STPA Systems Theoretic Process Analysis

Agenda

- Rigorous method for STPA Step 1
- STPA Step 2

STPA

(System-Theoretic Process Analysis)

- Define the control structure
- Step 1: Identify unsafe control actions, safety constraints
- Step 2: Identify causal factors, accident scenarios

STPA Hazard

Analysis

STAMP Model

STPA Analysis: Basic Unsafe Control Action Table

Flight Crew Action (Role)	Action required but not provided	Unsafe action provided*	Incorrect Timing/ Order	Stopped Too Soon
Execute passing maneuver	Pilot does not execute maneuver (aircraft remains In-Trail)	Perform ITP when ITP criteria are not met Perform ITP when request has been refused	Crew starts maneuver late after having re- verified ITP criteria Pilot throttles before achieving necessary altitude	Crew does not complete entire maneuver e.g. Aircraft does not achieve necessary altitude or speed

Identifying Unsafe Control Actions

Rigorous method

Structure of an Unsafe Control Action

Four parts of an unsafe control action

- Source: the controller that can provide the control action
- Type: whether the control action was provided or not provided
- Control Action: the controller's command that was provided / missing **Process Model**
- Context: the system or environmental state in which command is provided

© 2013 John Thomas and Nancy Leveson. All rights reserved.

Train motion [

Stopped Moving

Train location

At platform Not Aligned

Controller

Feedback

Contro

Rigorous UCA Method

- Identify Unsafe Control Actions
 - Select a Source
 - Select a Control Action
 - Create Process Model
 - Define potential contexts
 - Identify Type 1 UCAs: <source + control action + context>
 - Consider timing
 - Identify Type 2 UCAs: <source + control <u>inaction</u> + context>

Example: Train door controller

System Hazards

- H-1: Doors close on a person in the doorway
- H-2: Doors open when the train is moving or not at platform
- H-3: Passengers/staff are unable to exit during an emergency

Example: Control loop

Process

– Identify Type 2 UCAs: <source + control <u>inaction</u> + context>

- Source + Control action
 - Controller provides door open command
- Define controller's process model
 - Define potential contexts (combinations of process model values)

Control Action	Train Motion	Emergency	Train Position	Door Obstruction	Door Position
Door open command	Stopped	No	Aligned with platform	Not obstructed	Closed
Door open command	Stopped	No	Aligned with platform	Not obstructed	Open
Door open command	Stopped	Yes	Aligned with platform	Obstructed	Closed
•••	•••	•••	•••	•••	•••

- Source + Control action
 - Controller provides door open command
- Define controller's process model
 - Define potential contexts (combinations of process model values)
 - Identify Type 1 UCAs: <source + control action + context>

Control Action	Train Motion	Emergency	Train Position	Door Obst. / Position	Hazardous?
Door open command	Moving	No	(doesn't matter)	(doesn't matter)	Yes
Door open command	Moving	Yes	(doesn't matter)	(doesn't matter)	Yes*
Door open command	Stopped	Yes	(doesn't matter)	(doesn't matter)	Νο
Door open command	Stopped	No	Not at platform	(doesn't matter)	Yes
Door open command	Stopped	No	At platform	(doesn't matter)	Νο

*Design decision: In this situation, evacuate passengers to other cars. Meanwhile, stop the train and then open doors. © 2013 John Thomas and Nancy Leveson. All rights reserved.

- Source + Control action
 - Controller provides door open command
- Define controller's process model
- Define potential contexts (combinations of process model values)
 - Identify Type 1 UCAs: <source + control action + context>

Consider timing

Control Action	Train Motion	Emergency	Train Position	Door Obst. / Position	Hazardous ?	Hazardous if provided too early?	Hazadous if provided too late?
Door open command	Moving	No	(doesn't matter)	(doesn't matter)	Yes	Yes	Yes
Door open command	Moving	Yes	(doesn't matter)	(doesn't matter)	Yes*	Yes*	Yes*
Door open command	Stopped	Yes	(doesn't matter)	(doesn't matter)	No	No	Yes
Door open command	Stopped	No	Not at platform	(doesn't matter)	Yes	Yes	Yes
Door open command	Stopped	No	At platform	(doesn't matter)	Νο	Νο	No 13

Process

- Source + Control action
 - Controller provides door open command
- Define controller's process model
- Define potential contexts (combinations of process model values)
- Identify Type 1 UCAs: <source + control action + context>
 - Consider timing

