16.522: Session 18 Courtesy of Prof. Eduardo Ahedo Universidad Politecnica de Madrid

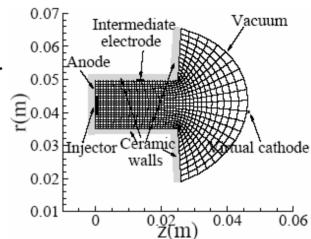
HALL THRUSTERS: FLUID MODEL OF THE DISCHARGE

Types of models

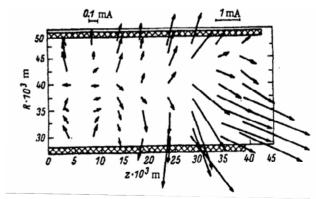
- **Kinetic:** based on Boltzmann eq.; unaffordable except for particular aspects of the problem
- Fluid: familiar formulation but important difficulties arising from
 - 1. Weak collisionality (Kn large)
 - 2. Wall interaction
 - 3. Curved magnetic topology
 - 4. 2D subsonic/supersonic ion flows
- Particle In Cell & MonteCarlo methods (PIC/MCC): good for weak collisionality; simple to implement, but subject to 'numerical effects'; important difficulties in dealing with disparate scales of electron and ions. MCC model collisions statistically.
- Hybrid (PIC/MCC for heavy species & fluid for electrons): best compromise today; allows 2D (geometrical and magnetic) effects; avoids small electron scales and admits quasineutrality

Simulation of the plasma discharge

- 2D, axisymmetric model
- Quasineutral plasma except for sheaths around walls.
- Plasma wall interaction treated in separate sheath models.
- Boundaries: 1) anode + gas injector, 2) cathode surface,
 3) lateral walls
- 3 or 4 species: neutrals, ions (+, ++), and electrons
- Ion dynamics: unmagnetized, near collisionless, internal regular sonic transitions, singular sonic transitions at sheath edges.
- Electrons: magnetized, diffusive motion, and weakly collisional (local thermodynamic equilibrium is not assured)
- Fluid modelling: complex and uncertain.
- There is no fully 2D model yet. Two existing options:
 - a) Approximate 1D (axial) fluid model
 - b) Near 2D hybrid model: fluid eqs. for electrons; particle model for ions & neutrals © America



© IEPC-2005-040. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.



© American Institute of Physics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

2D fluid model

- Basic hypotheses: 1) azimuthal symmetry: $\frac{\partial}{\partial \theta} = 0$, $u_{\theta i} = 0$, $u_{\theta n} = 0$
 - 2) Quasineutrality: $|n_e = n_{i+} + 2n_{i++}| \Rightarrow$ boundary conditions at sheath edges
 - 3) Simplified treatment of pressure tensors

Continuity equations:
$$\frac{\partial n_e}{\partial t} + \nabla \cdot n_e \vec{u}_e = S_{ion}$$
 $S_{ion} \approx n_e n_n R_{ion}(T_e) \leftarrow \text{ionization}$

$$S_{ion} \approx n_e n_n R_{ion}(T_e) \leftarrow \text{ionization}$$

$$\left[\frac{\partial n_i}{\partial t} + \nabla \cdot n_i \vec{u}_i = S_{ion}, \quad \frac{\partial n_n}{\partial t} + \nabla \cdot n_n \vec{u}_n = -S_{ion} \right] \quad \text{(here } n_e = n_i \text{ only)}$$

(here
$$n_e = n_i$$
 only)

Electron momentum:
$$\left| \frac{\partial}{\partial t} (m_e n_e \vec{u}_e) + \nabla \cdot m_e n_e \vec{u}_e \vec{u}_e \right| = -\nabla (n_e T_e) - e n_e (\vec{E} + \vec{u}_e \times \vec{B}) + \vec{M}_e$$

$$\vec{M}_{e} \approx -n_{e}n_{n}R_{en}(T_{e})m_{e}\vec{u}_{e} \leftarrow \text{e-n momentum transfer}$$

