
Once the electric traction overcomes surface tension, a Taylor Cone-like liquid structure
could appear. It is clear that a Taylor Cone is a highly idealized situation in which no flow
and perfect electric relaxation are assumed. Under those conditions, the electric field will
simply intensify towards the tip until becoming infinitely large at the infinitesimally small
apex. In reality, however, full relaxation cannot continue if there is non-zero liquid flow, and
a departure from an ideal Taylor Cone is expected. As the photograph below shows, a jet
is seen to issue from the cone’s tip, implying the need for a flow rate, say Q (m3/s). Since 
the surface being ejected is charged, this also implies a net current, I. It will be seen that
these flows and currents are (in the regime of  interest) extremely small: Q ≈ 10−13 m3/s per 
needle. The tip jet is likewise extremely thin (of the order of 20 − 50 nm). This operational
regime is known as the Cone-Jet mode, which is obtained with practically all conductive
liquids, in particular electrolytic solutions.
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Not very near the cone’s tip, the current is mostly carried by ionic conduction in the elec
trolytic solution. In a good, highly polar solvent (i.e., one with ε » 1), the salt in solution is
highly dissociated, at least at low concentration. For example, LiCl in Formamide dissociates
into Li+ and Cl− and each of these ions, probably “solvated” (i.e., with several molecules 
of formamide attached), will drift at some terminal velocity (in opposite directions) in re
sponse to an electric field. At high concentrations (several molar) the degree of dissociation
decreases. Following are the measured electrical conductivities K, of solutions of LiCl in
Formamide (CH3NO). 

Concentration (mol/l) K (Siemens/m)
1.47 × 10−3 3.16 × 10−3

1.47 × 10−2 5.49 × 10−2

0.147 0.27
1.0 1.12
3 2.2

This finite conductivity implies that, under current, there will be some electric field directed
radially (Er  = 0). This contradicts the assumption made that the Taylor Cone’s surface 
is an equipotential, especially near the tip, where the current density must be strongest.
Hopefully, Er is at least much less than Eθ over most of the cone. 
Let us assume that we have such a conical structure, in which because of the liquid flow,
charges move very slowly everywhere, except very near the cone apex. Near this cone-jet
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transition region (of size r ∗), the liquid surface will stop to be an equipotential as the liquid 
passage time r ∗3/Q, becomes of the order of the charge relaxation time, εε0/K, 

r ∗3 εε≈	 0
(1)

Q K 

from here, we obtain the “characteristic dimension” of the cone-jet transition region, 

 
 
 1/3

εε0Q
r ∗	 = (2)

K

It turns out that the dimension  r ∗ plays a fundamental role on the scaling and understanding 
of electrospray thrusters. In this region, we assume that most of the surface transport will 
be convected, such that I ≈ Is, but still most of the surface is relaxed σ ≈ ε0Eθ. The surface 
current Is, associated with a fluid velocity u, will be, 

 2γ cot θT
Is = 2π(r ∗ sin θT )σu with σ = ε0Eθ = ε0	

 
(3)

εr 

where, 
Q 

u = (4)
2π(1 − cos θ )r ∗2	 

T 

Under these assumptions, the current carried by the cone-jet will be, 

√  	 √ 
2 cos θT sin θT γKQ	 2 cos θT sin θT

I ≈	 with = 2.86 (5)
1 − cos θT ε	 1 − cos θT 

Fernandez de la Mora (1994) used a similar argument and verified experimentally that the 
current transported by cone-jet electrosprays is given by, 

γKQ 
I = f(ε)

 
	 (6)

ε 

The quantity f(ε) has a value of about 18 for ε > 40, which is somewhat different from 
the value obtained in (5). Our oversimplified analysis neglected conduction contributions 
and the effects of internal fields (the dependence on ε). Nevertheless, Eqs. (5) or (6) are 
remarkable in several respects: 

(a) Current is independent of applied voltage. 

