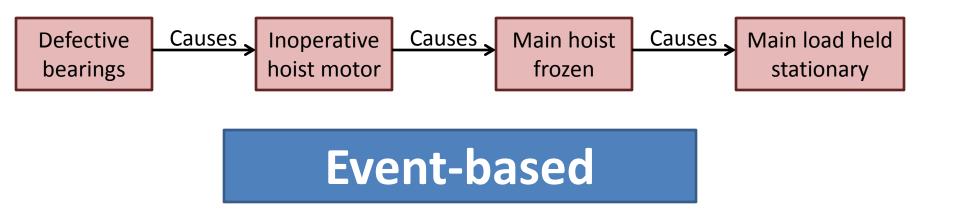
STPA Systems Theoretic Process Analysis

Agenda


- Quick review of hazard analysis
- Quick review of STAMP
- Intro to STPA hazard analysis

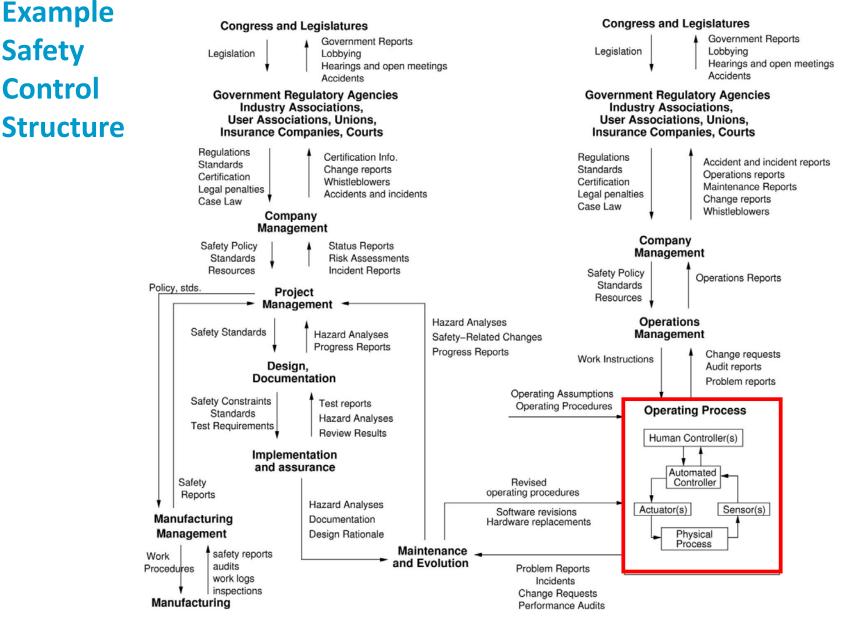
Hazard Analysis vs. Accident Model

Dates back to	Hazard Analysis Method	Accident Model
1949	Failure Modes and Effect Analysis*	Chain of events
1961	Fault Tree Analysis	Chain of events
1967	Event Tree Analysis	Chain of events
1960s	Hazard and Operability Analysis	Parameter deviation
2002	Systems Theoretic Process Analysis	STAMP (Systems- Theoretic Accident Model and Process)

*Technically a reliability technique, but sometimes used for safety analyses

Domino "Chain of events" Model

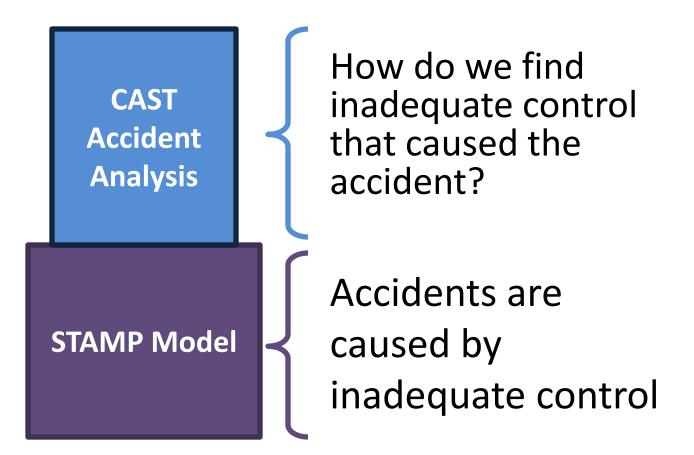
Systems approach to safety engineering (STAMP)

