
Electrospray thrusters are electrostatic accelerators of charged particles produced from elec
trified liquid surfaces. There are three types of electrospray thruster technologies: 

1. Colloid thrusters, which are accelerators of charged droplets and, under special circum
stances, ions and use solvents such as doped glycerol and formamide as propellant. 

2. FEEP (field emission electric propulsion) makes use of liquid metals (typically Cs and 
In) and produce positively charged metallic ions. 

3. ILIS (ionic liquid ion sources), that use room-temperature molten salts, also known as 
ionic liquids and produce salt ion beams, or mixtures of ions and droplets. 

The first form of electrospray propulsion (which can be tracked back to the beginning of 
the 20th century) came in the form of colloid thrusters. They were intensively studied from 
around 1960 to 1975 as an alternative to normal ion engines. Their appeal at that time 
rested with the large “molecular mass” of the droplets, which was known to increase the 

2mc
thrust density of an ion engine. This is because the accelerating voltage is V = , where 

2q 
m is the mass of the ion or droplet, and q its charge, and c is the final speed. If c is pre-defined 
(by the mission), then V can be increased as m/q increases. This, in turn, increases the space   2

F ε0 4 V 
charge limited current density (as V 3/2), and leads to a thrust density, = , (d is 

A 2 3 d
the grid spacing), which is larger in proportion to V 2, and therefore to (m/q)2 . In addition 
to the higher thrust density, the higher voltage also increases efficiency, since any cost-of-ion 

V 
voltage Vloss becomes then less significant, η = . 

V + Vloss 

In a sense, this succeeded too well. Values of droplet m/q that could be generated with the 
technology of the 60’s were so large that they led to voltages from 10 to 100 kV (for typical 
Isp ≈ 1000 s). This created very difficult insulation and packaging problems, making the 
device unattractive, despite its demonstrated good performance. In addition, the droplet 
generators were usually composed of arrays of a large number of individual liquid-dispensing 
capillaries, each providing a thrust of the order of 1 µN. For the missions then anticipated, 
this required fairly massive arrays, further discouraging implementation. 

After lying dormant for many years, there is now a resurgence of interest in electrospray 
engine technology. This is motivated by: 

(a) The new emphasis on miniaturization of spacecraft. The very small thrust per emitter 
now becomes a positive feature, allowing designs with both, fine controllability and 
high performance. 

(b) The advances made by electrospray science in the intervening years. These have been 
motivated by other applications of electrospraying, especially in recent years, for the 
extraction of charged biological macromolecules from liquid samples, for very detailed 
mass spectroscopy. These advances now offer the potential for overcoming previous 
limitations on the specific charge q/m of droplets, and therefore may allow operation 
at more comfortable voltages (1 − 5 kV). 
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(c) The advances in micro-manufacturing technologies allow for efficient clustering of a
large number of emitter tips on a small surface, potentially to the point of competing
with plasma thrusters (ion or even Hall) in achievable current density.

With regard to point (a), one essential advantage of electrospray engines for very small
thrust levels is the fact that no gas phase ionization is involved. Attempts to miniaturize
other thrusters (ion engines, Hall thrusters, arcjets) lead to the need to reduce the ionization
mean free path (σionne)

−1 by increasing ne, and therefore the heat flux and energetic ion
flux to walls. This leads inevitably to life reductions. In the electrospray case, as we will
see, the charging mechanisms are variations of “field ionization” on the surface of a liquid;
small sizes naturally enhance local electric fields and facilitate this effect.

Basic Physics

Consider first a flat liquid surface subjected to a strong normal electric field, E0. If the
liquid contains free ions (from a dissolved electrolyte), those of the attracted polarity will
concentrate on the surface. Let σ be this charge, per unit area; we can determine it by
applying Gauss’ law ∇ · ~E = ρ/ε0 in integral form to a “pill box” control volume,

σ = ε0E0 (1)

A similar effect (change concentration) occurs in a dielectric liquid as well, even though there

are no free charges. The appropriate law is then ∇ · ~ ~ ~D = 0 where D = εε0E and ε is the
relative dielectric constant, which can be fairly large for good solvent fluids (ε = 80 for water
at 20◦C). There is now a non-zero normal field in the liquid (i), and we have,

ε0E0 − εε0Ei = 0 (no free charges) (2)

and, in addition from ∇ · ~E = ρtotal/ε0 = 0 + ρd/ε0,

ε0E0 − ε0Ei = σd (dipolar charge) (3)

Eliminating Ei between these expressions,

1
σd =

(
1−

ε

)
ε0E0 (4)

which, if ε� 1 is nearly the same as for a conducting liquid, however, is important to recall
that only in a perfect conductor both normal and tangential fields are required to be zero.
In a very high ε material the normal field,

1
Ei = E0 (5)

ε

may vanish, but the tangential component, if any, will be continuous across the interface.

