
16.50  Lecture 4

Subjects: Hyperbolic orbits. Interplanetary transfer.

(1) Hyperbolic orbits 

The trajectory is still described by pr = , but now we have ε>1, so that the
1+ ! cos"

radius tends to infinity at the asymptotic angle !" = # $ cos $1 (1 / % ) .

The “parameter” p still has the geometrical significance indicated in the figure, and is
therefore a positive number. It is still related to a and ε through p= a(1! " 2 ) , but now a
is a negative number, so it is (-a) that has a geometrical significance, as indicated in the
figure. Note also tat ε is still defined as the ratio of the distance from periapsis to center 
to the distance from focus to center. 

The energy is still given by 1E = v2 µ µ
! = ! , and is now positive. The angular 

2 r 2a
momentum is still given by h = r2!! = µp = a(1" # 2 ) . 

There are a few new parameters of interest in this case:

The trajectory deflection, 1 1
! = " # 2(" #$ #

% ) = " # 2cos 1 = 2sin#1
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The miss distance p
! = "a# sin($ "%& ) = "a# sin%& =

# 2 "1

The excess hyperbolic velocity, µv! = 2E =
("a)

In the specialized technical literature, the term “c3” is often used, meaning simply v2! .

2) Interplanetary transfer

We assume for the moment that our craft has “escaped the field of planet 1” (meaning it
is outside its sphere of influence), and so may be considered to be in orbit about the Sun.  
In order for it to reach planet 2, its orbit about the Sun must intersect that of planet 2.  

Assume that the planetary orbits are circular.  Then it is clear that the trajectory of least
energy which will allow the transfer is that which is just tangent to the orbits of the home
and target planets; this is called the Hohmann transfer orbit, which is the half-ellipse that
is sketched in the figure. The Heliocentric velocity at the start of this Hohman arc is the
periapsis (perihelion in this case) velocity, as described at the end of the last lecture:

µvp1 =
S 2r2
r1 r1 + r2
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so that if we launch the ship in the direction of motion of the planet, it must have a
relative velocity 

µvrel ,1 = S 2r
( 2 !1)r1 r1 + r2

with respect to planet 1 after escape from the planet.  By definition, this is the “excess
hyperbolic velocity” relative to the planet, v 1, and the total energy relative to planet 1 at
he edge of the sphere of influence is simply 

∞

½( v 2
∞1) .

Suppose the launch was for the surface of planet 1 (radius R ), and ignore its rotation. 
Just after launch, during which the rocket has imparted an ins

1
tantaneous velocity 

1increment ΔV1, the energy per unit mass (relative to the planet) is (!V 2 µ1
2 1) " , and this

R1
must be the same as ½( v∞1)2, by energy conservation with respect to planet 1 inside the 
sphere of influence. We then have  

1 2 µ1 1 2 1 µ
(!V ) " = v = S 2r

1 R1 2 #1 ( 2 "1)2
2 2 r1 r

from which the first delta-
1 + r

V delivered by the rockets must
2

 be

!V 2µ= 1 µ+ S 2r
1 ( 2 "1)2R1 r1 r1 + r2

The procedure is similar when considering the approach to planet 2. The spacecraft will
have then a heliocentric velocity equal to the apoaxis (apohelion) velocity 

µva2 = S 2r1  r r + r
and a relative velocity with respe

2
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he planet

µvrel ,2 = S 2r
(1! 1 )r r + r

which is also the excess hyperbol
2

ic veloc
1

ity w
2

ith respect to planet 2. It is worth noting a  
this point that the spacecraft heliocentric velocity is less than that of the planet itself, so 
that, as seen from the planet, the spacecraft will be approaching from its advancing side. 
For capture into a circular orbit of radius Rc2, the geometry is shown below:
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Just before the insertion rocket firing, the energy per unit mass relative to planet 2 is
equal to ½ (vrel,2)2, and it is also equal to the sum of the kinetic energy at that point of

1closest approach, plus the potential energy: (vclosest app. )
2 µ! 2 .  Thus we must have

2 rc2

µv 2 µS 2r= 2 + (1! 1 )2closest app. rc2 r2 r1 + r2
and the insertion velocity increment must be this, minus the orbital velocity around planet
2:

2 µ2 µS 2r(1 1 )2 µ!V2 = + " " 2

rc2 r2 r1 + r2 rc2

Comparison to simple Escape+Transfer+Capture.

A simple-minded approach to the same mission would be to first apply an impulse at the
surface of planet 1 to achieve escape (!V
zero velocity with respect to planet 1, apply a second impulse to enter th

esc,1 = 2µ1 / R1 ), then, after slowing down to 
e elliptic transfer 

orbit towards planet 2 (this would be our v ,1 ), then, in the vicinity (but still outside the
SOI of ) planet 2, apply a third impulse to m

rel

atch the heliocentric velocity of planet 2 (this
would be our v ,2 ), and finally, starting from zero relative velocity “far” from planet 2, 
apply a fourth impulse to capture the craft into orbit about planet 2 (this is equal to the

rel

escape velocity from a distance R2  to the planet, !Ve ,2 = 2µ2 / R2 ). You can easily 
check that the two impulses we derived before are, res

sc

pectively,

!V1 = (!Vesc,1)
2 + (v 2

rel ,1)

!V2 = (!V 2
sc,2 )

2
e + (vrel ,2 )

and so our previous scheme is definitely more effective. These two strategies are called 
sometimes the Hohmann (simple, four impulses) and the Oberth (combined, two 
impulses) maneuvers.
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