Identify Type 2 UCAs: <source + control <u>inaction</u> + context>

Control Action	Train Motion	Emergency	Train Position	Door Obst. / Pos.	Hazardous?
Door open command not provided	Stopped	Yes	(doesn't matter)	(doesn't matter)	Yes
Door open command not provided	Stopped	(doesn't matter)	(doesn't matter)	Closing on obstruction	Yes
Door open command not provided	(all others)			No	

Process

Resulting List of Unsafe Control Actions

Unsafe Control Actions

UCA 1: Door open command provided while train is moving and there is no emergency

UCA 2: Door open command provided too late while train is stopped and emergency exists

UCA 3: Door open command provided while train is stopped, no emergency, and not at platform

UCA 4: Door open command provided while train is moving and emergency exists

UCA 5: Door open command <u>not</u> provided while train is stopped and emergency exists

UCA 6: Door open command not provided while doors are closing on someone

Parts of this can be automated!

Conversion to Safety Constraints

Unsafe Control Actions	Safety Constraints
UCA 1: Door open command provided while train is moving and there is no emergency	SC 1: Door must <u>not</u> be opened while train is moving and there is no emergency
UCA 2: Door open command provided too late while train is stopped and emergency exists	SC 2: Door must <u>not</u> be opened while train is stopped and emergency exists
UCA 3: Door open command provided while train is stopped, no emergency, and not at platform	SC 3: Door must <u>not</u> be opened while train is stopped, no emergency, and not at platform
UCA 4: Door open command provided while train is moving and emergency exists	SC 4: Door must <u>not</u> be opened while train is moving and emergency exists
UCA 5: Door open command <u>not</u> provided while train is stopped and emergency exists	SC 5: Door must be opened while train is stopped and emergency exists
UCA 6: Door open command <u>not</u> provided while doors are closing on someone	SC 6: Door must be opened while doors are closing on someone

© 2013 J

STPA Exercise

a new in-trail procedure for trans-oceanic flights

Accident (Loss): Two aircraft collide Hazard: Two aircraft violate minimum separation

STPA Analysis

 More complex control structure

Image: Public Domain. Figure 7: Safety Control Structure for ATSA-ITP. Fleming, Cody Harrison, Melissa Spencer, Nancy Leveson et al. "Safety Assurance in NextGen." March 2012. NASA/CR-2012-217553.

STPA Analysis: Identify Unsafe Control Actions

Flight Crew Action (Role)	Action required but not provided	Unsafe action provided*	Incorrect Timing/ Order	Stopped Too Soon
Execute passing maneuver	Pilot does not execute maneuver (aircraft remains In-Trail)	Perform ITP when ITP criteria are not met Perform ITP when request has been refused	Crew starts maneuver late after having re- verified ITP criteria Pilot throttles before achieving necessary altitude	Crew does not complete entire maneuver e.g. Aircraft does not achieve necessary altitude or speed

Apply rigorous method...

Structure of an Unsafe Control Action

- Source?
 - Pilot
- Control Action?
 - Execute Maneuver
- Context?
 - <create process model>

© 2013 John Thomas and Nancy Leveson. All rights reserved.

Controller

Feedback

Contro

Actions

Process

Identify Type 2 UCAs: <source + control inaction + context>

- Source + Control action
 - Pilot executes maneuver
- Define controller's process model
 - Define potential contexts (combinations of process model values)

Source + Control Action	Airspace Clear?	Request status
Pilot executes maneuver	Criteria met	Request approved
Pilot executes maneuver	Criteria met	Request denied
Pilot executes maneuver	Criteria met	Request not approved or denied
Pilot executes maneuver	Criteria not met	Request approved
Pilot executes maneuver	Criteria not met	Request denied
Pilot executes maneuver	Criteria not met	Request not approved or denied

- Source + Control action
 - Pilot executes maneuver
- Define controller's process model
- Define potential contexts (combinations of process model values)
 - Identify Type 1 UCAs: <source + control action + context>

Source + Control Action	Airspace clear?	Request status	Hazardous?
Pilot executes maneuver when	Criteria met	Request approved	Νο
	Criteria met	Request denied	Yes
	Criteria met	Request not approved or denied	Yes
	Criteria not met	Request approved	Yes
	Criteria not met	Request denied	Yes
	Criteria not met	Request not approved or denied	Yes 27