• Ion momentum:
$$\frac{\partial}{\partial t} (m_i n_i \vec{u}_i) + \nabla \cdot m_i n_i \vec{u}_i \vec{u}_i = -\nabla (n_i T_i) + e n_i \vec{E} + \vec{M}_i$$

$$\vec{M}_i \approx S_{ion} m_i \vec{u}_n - S_{cx} m_i (\vec{u}_i - \vec{u}_n) \leftarrow \text{ionization} + \text{charge-exchange mom. transf.}$$

2D fluid model

• Electron (total) energy equation :

$$\boxed{\frac{\partial}{\partial t} \left(\frac{3}{2} T_e + \frac{1}{2} m_e u_e^2 \right) n_e + \nabla \cdot \left[\left(\frac{5}{2} T_e + \frac{1}{2} m_e u_e^2 \right) n_e \vec{u}_e + \vec{q}_e \right] = -e n_e \vec{u}_e \cdot \vec{E} + Q_e}$$

$$Q_e \approx -n_e n_n R_{ion}(T_e) E_{ion} \alpha_{ion} \leftarrow \text{ionization} \quad (E_{ion} = 12.1 \text{eV}, \quad \alpha_{ion} \sim 1.5 - 2.5 \text{ for Xe})$$

• Internal energy = total energy – mechanical energy

$$\left[\frac{\partial}{\partial t} \left(\frac{3}{2} T_e n_e\right) + \nabla \cdot \left[\frac{3}{2} T_e n_e \vec{u}_e + \vec{q}_e\right] = -n_e T_e \nabla \cdot \vec{u}_e + Q'_e$$

$$Q'_{e} \equiv Q_{e} - \vec{M}_{e} \cdot \vec{u}_{e} + \frac{1}{2} m_{e} u_{e}^{2} S_{e} \approx n_{e} n_{n} \left[\left(R_{en} + \frac{1}{2} R_{ion} \right) m_{e} u_{e}^{2} - R_{ion} E_{ion} \alpha_{ion} \right]$$

• Heat flux (diffusive model): (Bittencourt)

$$\left| \vec{o} = -\frac{5}{2} p_e \nabla T_e - e \vec{q}_e \wedge \vec{B} - m_e v_e \vec{q}_e \right| \rightarrow \vec{q}_e = -\overline{\vec{K}}_e \cdot \nabla T_e$$

• Energy equations for ions and neutrals.

From 2D to 1D model

Electron continuity equation:

$$\frac{\partial n_e}{\partial t} + \frac{\partial n_e u_{ze}}{\partial z} + \frac{1}{r} \frac{\partial r n_e u_{re}}{\partial r} = n_e v_i$$

The 1D axial model works with values averaged over each ('doughnut') radial section

$$0 = \frac{2}{r_{\text{ext}}^2 - r_{\text{int}}^2} \int_{r_{\text{int}}}^{r_{\text{ext}}} \left[\frac{\partial n_e}{\partial t} + \frac{\partial n_e u_{ze}}{\partial z} + \frac{1}{r} \frac{\partial r n_e u_{re}}{\partial r} - n_e v_i \right] \rightarrow \left[\frac{\partial \overline{n}_e}{\partial t} + \frac{\partial \overline{n}_e \overline{u}_{ze}}{\partial z} = \overline{n}_e (\overline{v}_i - \overline{v}_w) \right]$$

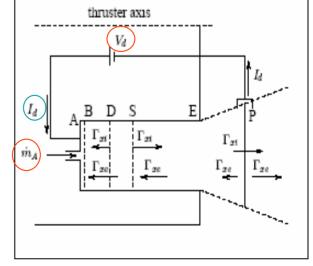
with
$$\overline{n}_e \equiv \overline{n}_e(z)$$
,..., and 'source' $\boxed{\overline{n}_e \overline{v}_w = 2 \frac{(r n_e u_{re})|_{\text{int}}^{ext}}{r_{ext}^2 - r_{\text{int}}^2}}$ evaluating losses at lateral walls.