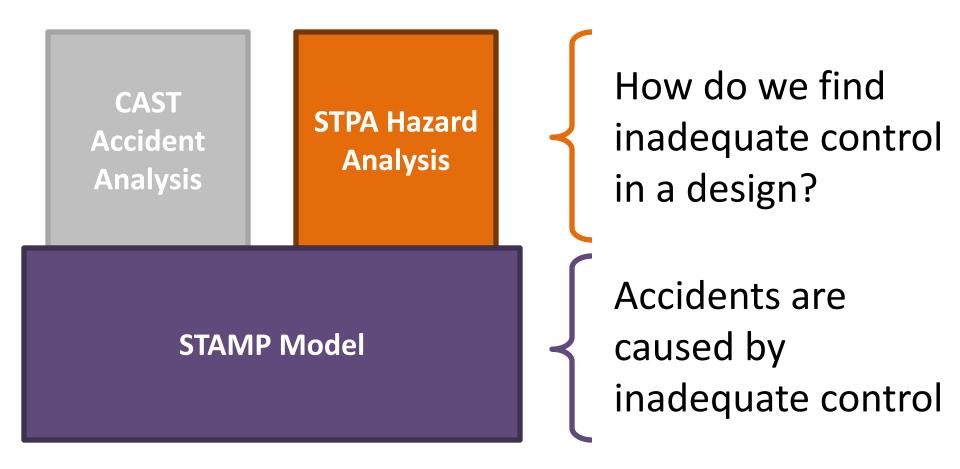

- Accidents are more than a chain of events, they involve complex dynamic processes.
- Treat accidents as a control problem, not a failure problem
- Prevent accidents by enforcing constraints on component behavior and interactions
- Captures more causes of accidents:
 - Component failure accidents
 - Unsafe interactions among components
 - Complex human, software behavior
 - Design errors
 - Flawed requirements
 - esp. software-related accidents

© 2013 John Thomas and Nancy Leveson. All rights reserved.