Consider a conductive liquid with a conductivity K, normally due to the motion of ions of
both polarities. If their concentration is n+ = n− = n (m−3), and their mobilities are, µ+

and µ− (m/s)/(V/m), then,
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Z+ + −K = ne µ + Z− µ (Si/m) (6) 

Suppose there is a normal field E0 applied suddenly to the gas side of the liquid surface. 
The liquid surface side is initially un-charged, but the field draws ions to it (positive if E0 

points away from the liquid), so a free charge density σ builds up over time, at a rate, 

dσ 
= KEi (7)

dt 

The charge is related to the two fields E0, Ei from the “pillbox” version of \ · DE = ρ, 

ε0E0 − εε0Ei = σ 

From here we find a differential equation for the free charge density, 

dσ K K 
+ σ = E0 (8)

dt εε0 ε 

εε0
The quantity τ = is the relaxation time of charges in the liquid. In terms of it, the 

K 
solution of Eq. (8) that satisfies σ(0) = 0 (for a constant Ei at t > 0) is, 

  
σ = ε0E0 1 − e −t/τ (9) 

Surface Stability 

If the liquid surface deforms slightly, the field becomes stronger on the protruding parts, 
and more charge concentrates there. The traction of the surface field on this charge is 
1 σsE = 1 ε0E

2 for a conductor (the 1 accounts for the variation of E from its outside value 
2 2 2 
to 0 inside the liquid). This traction then intensifies on the protruding parts, and the process 
can become unstable if surface tension γ is not strong enough to counteract the traction. In 
that case, the protuberance will grow rapidly into some sort of large-scale deformation, the 
shape of which depends on field shape, container size, etc. 

If the surface ripple is assumed sinusoidal, and small (ini
tially at least), then the outside potential, which obeys 
\2φ = 0 with φ = 0 on the surface, can be represented 
approximately by the superposition of that due to the ap
plied field E∞, plus a small perturbation. Using the fact 
that Re{eiαz} is a harmonic function (z = x + iy), 

φ ≈ −E∞y + φ1e −αy cos αx (10) 

The surface is where φ = 0, and this, when αy « 1, is approximately given by 0 ≈ −E∞y + 
φ1 cos αx, or, 
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φ
y ≈ 1

cosαx (11)
E∞

1 d2y φ α2
1

The surface has a curvature = cosαx, which is maximum at crests
R 2
c

≈
∣∣
dx

∣∣∣∣∣ ∣ E∞
(cosαx = 1),

E
Rc =

∞
(12)

φ1α2

and gives rise to a surface tension restoring force (perpendicular to the surface) of γ/Rc

(cylindrical surface).

∂φ
The normal field, from Eq. (10), is Ey = − = E + αφ1e

−αy cosαx and at αy 1 and
∂y

∞ �

on the crests,( this) is Ey = E + αφ1. The perturbation of electric traction (per unit area)∞
is then δ 1ε0E

2
y = ε0E αφ1. Instability will occur if this exceeds the restoring surface

2 ∞
tension effect,

φ 2
1α

ε0E αφ∞ 1 > γ or E >
E

∞
∞

√
γα

(13)
ε0

The quantity α is 2π/λ , where λ is the wavelength of the ripple. Thus, if longwave ripples
are possible, a small field is sufficient to produce instability. We will later be interested in
drawing liquid from small capillaries; if the capillary diameter is D, the largest wavelength
will be 2D , or α = π/D , which gives the instability condition,

E >∞

√
πγ

(14)
ε0D

For example, say D = 0.1 mm, and γ = 0.05 N/m (Formamide, CH3NO). The minimum
field to produce an instability is then 1.33× 107 V/m. This is high, but since the capillary
tip is thin (say, about twice its inner diameter, or 0.2 mm), it may take only about 2500 V
to generate it. A more nearly correct estimate for this will be given next.

