NASA TECHNOLOGY READINESS LEVELS

From (1) NASA Procedural Requirements 7120.8, Appendix J and (2) NASA Procedural Requirements 7123.1A, Table G.19

TRL	Definition	Hardware Description	Software Description	Exit Criteria
1. Basic principles observed and reported.	research begins to be translated into applied	Scientific knowledge generated underpinning hardware technology concepts/applications.	Scientific knowledge generated underpinning basic properties of software architecture and mathematical formulation.	Peer reviewed publication of research underlying the proposed concept/ application.
2. Technology concept and/or application formulated.	The application is speculative, and there is no proof or detailed analysis to support the	Invention begins, practical application is identified but is speculative, no experimental proof or detailed analysis is available to support the conjecture.	Practical application is identified but is speculative, no experimental proof or detailed analysis is available to support the conjecture. Basic properties of algorithms, representations and concepts defined. Basic principles coded. Experiments performed with synthetic data.	Documented description of the application/concept that addresses feasibility and benefit.
3. Analytical and experimental critical function and/or characteristic proof of concept.	research and development (R&D) is initiated. This must include both analytical studies to set the technology into an appropriate context and laboratory-based studies to physically validate that	Analytical studies place the technology in an appropriate context and laboratory demonstrations, modeling and simulation validate analytical prediction.	Development of limited functionality to validate critical properties and predictions using non- integrated software components.	Documented analytical/experimental results validating predictions of key parameters.
4. Component and/or breadboard validation in laboratory environment.	establish that the pieces will work together to achieve concept-enabling levels of performance for a component and/or breadboard. This validation must be devised to support the concept that was	breadboard is built and operated to demonstrate basic functionality	Key, functionally critical, software components are integrated, and functionally validated, to establish interoperability and begin architecture development. Relevant Environments defined and performance in this environment predicted.	Documented test performance demonstrating agreement with analytical predictions. Documented definition of relevant environment.

Table is in public domain courtesy of NASA.

TRL	Definition	Hardware Description	Software Description	Exit Criteria
and/or breadboard validation in relevant environment.	breadboard being tested has to increase significantly. The basic technological elements must be integrated with reasonably realistic supporting elements so that the total applications (component-level, subsystem-level, or system- level) can be tested in a "simulated" or somewhat realistic environment.	component brassboard is built and operated to demonstrate overall performance in a simulated operational environment with realistic support elements that demonstrates overall performance in critical areas. Performance predictions are made for subsequent development phases.	interfaced with existing systems/simulations conforming to target environment. End-to-end software system, tested in relevant environment, meeting predicted performance. Operational environment performance predicted. Prototype implementations developed.	analytical predictions. Documented definition of scaling requirements.
subsystem model or prototype demonstration in a relevant environment.	technology demonstration follows the completion of TRL 5. At TRL 6, a representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding, would be tested in	addresses all critical scaling issues is built and operated in a relevant environment to	software systems. Limited documentation	Documented test performance demonstrating agreement with analytical predictions.
prototype demonstration in an operational environment.	TRL 7 is a significant step beyond TRL 6, requiring an actual system prototype demonstration in a space environment. The prototype should be near or at the scale of the planned operational system, and the demonstration must take place in space. Examples include testing the prototype in a test	adequately addresses all critical scaling issues is built and operated in a relevant environment	software systems demonstrating operational	Documented test performance demonstrating agreement with analytical predictions.
competed and "flight qualified" through test and demonstration.	Technology has been proven to work in its final form and under expected conditions. In almost all cases, this level is the end of true system development for most technology elements. This might include integration of new technology into an existing system.	The final product in its final configuration is successfully demonstrated through test and analysis for its intended operational environment and platform (ground, airborne, or space).	fully integrated with all operational hardware and software systems. All user documentation, training documentation, and maintenance documentation completed. All functionality successfully demonstrated in simulated operational scenarios. Verification and Validation (V&V) completed.	Documented test performance verifying analytical predictions.
flight proven through successful mission operations	Actual application of the technology in its final form and under mission conditions, such as those encountered in operational test and evaluation. In almost all cases, this is the end of the last "bug fixing" aspects of true system development. This TRL does not include planned product improvement of ongoing or reusable systems.	operated in an actual mission.		Documented mission operational results.

MIT OpenCourseWare http://ocw.mit.edu

16.522 Space Propulsion Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.