STAMP Model

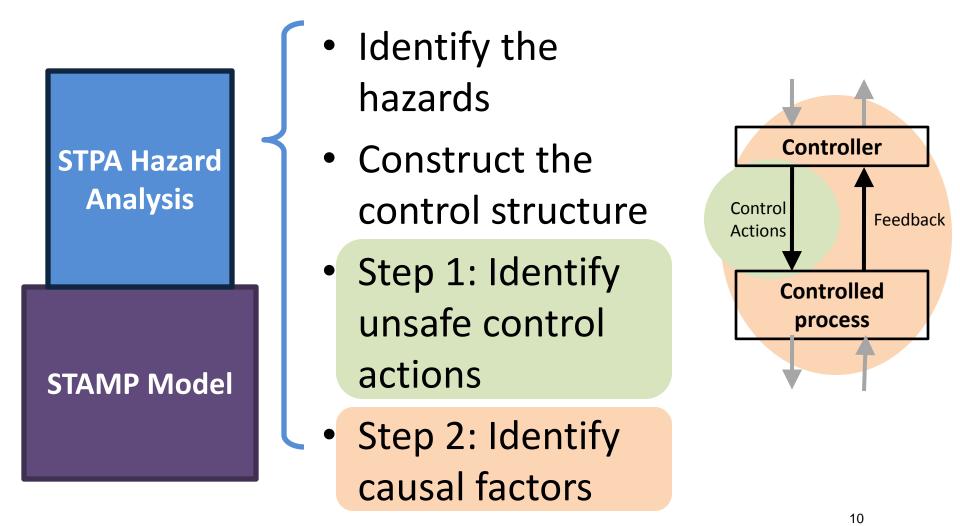
SYSTEM DEVELOPMENT


SYSTEM OPERATIONS


From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to

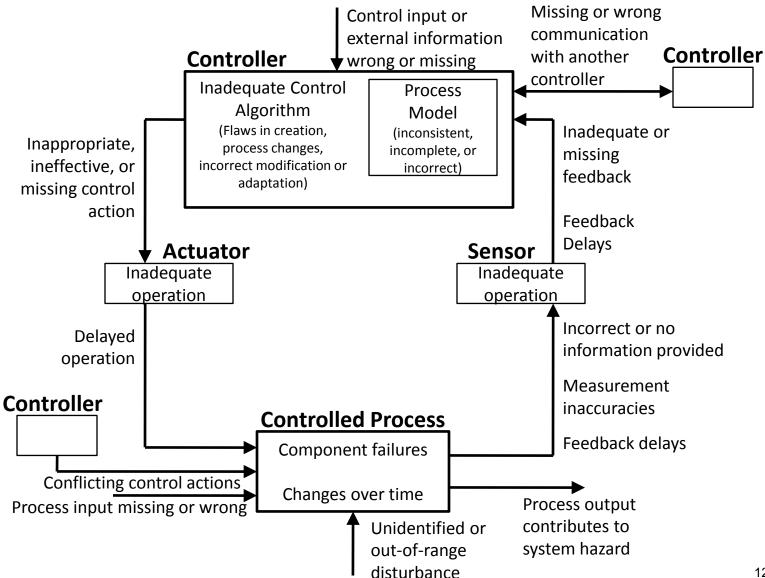
Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.

STAMP and CAST


STAMP and STPA

STPA Hazard Analysis

STPA


(System-Theoretic Process Analysis)

STPA Step 1: Identify Unsafe Control Actions

	Not providing causes hazard	Providing causes hazard	Incorrect Timing/ Order	Stopped Too Soon / Applied too long
(Control Action)				

STPA Step 2: Identify Control Flaws

STPA Exercise

a new in-trail procedure for trans-oceanic flights

Example System: Aviation

Accident (Loss): Two aircraft collide

STPA Exercise

- Identify Hazards
- Draw the control structure
 - Identify major components and controllers
 - Label the control/feedback arrows
- Identify Unsafe Control Actions (UCAs)
 - Control Table:
 - Not providing causes hazard, providing causes hazard, wrong timing, stopped too soon
 - Create corresponding safety constraints
- Identify causal factors
 - Identify controller process models
 - Analyze controller, control path, feedback path, process

Hazard

- Definition: A system state or set of conditions that, together with a particular set of worst-case environmental conditions, will lead to an accident (loss).
- Something we can *control*
 - (accidents may depend on factors outside our control)
- Examples:

Accident	Hazard
Satellite becomes lost or unrecoverable	Satellite maneuvers out of orbit
People are exposed to toxic chemicals	Toxic chemicals are released into the atmosphere
People are irradiated	Nuclear power plant experiences nuclear meltdown
People are poisoned by food	Food products containing pathogens are sold

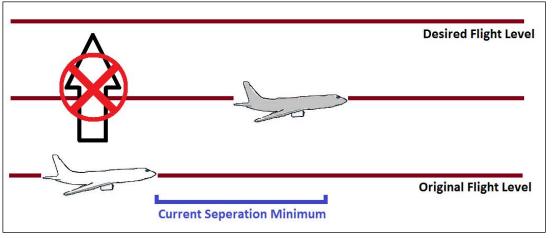
Accident (Loss): Two aircraft collide Hazard: Two aircraft violate minimum separation

Identifying Hazards

- Loss (accident)
 - Two aircraft collide with each other
 - Aircraft collides with terrain / ocean
- Hazards
 - Two aircraft violate minimum separation
 - Aircraft enters unsafe atmospheric region
 - Aircraft enters uncontrolled state
 - Aircraft enters unsafe attitude
 - Aircraft enters prohibited area

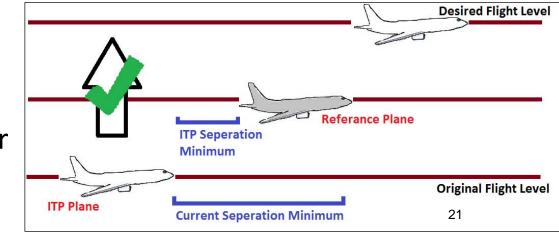
STPA Exercise

- Identify Hazards
- Draw the control structure
 - Identify major components and controllers
 - Label the control/feedback arrows
- Identify Unsafe Control Actions (UCAs)
 - Control Table:
 - Not providing causes hazard, providing causes hazard, wrong timing, stopped too soon
 - Create corresponding safety constraints
- Identify causal factors
 - Identify controller process models
 - Analyze controller, control path, feedback path, process