Starting Voltage

The figure shows an orthogonal system of coordinates called “Prolate Spheroidal Coordi-
r1 r2 r1 + r2

nates”, in which η =
−

, ζ = and φ is an angle about the line FF’.
a a

The cartesian-prolate transformation is,

r1 =

√
x2 + y2 +

( a a
z +

)2

and r2 =

√
2

x2 + y2 +
(
z

2
−

2

)
and so, lines of constant η are confocal hyperboloids (foci at F, F’) while lines of constant
ζ are confocal ellipsoids with the same foci. The surface η = 0 is the symmetry plane, S,
and one of the η-surfaces, η = η0 , can be chosen to represent (at least near its tip) the
protruding liquid surface from a capillary.
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If the potential φ is assumed to be constant (V ) on η − η0 , and zero on the plane S, then
the entire solution for φ will depend on η alone. The η part of Laplace’s equation in these
coordinates is,

∂
[( ∂φ

1 =
∂η

− η2
)
∂η

]
0 (15)

which, with the stated boundary conditions, integrates easily to,

tanh−1 η
φ = V

tanh−1 (16)
η0

Let R2 = x2 r1 r2
+y2 (cylindrical radius). From η =

−
, the (z,R) relationship for a constant

a
η hyperboloid is,

aη =

√
R2 +

( a 2

z +
)2

−
√

a
R2 +

2

(
z −

2

which, for z > 0, can be simplified to,

)

z = η

√
a2 R2

+
4 1− η2

The radius of curvature Rc of this surface is given by,

1 zRR
=

R 3/2
c (1 + z2

R)

which yields,

1
Rc = a

− η2 R2/a2

1 + 4 (17)
2η

[
(1− η2)2

]
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a
Also, the tip-to-plane distance is d = z(R = 0, η = η0) = η0, so we find the parameters a

2
and η0 if Rc and d are specified,√

Rc

(
Rc

)−1/2

a = 2d 1 + and η0 = 1 + (18)
d d

∂φ ∣∣∣ ∂φ ∂η
The electric field at the tip is Ez = − ∣ = −

∣∣∣∣ . Now, at the tip we have R = 0
∂z tip ∂η ∂z tip

∂η 2
and η = η0 , so that

∂z

∣∣∣∣ = , and using Eq. (16),
tip a

2V/a
Etip = − (19)

(1− η2
0) tanh−1 η0

which can be expressed in terms of Rc and d, when Rc � d, as,

2V/Rc
Etip = − (20)

ln (4d/Rc)

Now, in order for the liquid to be electrostatically able to overcome the surface tension forces
and start flowing, even with no applied pressure, one needs to have,

1
ε0E

2 2γ

2 tip > (21)
Rc

(2γ/Rc, because there are two equal curvatures in an axisymmetric tip). Substituting Eq.
(20), the “starting voltage” is,

γRc 4d
Vstart =

√
ln

ε0

(
Rc

)
(22)

Returning to the example with Rc = 0.05 mm, γ = 0.05 N/m, and assuming an attractor
plane at d = 5 mm, the required voltage is 3184 V, whereas if the attractor is brought in
to d = 0.5 mm, Vstart = 1960 V. These values are to be compared to the previous estimate.
They still ignore the effect of space charge in the space between the tip and the plane, which
would act to reduce the field at the liquid surface. But we have also ignored the effect of
an applied pressure, which can be used to start the flow as well. What an applied pressure
cannot do, however, is to trigger the surface instability described before. As Eq. (22) shows,
if the radius of curvature at the tip is reduced, so is the required voltage to balance surface
tension. One can then expect that, once electrostatics dominates, the liquid surface will
rapidly deform from a near-spherical cap to some other shape, with a progressively sharper
tip. The limit of this process will be discussed next.

The Taylor Cone

From early experimental observations, it was known that when a strong field is applied to the
liquid issuing from the end of a tin tube, the liquid surface adopts a conical shape, with a very
thin, fast-moving jet being emitted from it apex. In 1965, G.I. Taylor explained analytically

6



(and verified experimentally) this behavior, and the conical tip often seen in electrospray 
emitters is now called a “Taylor Cone”. The basic idea is that the surface “traction” ε0E

2/2 
due to the electric field must be balanced everywhere or the conical surface by the pull of e i 
the surface tension. The latter is per unit of area, γ R−1 + R−1 , where 1/Rc1 and 1/Rc2c1 c2 

are the two principal curvatures of the surface. In a cone, 1/Rc is zero along the generator, 
while the curvature of the normal section is the projection on it of that of the circular section 
through the same point (Meusnier’s theorem), 

1 cos θ cos θ cot θ 
Rc 

= 
R 

= 
r sin θ 

= 
r 

(23) 

This means that,  
1 γ cot θ 2γ cot θ 
ε0En 

2 = or En = (24)
2 r ε0r 

The question then is to find an external electrostatic field such that the cone is an equipo
tential, with a normal field varying as in Eq. (24). Notice that the spheroids of the previous 
section do generate cones in the limit when r » a but this type of electrostatic field has 
En ∝ 1/r , and cannot be the desired equilibrium solution. 