- Source + Control action
 - Pilot executes maneuver
- Define controller's process model
- Define potential contexts (combinations of process model values)
- Identify Type 1 UCAs: <source + control action + context>

Consider timing

Source + Control Action	Airspace clear?	Request status	Hazardous?	Hazardous if provided too early?	Hazardous if provided too late?
Pilot	Criteria met	Request approved	No	No	Yes
executes Cr maneuver Cr when Cr	Criteria met	Request denied	Yes	Yes	Yes
	Criteria met	Request not approved or denied	Yes	Yes	Yes
	Criteria not met	Request approved	Yes	Yes	Yes
	Criteria not met	Request denied	Yes	Yes	Yes
	Criteria not met	Request not approved or denied	Yes	Yes	Yes 28

 $\ensuremath{\mathbb{C}}$ 2013 John Thomas and Nancy Leveson. All rights reserved.

Source + Control Action	Airspace clear?	Request status	Hazardous?	Hazardous if provided too early?	Hazardous if provided too late?
Pilot executes maneuver when	Criteria met	Request approved	No	No	Yes
	Criteria met	Request not approved	Yes	Yes	Yes
	Criteria not met	(doesn't matter)	Yes	Yes	Yes

Table can be simplified

Process

Part 2: Control action is not provided

- Source + Control action
 - Pilot executes maneuver
- Define controller's process model
- Define potential contexts (combinations of process model values)
- Identify Type 1 UCAs: <source + control action + context>
 - Consider timing

Identify Type 2 UCAs: <source + control <u>inaction</u> + context>

Control Action	Request status	Hazardous?
Pilot does not execute ITP when	Request approved	Yes
Pilot does not execute ITP when	Request denied	Νο
Pilot does not execute ITP when	Request not approved or denied	No

Process

STPA Step 2

STPA Exercise

- Identify Hazards
- Draw the control structure
 - Identify major components and controllers
 - Label the control/feedback arrows
- Step 1: Identify Unsafe Control Actions (UCAs)
 - Control Table:
 - Not given, Given incorrectly, Wrong timing, Stopped too soon
 - Create corresponding safety constraints
- Step 2: Identify causal factors
 - Identify controller process models
 - Analyze controller, control path, feedback path, process

STPA Step 2

- Identify causal factors that violate safety constraints
 - A. Factors that cause unsafe control actions
 - B. Factors the prevent safe control actions being followed

STPA Step 2: Identify Control Flaws

STPA Step 1 output ITP Example

Unsafe Control Action	Safety Constraint
UCA 1: Pilot does not execute maneuver once it is approved	SC 1: Maneuver must be executed once it is approved
UCA 2: Pilot performs ITP when ITP criteria are not met	SC 2: Maneuver must not be performed when criteria are not met
UCA 3: Pilot starts maneuver late after having re-verified ITP criteria	SC 3: Maneuver must be started within X minutes of reverifying ITP criteria

STPA 2a: Causes of unsafe control actions

- How could this UCA be caused by:
 - Process model
 - Pilot believes request was denied
 - Pilot believes request was not approved or denied
 - Pilot believes another aircraft is blocking
 - Pilot unsure if another aircraft is blocking
 - Feedback path
 - Equipment shows other traffic in the area
 - Transmission from nearby aircraft received
 - Equipment failure
 - Other inputs
 - Approval not received
 - Rejection received instead of approval
 - Etc.

STPA Step 1 output ITP Example

Unsafe Control Action	Safety Constraint
UCA 1: Pilot does not execute maneuver once it is approved	SC 1: Maneuver must be executed once it is approved
UCA 2: Pilot performs ITP when ITP criteria are not met	SC 2: Maneuver must not be performed when criteria are not met
UCA 3: Pilot starts maneuver late after having re-verified ITP criteria	SC 3: Maneuver must be started within X minutes of reverifying ITP criteria

STPA 2b: Safe control action not implemented

- Control action not followed:
 - Control Path
 - Equipment failure
 - Actuator does not execute command
 - Control action delayed
 - Controlled process
 - In wrong mode, ignores control action
 - Responds to control action in unsafe way
 - Receives conflicting commands from other controllers, ignores one or both
 - Physical failures

– Etc.

16.63J / ESD.03J System Safety Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.