An auxiliary radial model (at each z) is needed to

compute \overline{V}_{w} & determine radial profiles: $\left| \frac{1}{r} \frac{\partial r n_{e} u_{re}}{\partial r} \approx n_{e} \overline{V}_{w} \right|$

$$\frac{1}{r} \frac{\partial r n_e u_{re}}{\partial r} \approx n_e \overline{V}_w$$

- This is a variable-separation type of solution; $\overline{V}_{w}(z)$ is an eigenvalue of the radial model.
- We proceed similarly with the rest of fluid equations.



1D axial model

- Neglect jet divergence, doubly-charged ions, $p_i, p_n,...$
- Wall interaction terms appear as source terms (instead of BCs)
- Conservation of species flows:

$$\left| \frac{d}{dz} (n_e u_{zi}) = n_e (v_i - v_w) \right|$$

 v_i : ionization frequency v_w : recombination frequency

$$n_n u_{zn} + n_e u_{zi} = \text{const} = \dot{m}_A / A m_i$$

$$n_e u_{zi} - n_e u_{ze} = \text{const} = I_d / Ae$$

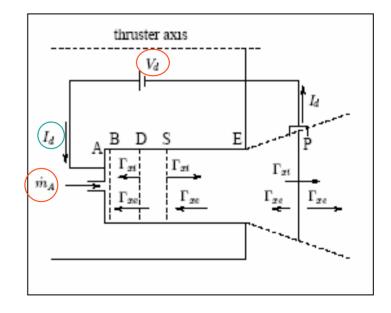
• Ion axial momentum equation:

$$\frac{d}{dz}(m_{i}n_{e}u_{zi}^{2}) = -en_{e}\frac{d\phi}{dz} + m_{i}n_{e}(v_{i}u_{zn} - v_{w}u_{zi})$$

Neutral axial momentum equation

$$\left| \frac{d}{dz} (m_i n_n u_{zn}^2) = m_i n_e (v_{wn} u_{znw} - v_i u_{zn}) \right|$$

 u_{znw} velocity of neutrals from recombination $(\neq u_{zi})$



1D axial model

$$u_{\theta e} = -u_{ze} \frac{\omega_e}{v_e}$$

 $v_e = v_{en} + v_{ei} + v_{wm} + v_{turb}$: effective collision frequency (v_{wm} due to wall interaction, v_{turb} due to plasma turbulence)

Electron internal energy:

$$\boxed{\frac{d}{dz}\left(\frac{5}{2}n_eT_eu_{ze} + q_{ze}\right) = u_{ze}\frac{d(n_eT_e)}{dz} + v_en_em_eu_e^2 - v_in_eE_{ion}\alpha_{ion} - \beta_ev_wn_eT_e}$$

 $(\beta_e \sim 6-100$: factor for energy losses at lateral walls)

• Heat conduction:
$$0 = -\frac{5}{2} p_e \nabla T_e - e \vec{q}_e \wedge \vec{B} - m_e v_e \vec{q}_e \rightarrow q_{ze} = -\frac{5n_e T_e}{2m_e} \frac{v_e}{\omega_e^2} \frac{dT_e}{dz}$$

Normalized set of equations: $\left| (T_e - m_i u_{zi}^2) \frac{dY}{dz} = \vec{F}(\vec{Y}) \right|$

 $\vec{Y} = (n_{o}, n_{n}, u_{\tau i}, u_{\tau o}, u_{\tau n}, T_{o}, q_{\tau e}, \phi)$ vector of 8 plasma variables

Singular (sonic) points of the equations at: $M = \frac{u_{zi}}{\sqrt{T/m_z}} = \pm 1$

1D axial model

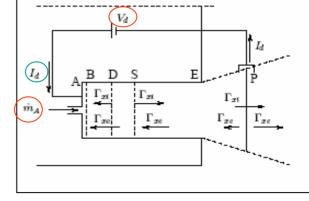
• For instance:
$$\frac{du_{zi}}{dz} = v_i - u_{zi} \frac{d \ln A}{dz} - u_{zi} \frac{G}{T_e - m_i u_{zi}^2}$$

$$G = -\frac{\omega_e^2}{v_e} m_e u_{ze} \left(1 - \frac{2q_{ze}}{5n_e T_e u_{ze}} \right) - v_i m_i (2u_{zi} - u_{zn}) + m_i u_{zi}^2 \frac{d \ln A}{dz}$$

