Vector algebra using tensorial notation

Definition of the Kronecker Delta $\Rightarrow \delta_{i j}=\left\{\begin{array}{lll}1 & \text { if } & i=j \\ 0 & \text { if } & i \neq j\end{array}\right.$
and the Levi-Civita tensor $\Rightarrow \varepsilon_{i j k}=\left\{\begin{array}{l}0 \quad \text { for } i=j \text { or } i=k \text { or } j=k \\ -1 \text { for an odd index permutation } \\ 1 \text { for an even index permutation }\end{array}\right.$
$\varepsilon_{i j k} \varepsilon_{l m n}=\left|\begin{array}{ccc}\delta_{i l} & \delta_{i m} & \delta_{i n} \\ \delta_{j l} & \delta_{j m} & \delta_{j n} \\ \delta_{k l} & \delta_{k m} & \delta_{k n}\end{array}\right|$ in particular, note that if $i=l$ then $\varepsilon_{i j k} \varepsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}$
RULE: Whenever an index is repeated, a summation is assumed over that index

$$
\mathrm{A}_{i} \mathrm{~B}_{i}=\sum_{i=1}^{3} \mathrm{~A}_{i} \mathrm{~B}_{i} \text { in } 3 \mathrm{D}
$$

Dot product: $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{A}_{i} \mathrm{~B}_{i}$ Cross product: $(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})_{i}=\varepsilon_{i j k} \mathrm{~A}_{j} \mathrm{~B}_{k} \quad$ Gradient: $\nabla_{i}=\frac{\partial}{\partial x_{i}}$

That's all we need to know, here are a few examples:

1) Prove that $\vec{A} \times \vec{B} \times \vec{C}=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$

The k index was permuted to the left 2 times, this gives a (+1)

$$
\begin{aligned}
(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})_{i} & =\varepsilon_{i j k} \mathrm{~A}(\overrightarrow{\mathrm{~B}} \times \overrightarrow{\mathrm{C}})_{k}=\varepsilon_{i j k} \mathrm{~A}_{j} \varepsilon_{k l m} \mathrm{~B}_{l} \mathrm{C}_{m}=\varepsilon_{i j k} \varepsilon_{k l m} \mathrm{~A}_{j} \mathrm{~B}_{l} \mathrm{C}_{m}=\varepsilon_{k i j} \varepsilon_{k l m} \mathrm{~A}_{j} \mathrm{~B}_{l} \mathrm{C}_{m} \\
& =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \mathrm{A}_{j} \mathrm{~B}_{l} \mathrm{C}_{m}=\mathrm{A}_{j} \mathrm{~B}_{i} \mathrm{C}_{j}-\mathrm{A}_{j} \mathrm{~B}_{j} \mathrm{C}_{i} \equiv \mathrm{~B}_{i}(\overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{C}})-\mathrm{C}_{i}(\overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{~B}})
\end{aligned}
$$

2) Prove that $\nabla \cdot \nabla \times \overrightarrow{\mathrm{A}}=0$

The i index was permuted once with j, thus giving a (-1)

$$
\nabla \cdot \nabla \times \overrightarrow{\mathrm{A}}=\frac{\partial}{\partial x_{i}}(\nabla \times \overrightarrow{\mathrm{A}})_{i}=\frac{\partial}{\partial x_{i}} \varepsilon_{i j k} \frac{\partial}{\partial x_{j}} \mathrm{~A}_{k}=\varepsilon_{i j k} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \mathrm{~A}_{k}=-\varepsilon_{j i k} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \mathrm{~A}_{k}
$$

$$
=-\varepsilon_{j i k} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{i}} \mathrm{~A}_{k}=-\varepsilon_{i j k} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \mathrm{~A}_{k}=0
$$

The derivation
order was
inverted, no
harm done since
x_{j} and x_{i} are
independent
variables.