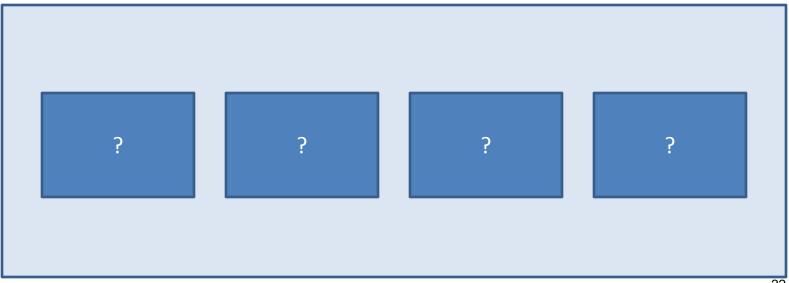

North Atlantic Tracks

North Atlantic Track eastbound image removed due to copyright restrictions. See: <u>http://www.turbulenceforecast.com/atlantic_eastbound_tracks.php</u>

- No radar coverage. Pilots check in periodically; at any given time ATC can estimate where aircraft are.
- ITP video: (watch 0:44 to 3:18)
- http://www.youtube.com/watch?v=-KFx9oGHm_w


STPA application: NextGen In-Trail Procedure (ITP)

Current State


Proposed Change

- Pilots will have separation information
- Pilots decide when to request a passing maneuver
- Air Traffic Control approves/denies request

STPA Analysis

- High-level (simple) Control Structure
 - What are the main components and controllers?
 - Who controls who?
 - Draw and label control actions / feedback arrows

STPA Analysis

 More complex control structure

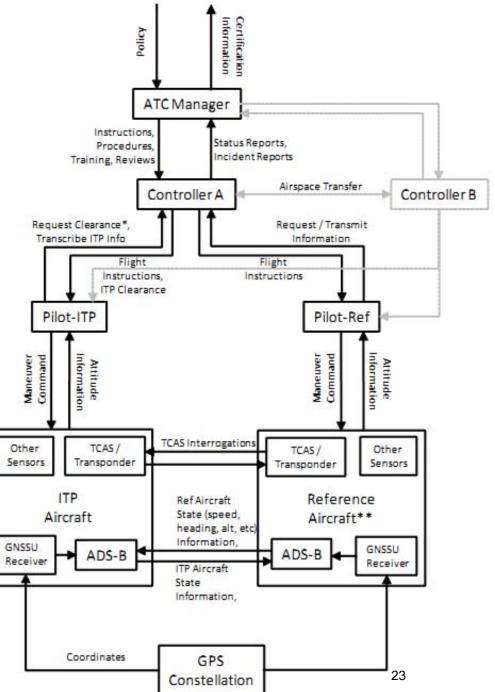


Image: Public Domain. Figure 7: Safety Control Structure for ATSA-ITP. Fleming, Cody Harrison, Melissa Spencer, Nancy Leveson et al. "Safety Assurance in NextGen." March 2012. NASA/CR-2012-217553.

STPA Exercise

- Identify Hazards
- Draw the control structure
 - Identify major components and controllers
 - Label the control/feedback arrows
- Identify Unsafe Control Actions (UCAs)
 - Control Table:
 - Not providing causes hazard, providing causes hazard, wrong timing, stopped too soon
 - Create corresponding safety constraints
- Identify causal factors
 - Identify controller process models
 - Analyze controller, control path, feedback path, process

STPA Analysis: Basic Unsafe Control Action Table

Flight Crew Action (Role)	Not providing causes hazard	Providing causes hazard	Incorrect Timing/ Order	Stopped Too Soon
Execute Passing Maneuver	Pilot does not execute maneuver once it is approved ?	?	?	?