- A singular transition exists at anode sheath edge (point B): $M_B = -1$ & $G_B = \infty$
- A regular subsonic/supersonic transition exists inside the channel (point S) with

$$M_S = 1 \& \vec{F}(\vec{Y}_S) = \vec{0}$$
, i.e. $G_S = 0$

- Point S is equivalent to the critical section of a Laval nozzle, where $0=G_S\equiv m_iu_{zi}^2d\ln A/dz$ corresponds to dA/dz=0. In a Hall thruster, $G_S=0$ corresponds to a certain balance between ionization and electron diffusion.
- 8 boundary conditions are set at points B, S and P:
 - Discharge voltage (1)
 - Density and velocity of injected gas at anode (2)
 - Electron temperature at cathode (1)
 - Regularity condition at point S (1)
 - Anode sheath conditions (3)



Anode sheath in a Hall thruster

- For Maxwellian-type VDF electron flux to anode $\sim n_{eA} \sqrt{T_e/2\pi m_e}$,
- In normal conditions this is much larger than the quasineutral flux in the channel, $g_{ze} \equiv n_e u_{ze} (>0)$
- A negative anode sheath AB is formed in order to

satisfy
$$g_{zeB} = g_{zeA}$$
:
$$n_{eB}u_{zeB} \approx -n_{eB} \exp\left(-\frac{e\phi_{AB}}{T_{eB}}\right) \sqrt{\frac{T_{eB}}{2\pi m_e}}$$

This equation determines the sheath potential fall, ϕ_{AB} .

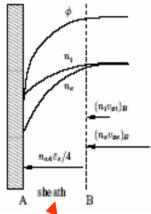
- Bohm condition at sheath edge: $u_{ziB} \approx -\sqrt{T_{eB}/m_i}$
- Electron energy flux deposited: a) at the anode A,

$$q_{zeA}^{tot} = -\int \frac{1}{2} m_e w^2 w_z f_{eB}(w) d^3 w \approx 2T_{eB} g_{zeB}$$

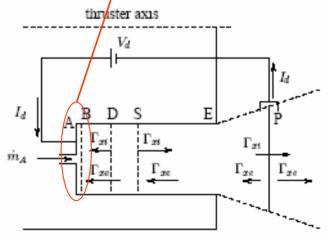
b) at the sheath edge B:

$$q_{zeB}^{tot} = g_{zeB}(2T_{eB} + e\phi_{AB})$$

• These are 3 boundary conditions for the axial quasineutral model



© Source unknown. All rights reserved. This content is excluded fromour Creative Commons license. For more information, see http://ogw.mit.edu/help/faq-fair-use/.



Axial structure

Acceleration region:

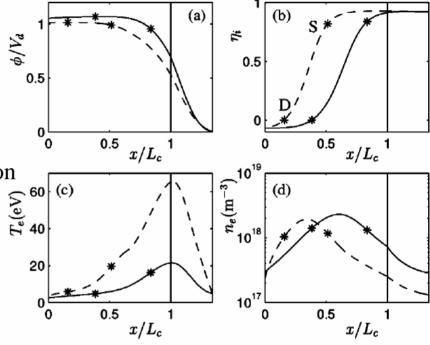
- Presents most of the potential drop & ion acceleration
- For electrons: Joule heating competes with wall cooling
- Heat conduction smooths T_e profile
- Plasma production = plasma recombination
- Plasma density decreases (due to ion acceleration)

Ionization region:

- Electron cooling due to ionization
- Maximum of plasma density inside

• Ion backstreaming region:

- Electric force very small
- Ion reverse flow is small
- Pressure drop (towards anode) dominates electron diffusive flow
- Length depends on ionization rate (i.e. T_e)



© American Institute of Physics. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

