
hub to tip across the turbine flow path, places constraints on the degree of
reaction. Since MT is proportional to radius, it is larger at the tip than at the hub
of the blades, so if Mb is about constant, R must decrease from the tip to the hub.  
Thus typically if the degree of reaction is near 1/2 at the tip it may be 
considerably smaller at the hub. 
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