their signs. This contradiction can only be avoided if the expression is equal to zero.
3) Prove that $\nabla \cdot(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})=(\nabla \times \overrightarrow{\mathrm{A}}) \cdot \overrightarrow{\mathrm{B}}-(\nabla \times \overrightarrow{\mathrm{B}}) \cdot \overrightarrow{\mathrm{A}}$

$$
\begin{aligned}
& \nabla \cdot(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})=\frac{\partial}{\partial x_{i}}(\overrightarrow{\mathrm{~A}} \times \overrightarrow{\mathrm{B}})_{i}=\frac{\partial}{\partial x_{i}} \varepsilon_{i j k} \mathrm{~A}_{j} \mathrm{~B}_{k}=\varepsilon_{i j k} \frac{\partial}{\partial x_{i}} \mathrm{~A}_{j} \mathrm{~B}_{k}=\varepsilon_{i j k}\left(\mathrm{~A}_{j} \frac{\partial}{\partial x_{i}} \mathrm{~B}_{k}+\mathrm{B}_{k} \frac{\partial}{\partial x_{i}} \mathrm{~A}_{j}\right) \\
&=\varepsilon_{i j k} \mathrm{~A}_{j} \frac{\partial}{\partial x_{i}} \mathrm{~B}_{k}+\varepsilon_{i j k} \mathrm{~B}_{k} \frac{\partial}{\partial x_{i}} \mathrm{~A}_{j}=\varepsilon_{i k j} \mathrm{~A}_{k} \frac{\partial}{\partial x_{i}} \mathrm{~B}_{j}+\varepsilon_{k i j} \mathrm{~B}_{k} \frac{\partial}{\partial x_{i}} \mathrm{~A}_{j} \\
& \begin{array}{l}
\begin{array}{l}
\text { Again, no index } \\
\text { permutation, we changed } \\
\text { all j’s for } k^{\prime} \text { s and vice } \\
\text { versa. }
\end{array} \\
\end{array} \\
&=-\varepsilon_{k i j} \mathrm{~A}_{k} \frac{\partial}{\partial x_{i}} \mathrm{~B}_{j}+\varepsilon_{k i j} \mathrm{~B}_{k} \frac{\partial}{\partial x_{i}} \mathrm{~A}_{j}=-\mathrm{A}_{k} \varepsilon_{k i j} \frac{\partial}{\partial x_{i}} \mathrm{~B}_{j}+\mathrm{B}_{k} \varepsilon_{k i j} \frac{\partial}{\partial x_{i}} \mathrm{~A}_{j} \\
& \begin{array}{l}
\text { Two permutations } \\
\text { of } k \text { to the left } \\
\text { yield a (+1) }
\end{array} \\
&=-\overrightarrow{\mathrm{A}} \cdot(\nabla \times \overrightarrow{\mathrm{B}})+\overrightarrow{\mathrm{B}} \cdot(\nabla \times \overrightarrow{\mathrm{A}})
\end{aligned}
$$

4) Prove that $\overrightarrow{\mathrm{B}} \times(\nabla \times \overrightarrow{\mathrm{B}})=\nabla\left(\frac{\mathrm{B}^{2}}{2}\right)-(\overrightarrow{\mathrm{B}} \cdot \nabla) \overrightarrow{\mathrm{B}}$

$$
\begin{aligned}
& {[\overrightarrow{\mathrm{B}} \times(\nabla \times \overrightarrow{\mathrm{B}})]_{i} }=\varepsilon_{i j k} \mathrm{~B}_{j} \varepsilon_{k l m} \frac{\partial}{\partial x_{l}} \mathrm{~B}_{m}=\varepsilon_{k j} \varepsilon_{k l m} \mathrm{~B}_{j} \frac{\partial}{\partial x_{l}} \mathrm{~B}_{m}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \mathrm{B}_{j} \frac{\partial}{\partial x_{l}} \mathrm{~B}_{m} \\
&=\mathrm{B}_{j} \frac{\partial}{\partial x_{i}} \mathrm{~B}_{j}-\mathrm{B}_{j} \frac{\partial}{\partial x_{j}} \mathrm{~B}_{i}=\frac{1}{2} \frac{\partial}{\partial x_{i}} \mathrm{~B}_{j} \mathrm{~B}_{j}-\mathrm{B}_{j} \frac{\partial}{\partial x_{j}} \mathrm{~B}_{i}=\frac{\partial}{\partial x_{i}}\left(\frac{\mathrm{~B}^{2}}{2}\right)-(\overrightarrow{\mathrm{B}} \cdot \nabla) \mathrm{B}_{i} \\
& \frac{\partial}{\partial x_{i}} \mathrm{~B}_{j} \mathrm{~B}_{j}=2 \mathrm{~B}_{j} \frac{\partial}{\partial x_{i}} \mathrm{~B}_{j}
\end{aligned}
$$

In this way, we can deal with arbitrarily complicated vector representations by following simple rules.

As an exercise, try other identities on your own.

MIT OpenCourseWare
http://ocw.mit.edu

16.522 Space Propulsion

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