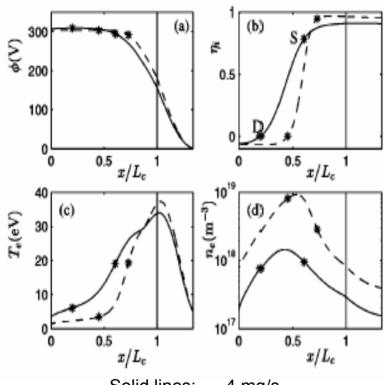
• Magnetic field is adjusted for each case:

- solid lines: 110V, 110G

- dashed lines: 600V, 330G

Axial structure

Influence of anode mass flow



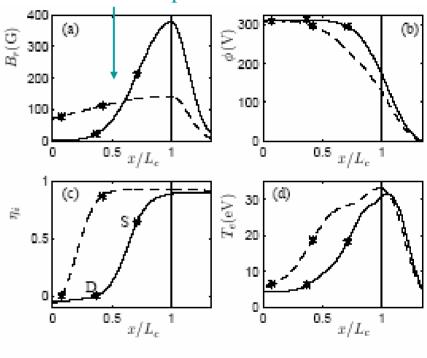
- Solid lines: 4 mg/s

- Dashed lines: 10 mg/s

© American Institute of Physics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Influence of magnetic field shape

External B-field profiles



- solid lines: $L_{b1} = 9.5 \text{mm}$, $B_{max} \sim 380 \text{ G}$

- dashed lines: $L_{b1} = 30 \text{mm}$, $B_{max} \sim 140 \text{G}$

© American Institute of Physics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Thrust

• Plasma momentum flow:
$$F_p(z) = \sum_{\alpha=i,e,n} F_{\alpha}(z)$$
, $F_{\alpha}(z) = (m_{\alpha}u_{z\alpha}^2 + T_{\alpha}) n_{\alpha}A$

• Axial momentum equation for the plasma:

$$\frac{dF_i}{dz} = Aen_i \frac{d\phi}{dz} + Am_i n_e (v_i u_{zn} - v_w u_{zi})$$

Electric force

$$\frac{dF_n}{dz} = Am_i n_e (v_w u_{znw} - v_i u_{zn})$$

 $\frac{dF_e}{dz} = Aen_e \frac{d\phi}{dz} + Aj_{\theta e}B_r + n_e T_e \frac{dA}{dz}$

Ionization + wall recombination

$$\Rightarrow \left(\frac{dF_p}{dz}\right) = \frac{\varepsilon_0}{2} \frac{d}{dz} \left(\frac{d\phi}{dz}\right)^2 + \left(Aj_{\theta e}B_r\right) Av_w m_i (u_{zi} - u_{znw}) n_e + n_e T_e \frac{dA}{dz}$$

Non-neutral

E-field force

Thrust

• Integrating the preceding equation between anode and far downstream:

• Thrust:
$$F = F_{p\infty} - D_{plume} = F_{mag} + F_{pA} - F_{elec} - D_{wall}$$

- Magnetic force:
$$F_{mag} = \int_{A}^{\infty} j_{\theta e} B_r A dz$$

- Electric force:
$$F_{elec} = \left[A \frac{\varepsilon_0}{2} \left(\frac{d\phi}{dz} \right)^2 \right]_A$$

- Ion wall impact drag:
$$D_{wall} = \int_{A}^{E} v_w m_i (u_{zi} - u_{znw}) n_e A dz$$

- Jet divergence drag:
$$D_{plume} = \int_{A}^{\infty} n_e T_e \frac{dA}{dz} dz$$

- Therefore, thrust is transmitted to the thruster through the magnetic reaction force of electrons on the thruster magnetic circuit.
 - Notice the contribution of the external magnetic field to thrust.
 - Pressure forces at the anode make a marginal contribution
 - Ion energy accommodation at walls acts as a drag force.