(b) Current is independent of electrode shape. 

(c) Current is independent of fluid viscosity	 - even though some of the fluids tested are 
very viscous. 

The degree of experimental validity of (6) in shown in the figure (F. de la Mora 1994). Here, 
non-dimensional parameters are defined as follows: 
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I 
ξ = _ (7) 

γ ε0/ρ 

and, 

ρKQ 
η = (8)

γεε0 

where ρ is the liquid mass density. With these definitions, Eq. (6) becomes, 

ξ = f(ε) η (9) 

For six different fluids, and over a wide range of flows, the correlation in the data is remark
able. 

Droplet Size and Charge 
From the nature of the Taylor Cone, the liquid, as it progresses towards the tip jet, maintains 
an equilibrium on its surface between electrostatic and surface tension forces. This equilib
rium is disturbed near the tip, but it is reasonable to conjecture that something close to it 
will be sustained into the jet, and even after jet break-up, into the droplets which result. If 
we postulated this for a droplet of radius R and charge q, the equilibrium condition becomes, 

1 2γ q
ε0E

2 = with En = (10)
2 n R 4πε0R2 

from which we can solve for the maximum charge that a droplet could hold, 

qR = 8π 
√ 

ε0γR3/2 (11) 

which is known as the Rayleigh Limit above which the droplet will experience a “Coulombic” 
explosion. In practice, however, a small departure from the full spherical shape will trigger 
the instability when close to this limit. Experiments have shown that electrosprays produce 
streams of droplets charged to about 1

2 of their Rayleigh limit. The outcome of a Coulombic 
explosion is fragmentation into small spherical droplets. It is easy to prove that daughter 
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droplets, if fragmenting symmetrically from a droplet at the Rayleigh limit (or half of it), will
be charged to about 71% of their corresponding limit, and therefore will be stable (neglecting
solvent evaporation).

The droplet mass is m = 4πR3ρ, so that the maximum specific charge carried by droplets
3

would be,

q ∣∣ √∣ 6 ε0γ
= (12)

m max ρR3/2

A plausible explanation of the 1 factor of the Rayleigh limit could be articulated if we ask
2

what is the least-energy subdivision of a given total mass mt and charge qt. If this subdivision
is made into N equal drops of radius R, we have,

mt
N =

ρ4πR3
3

and each drop will carry a charge,

qt 4
q = = ρ πR3 qt

N 3 mt

The energy per drop comprises an electrostatic part 1qφ, and a surface part 4πR2γ,
2

1 q2

E = N

(
+ 4πR2γ

2 4πε0R

)
(13)

Differentiating and equating to zero, we obtain,

1/32
mt

R =

(
9

(
t

)
ε0γ

q

)
or,

( q ) 3(ε0γ)1/2

= (14)
m minE ρR3/2

So, the minimum-energy assembly of drops has a specific charge exactly 1 the maximum pos-
2

sible, which agrees with experimental observations, although some difficulty of interpretation
arises with polydisperse clouds (many sizes present).

If the droplet size R is assumed known, we can deduce the radius Rjet of the jet from whose
breakdown they originate. Several experiments confirm that this jet breakup conforms closely
to the classical Rayleigh-Taylor stability theory for uncharged jets, which predicts a ratio,

R
= 1.89 (15)

Rjet

We can express Rjet as a function of flow and fluid quantities by assuming Rayleigh-limited
drops Eq. (12), and using,
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q I I 6
√
ε0γ

= then =
m ρQ Q (1.89R 3/2

jet)

or,

1
Rjet =

1.89

(
6

f

)2/3
1

r∗ ≈ r∗ (with f
4

≈ 20) (16)

This value is in the range of the data published in the literature, which strongly supports
the validity of the arguments used. It can be also observed that f(ε) is known to fall for less
than about 40, and Eq. (16) constitutes a prediction for a corresponding increase in the jet
diameter. No direct data appear to be available on this point.