the surface tension. The latter is per unit of area, γ 1
Rc1

+
1
Rc2

⎛
⎝⎜

⎞
⎠⎟

, where 1 Rc1 ,1 Rc2  

are the two principal curvatures of the surface. In a cone, 1 Rc  is zero along the 
generator, while the curvature of the normal section is the projection on it of that 
of the  circular section through the same point (Meusnier’s theorem),

1
Rc

=
cosα
R

=
cosα
r sinα

=
cotα
r

                                         (23)    

This means that,

1
2
ε0En

2 =
γ cotα
r

     or      En =
2γ cotα
ε0r

                             (24)

The question then is to find an external electrostatic field such that the cone is an 
equipotential, with a normal field varying as in Eq. (24). Notice that the spheroids 
of the previous section do generate cones in the limit when r >> a but this type of 
electrostatic field has En ∝1 r , and cannot be the desired equilibrium solution. 

If we adopt a spherical system of coordinates Laplace’s equation admits 
axisymmetric “product” solutions of the type,

φ = AQν cosθ( )rν     or     φ = APν cosθ( )rν                           (25)

where Pν ,Qν  are Legendre functions of the 1st and 2nd kind, respectively. Of the 
two, Pν  has a singularity when θ = π , and Qν  has one at θ = 0 . The latter is 
acceptable, because θ = 0  is inside the liquid cone, and we only  need the 
solution outside. The normal field is then,

r En

Force Balance:

� 

fe = 1
2εoEn

2

V

� 

fst = γ∇ ⋅ ˆ n 

Electric pressure

Surface tension

Electrified Menisci as Field Amplifiers

θT
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If we adopt a spherical system of coordinates, Laplace’s equation admits axisymmetric “prod
uct” solutions of the type, 

φ ∝ Qν (cos θ)r ν or φ ∝ Pν (cos θ)r ν (25) 

where Pν and Qν are Legendre functions of the 1st and 2nd kind, respectively. Of the two, 
Pν has a singularity when θ = π, and Qν has one at θ = 0. The latter is acceptable, because 
θ = 0 is inside the liquid cone, and we only need the solution outside. The normal field is 
then, 

1 ∂φ dQν
En = Eθ = − = A sin θrν−1 

r ∂θ d cos θ 
√ 

where A is a constant. In order to have En ∝ 1/ r, we need ν = 1/2. Thus, 

φ = AQ1/2(cos θ)r 1/2 (26) 
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The normal electric field ( E En = α) can be calculated from the electric potential

definition,

E
rn = − ∇( ) = − +

⎛
⎝⎜

⎞
⎠⎟

Φ Φ Φ
α

∂
∂α

∂
∂α

1 1 2 .     (3.1.8)

Direct substitution of (3.1.7) into (3.1.8) yields,

E A P A Q
rn = +

⎛
⎝⎜

⎞
⎠⎟ −∑ 1 2 1, ,cos cos

sin
ν

ν
ν

ν
ν

ν

∂
∂ α

∂
∂ α

α ,           (3.1.9)

which can be compared against Equation (3.1.5). The two expressions are equal only

when ν = 1
2 , therefore the potential outside the cone is,

Φ = ( ) + ( )( )AP A Q r1 1 2 2 1 2
1 2cos cosα α .    (3.1.10)

In Figure 3.1.3, plots of Legendre polynomials with ν = 1
2  are shown as functions of α .
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    Figure 3.1.3. Legendre polynomials with νννν = 1/2 as functions of ααααThe function Q1/2(cos θ) has a single zero at, 

θT = 49.29◦ (27) 

which can therefore be taken as the equipotential liquid surface. Notice that this angle is 
universal (independent of fluid properties, applied voltage, etc). Taylor (and others) have 
verified experimentally this value, as long as no strong space charge effects are present, no 
flow, and as long as the electrode geometry is “reasonably similar” to what is implied by Eq. 
(26). 

The experimental fact that stable Taylor cones do form even when the electrodes applying 
the voltage are substantially different from the shape given by Eq. (26) apparently indicates 
that the external potential distribution near the cone is dictated by the equilibrium condition 
Eq. (24), and that the transition to some other potential distribution capable of matching 
the real electrode shape takes place far enough from the liquid to be of little consequence. 
We should expect, however, that the Taylor cone solution will be disturbed to some extent 
by nonideal conditions, and will eventually disappear. In one respect at least, the Taylor 
cone cannot be an exact solution: the infinite electric field predicted at the apex will produce 
various physical absurdities. Something must yield before that point, and that is explored 
next. 
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