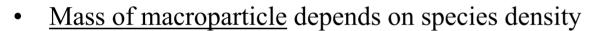
Bibliography

- 1. Ahedo, *Presheath/sheath model of a plasma with secondary emission from two parallel walls*, Physics of Plasmas, vol. 9, pp. 4340--4347, 2002.
- 2. Ahedo, Gallardo, Martínez-Sánchez, *Effects of the radial-plasma wall interaction on the axial Hall thruster discharge*, Physics of Plasmas, vol. 10, pp. 3397--3409, 2003.
- 3. Ahedo, Escobar, *Influence of design and operation parameters on Hall thruster performances*, Journal of Applied Physics, vol. 96, pp. 983--992, 2004.
- 4. Barral, Makowski, Peradzynski, Gascon, Dudeck, *Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity*, Phys. Plasmas, vol. 10, pp.4137 -- 4152, 2003.
- 5. Boeuf, Garrigues, *Low frequency oscillations in a stationary plasma thruster*, J. Applied Physics, vol. 84, pp. 3541-3554, 1998.

HALL THRUSTERS: HYBRID 2D CODE

Particle-in-cell (PIC) methods

- Individual motion of <u>macroparticles</u>, subject to <u>electromagnetic forces</u>, is followed in a <u>computational grid</u>. (see Birdsall-Langdon)
- <u>Cell size</u>, l_{cell} smaller than plasma gradients
- Timestep, $\Delta \tau$, such that particles advance less than cell size.
- Number of macroparticles per cell, N_{cell}, depends on good statistics and small numerical oscillations.



- Different species → different sets of macroparticles
- Example for Hall thruster (only ions and neutrals)
- © IEPC-2005-040. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Intermediate

electrode

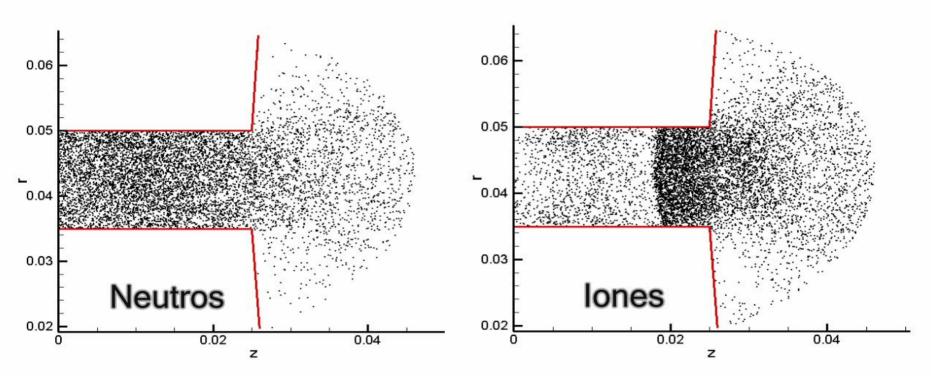
€0.04

Vacuum

ual cathode

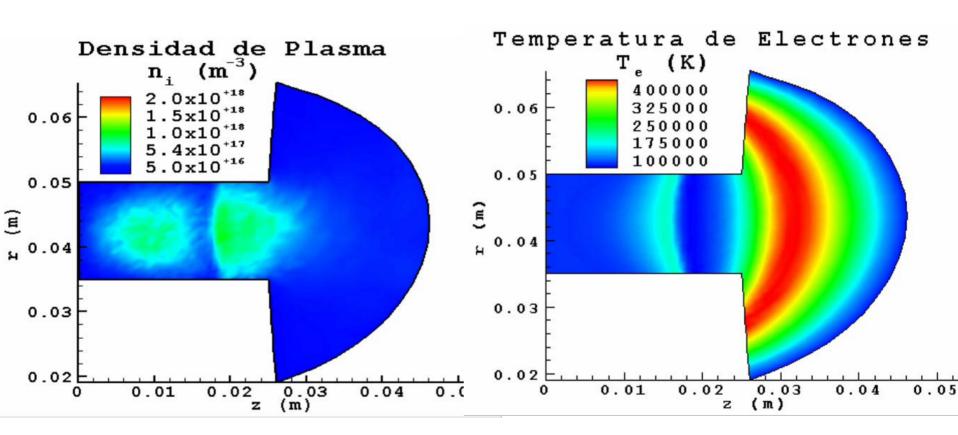
- axisymmetric, 30mm × 15 mm → 900 (toroidal) cells → l_{cell} ~0.5mm
- N_{cell} (per species) ~ 30 → 27.000 macroparticles/species → 10^9 - 10^{11} atoms/macroparticle
- macroparticle mass ~ atom mass × (atom/macroparticle)
- $-\Delta \tau \sim 10^{-8}$ s (ions), 10^{-7} s (neutrals), 10^{-10} s (electrons)