To conclude this discussion, we observe that,

( )1/2
q f(ε) γK

= (17)
m ρ εQ

which means that the highest charge per unit mass is obtained with the smallest flow rate.
A high q/m can be important in order to reduce the needed accelerating voltage V for a
prescribed specific impulse Isp = c/g,

c2
V = (18)

2(q/m)

For concreteness, suppose we desire c = 8000 m/s (Isp = 800 s) without exceeding V = 5
kV. From (18), we need q/m > 6400 C/kg. Suppose we use a Formamide solution with
K = 1 Si/m and ε = 100, f = 18, ρ = 1130 kg/m3 and γ = 0.059 N/m. Using Eq. (17),
we calculate a flow rate Q < 7.1 × 10−15 m3/s, corresponding to a mass flow of less than 8
ng/s, or a current of less than 50 nA.

These are really small flow rates and currents. The input power per emitter is then less than
P = V I = 0.26 mW and the thrust is less than F = mc˙ = 0.064 µN.

For this example, we also calculate r∗ = 18.5 nm, which gives a jet diameter of about 7.5
nm, and a droplet radius of 7 nm. The drop charge is q ≈ 1×10−17 C (65 elementary charges
for about 21,000 Formamide molecules).

Notice also the scalings,

V 2 V 2

Q ∝ K and F
c4

∝ K
c3

The required flow rate is quite sensitive to the prescribed specific impulse. For small ∆v
missions, where high specific impulse is not imperative, the design can be facilitated by both,
reducing V and increasing Q.

Limitations to the droplet charge and mass

As we have seen, high q/m can be obtained by increasing the conductivity K of the liquid
(more concentrated solutions), and, for a given conductivity, by reducing the flow rate Q. As
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Q/K is reduced, the jet becomes thinner (as r∗ ∝ (Q/K)1/3), the droplets become smaller in
the same proportion, and their specific charge increases as

√
γK/Q. It would appear then

that q/m can be indefinitely increased through flow reduction. Two phenomena have been
identified, however, which limit this increase:

(a) Taylor Cone instability

It has been noted that the Taylor cone becomes intermittently disrupted when the
non-dimensional group η introduced in Eq. (8) becomes less than some lower limit (of
the order of 0.5 in conventional capillary tubes). The nature of this instability is not
currently well understood, and so there is some uncertainty as to its generality. One
likely explanation is the fact that q/m cannot exceed the specific charge that would
result from full separation of the positive and negative ions of the salt used,

( q
V

)
=

max

(
q

m/ρ

)
= F

max

× 1000cd (C/m3) (19)

where F = 96500 C/mol is Faraday’s constant, and cd is the dissociated part of the
solution’s equivalent normality (mol/l). The dissociated concentration cd is linearly
related to the conductivity K through a “mobility parameter” Λ0,

K ≡ Λ0cd (20)

For aqueous solutions Λ is 15 (Si/m)/(mol/l) if there are no H+
0 ions, in which case

Λ0 ≈ 40 (Si/m)/(mol/l). We therefore can write, from (17),

( )1/2
γK 1000 F

f(ε) = K (21)
εQ Λ0

or,

ηmin ≈
√

ρ Λ0 f(ε)
(22)

ε0 1000 F ε

Assuming Λ0 = 20, ρ = 1130 kg/m3, f = 18 and ε = 100, then Eq. (22) yields
ηmin ≈ 0.59, which is of the right order. The mobility factor Λ0 would, however, be
expected to depend on viscosity, so the argument is incomplete. Using this criterion,

γεε0
Qmin = η2

ρK min (23)

and so (17) gives a maximum droplet specific charge,

( q f
=

m

) (ε) K

max εηmin
√ (24)
ε0ρ

which reduces, as the argument above implies, to,
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( q
m

) 1000 F
= cd (25)

max ρ

For Formamide, K can be raised to about 2 Si/m, and using ηmin = 0.5, (24) yields,( q
10000 C/kg

m

)
max
≈

(g I )2
sp

This implies a relationship Voltage-Isp V = (5000 V for I
2× sp = 1000 s).