STPA Analysis: Basic Unsafe Control Action Table

Flight Crew Action (Role)	Not providing causes hazard	Providing causes hazard*	Incorrect Timing/ Order	Stopped Too Soon
Execute passing maneuver	Pilot does not execute maneuver (aircraft remains In-Trail)	Perform ITP when ITP criteria are not met Perform ITP when request has been refused	Crew starts maneuver late after having re- verified ITP critera Pilot throttles before achieving necessary altitude	Crew does not complete entire maneuver e.g. Aircraft does not achieve necessary altitude or speed

Defining Safety Constraints

Unsafe Control Action	Safety Constraint
UCA 1: Pilot does not execute maneuver once it is approved	SC 1: Maneuver must be executed once it is approved
UCA 2: Pilot performs ITP when ITP criteria are not met	SC 2: ITP must not be performed when criteria are not met
UCA 3: Pilot executes maneuver late after having re- verified ITP criteria	SC 3: Maneuver must be executed within X minutes of re-verifying ITP criteria

STPA Exercise

- Identify Hazards
- Draw the control structure
 - Identify major components and controllers
 - Label the control/feedback arrows
- Identify Unsafe Control Actions (UCAs)
 - Control Table:
 - Not providing causes hazard, providing causes hazard, wrong timing, stopped too soon
 - Create corresponding safety constraints
- Identify causal factors
 - Identify controller process models
 - Analyze controller, control path, feedback path, process

STPA Analysis: Causal Factors

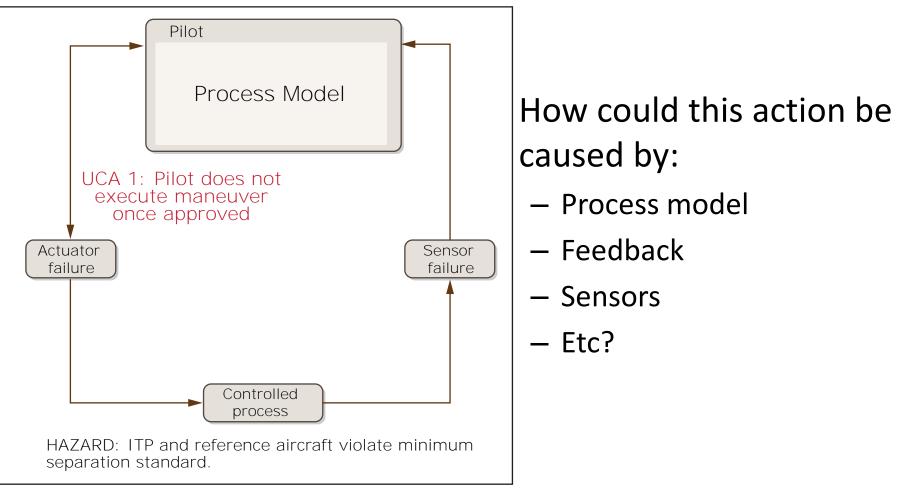
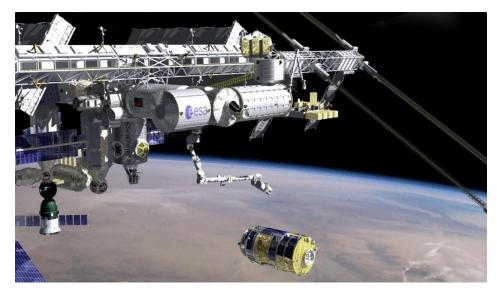



Image by MIT OpenCourseWare.

STPA Group Exercise

STPA Group Exercise

© JAXA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

International Space Station unmanned cargo vehicle

Watch HTV grapple: (0:40 – 1:30) https://www.youtube.com/watch?v=TL_WysC8eb0

View first 4 slides at: http://psas.scripts.mit.edu/home/get_pdf.php?name=1-4-HTV-system-description.pdf

STPA Group Exercise

- Identify Hazards (15 min)
- Draw the control structure (15 min)
 - Identify major components and controllers
 - Label the control/feedback arrows
- Identify Unsafe Control Actions (15 min)
 - Control Table:
 - Not given, Given incorrectly, Wrong timing, Stopped too soon
 - Create corresponding safety constraints
- Identify causal factors (next time)

16.63J / ESD.03J System Safety Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.