Video of particle motion



Courtesy of Professor Ahedo, Universidad Carlos III de Madrid. Used with permission.

Video of plasma dynamics

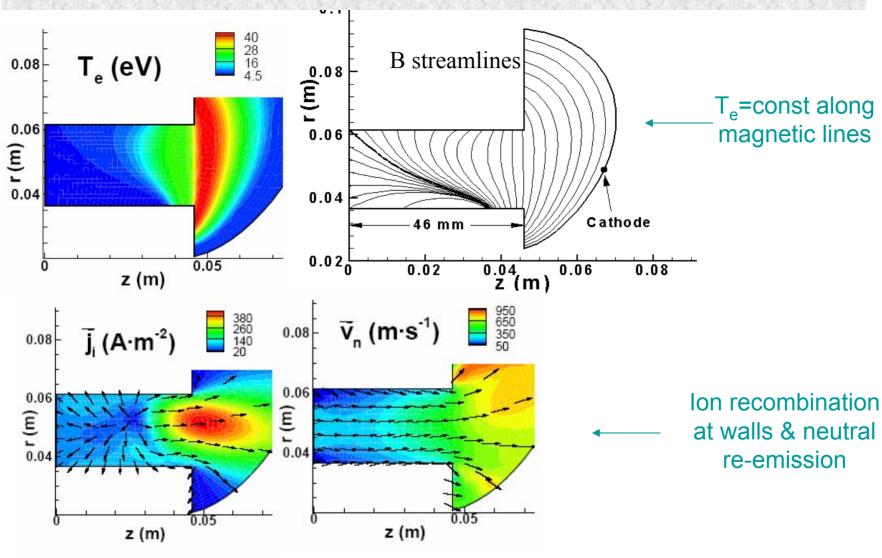


Courtesy of Professor Ahedo, Universidad Carlos III de Madrid. Used with permission.

Time-averaged 2D behavior

:][i fY`fYa cj YX`Xi Y`hc`Wtdnf][\h`fYghf]Wh]cbg":D`YUgY`gYY`:][i fY`%%`]b`9gWtVUfž`8"ž`5"`5bhŒbž`UbX`9"`5\YXc"
"G]a i `Uh]cb`cZ<][\!GdYW]Z]WV=a di `gY`UbX`8ci V`Y!GhU[Y`<U``H\fi ghYfg""`=b`DfcW*&-h\`=bhYfbUh]cbU``9`YWMf]W
Dfcdi `g]cb`7cbZYfYbWYž`Df]bWYhcbž'I G5"`&\$\$) "

Time-averaged 2D behavior



7ci fhYgmcZ'DfcZYggcf'5\YXcž'I b]j Yfg]XUX'7Uf'cg' — XY'A UXf]X"'I gYX'k]h\ 'dYfa]gg]cb"

Bibliography

- 1. Escobar, Antón, Ahedo. Simulation of high-specific-impulse and double-stage Hall thrusters, IEPC-2005-040, 2005.
- 2. Hagelaar, Bareilles, Garrigues, Boeuf, *Two-dimensional model of a stationary plasma thruster*, Journal of Applied Physics, vol. 91, pp. 5592-5598, 2002.
- 3. Parra, Ahedo, Fife, Martínez-Sánchez, *A two-dimensional hybrid model of the Hall thruster discharge*, Journal of Applied Physics,

MIT OpenCourseWare http://ocw.mit.edu

16.522 Space Propulsion Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.