104

(b) Ion emission from the cone-jet transition region

The normal field Eθ increases towards the cone’s tip, and will be maximum more or
less at the start of the jet. We can estimate this maximum using the Taylor Cone field

2.68
equation evaluated at r = Rjet/ cos θT = r∗. This gives,

f 2/3√
1/6

2γ cot θT
= 1.87

ε0r
× 107 f 1/3(ε)γ1/2

(
K

E =
εQ

)
(26)

This field can be very high at low flow rates and with highly conductive fluids. It is
γεε0η

2

of interest to evaluate it at the lowest stable flow rate, as given by Qmin = min .
ρK

The result is then,

( 1/
1.3× 109 ρ1/6 3

f(ε)γK
Emax =

1/3
η ε
min

)
(27)

Using data for Formamide and assuming ηmin = 0.5 and K = 2 Si/m, we get Emax =
1.63 V/nm. It is known experimentally that at normal fields in the range 1− 2 V/nm
individual ions begin to be extracted from the liquid by field evaporation.

Once the threshold field is reached, field emission increases rapidly with field: Assume
the liquid used has a large enough conductivity (and surface tension) that the peak
field given by (26) reaches 1-2 V/nm as the flow Q is decreased before the minimum
stable flow is reached (in other words, the field given by (27) is more than 1-2 V/nm).
In that case, further reductions in flow, which increase E, will result in copious emis-
sion of ions from the tip, and the emitted current will increase instead of decreasing as
Q1/2, with the ion current becoming increasingly stronger than the droplet contribu-
tion. In principle, one could expect that as the flow is reduced further, there would be
a point in which the droplet component would vanish altogether. Interestingly, such
behavior is observed when using pure salts (ionic liquids) as propellants, but it is not
observed in electrolytic solutions. A more detailed discussion of ion evaporation and
its significance to propulsion will be presented in the following lecture.

Evaporation from the liquid meniscus

As noted above, the current emitted in droplet form by an electrospray depends on the flow
rate Q, but not on the emitter’s diameter. The same flow rate, and hence the same current,

7



can be produced using a thin capillary under a high supply pressure or a wider one with
correspondingly reduced supply pressure. For liquids of moderate to high volatility, it is then
advantageous to reduce the emitter diameter, because the loss due to evaporation from the
exposed liquid surface does scale as the square of this diameter (this is in addition to the

πD2

advantage in starting voltage). The cone’s surface area, for a tube diameter D, is ,
4 sin θT

so that the evaporated mass flow rate is

πD2 Pv(T )mv
ṁv = (28)

sin θT
√

2πmvkT

where mv is the mass of a vapor molecule, and Pv(T ) is the vapor pressure at the tip
temperature. If a design constraint is imposed that ṁv ≤ fvρQmin, with some prescribed
fraction fv of minimum emitter flow, we obtain the condition (using (23) for Qmin),

D ≤
( 1/2

2fv sin θTη
2 γεε0
minc̄v

)
(29)

KPv(T )

where c̄v =

√
8kT

is the vapor’s mean thermal speed.
πmv

Consider the case of Formamide. Ignoring for this calculation the reduction in Pv due to the
solute, we have,

Pv[Pa] = 3.31× 1012 exp

(
8258−
T [K]

)
(30)

Taking T = 293 K, ηmin = 0.5, mv = 0.045 Kg/mol and K = 1 Si/m, we calculate from
(29) a maximum diameter for fv = 0.01 of Dmax = 6.2 µm. This is of the same order as
the diameter required for start-up at 1 kV voltage. Both of these results point clearly to
the desirability of thruster architectures with large numbers of very small emitters, which
motivates research into microfabrication techniques for their production.
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