Traditional Safety Analysis

Quantitative Methods

Agenda

- Last time: Qualitative methods
 - FMEA
 - FTA
 - Limitations
- Today
 - More Qualitative methods
 - ETA
 - HAZOP
 - Quantitative methods
 - FMECA
 - FTA
 - ETA
 - PRA
 - Limitations

Event Tree Analysis

Event Tree Analysis

1967: Nuclear power stations

- Forward search technique
 - *Initiating event*: component failure (e.g. pipe rupture)
 - *Goal*: Identify all possible outcomes

Event Tree Analysis: Process

- Identify initiating event
- 2. Identify barriers
- 3. Create tree
- 4. Identify outcomes

Event Tree Example

ETA uses an accident model

Accident model: Chain-of-events

Event Tree Analysis: Exercise

Elevator

- 1. Identify initiating event
 - Cable breaks
- 2. List Barriers
- 3. Create Tree
- 4. Identify outcomes

© 2013 John Thomas and Nancy Leveson. All rights reserved.

Image : Public Domain. USMSHA.

Event Tree Analysis: Exercise

Images removed due to copyright restrictions. See: http://science.howstuff works.com/science-vs-myth/everyday-myths/question730.htm

What are the barriers?

Event Tree Analysis: Strengths

- Handles ordering of events better than fault trees
- Most practical when events can be ordered in time (chronology of events is stable)
- Most practical when **events are independent** of each other.
- Designed for use with protection systems (barriers)

Event Tree Analysis: Limitations

- Not practical when chronology of events is not stable (e.g. when order of columns may change)
- Difficult to analyze **non-protection systems**
- Can become exceedingly complex and require simplification
- Separate trees required for each initiating event
 - Difficult to represent interactions among events
 - Difficult to consider effects of multiple initiating events

Event Tree Analysis: Limitations (cont)

- Can be difficult to define functions across top of event tree and their order
- Requires ability to define set of initiating events that will produce all important accident sequences
- Most applicable to systems where:
 - All risk is associated with one hazard
 - (e.g. overheating of fuel)
 - Designs are fairly standard, very little change over time
 - Large reliance on protection and shutdown systems

HAZOP Hazard and Operability Analysis

HAZOP: Hazards and Operability Analysis

- Developed by Imperial Chemical Industries in early 1960s
- Not only for safety, but efficient operations

Accident model:

- Accidents caused by chain of failure events (finally!)
- Accidents caused by deviations from design/operating intentions

HAZOP

- Guidewords applied to variables of interest
 - E.g. flow, temperature, pressure, tank levels, etc.
- Team considers potential causes and effects
 - **Questions** generated from guidewords
 - Could there be no flow?
 - If so, how?
 - How will operators know there is no flow?
 - Are consequences hazardous or cause inefficiency?

HAZOP: Generate the right questions, not just fill in a tree

HAZOP Process

Guidewords	Meaning	
NO, NOT, NONE	The intended result is not achieved, but nothing else happens (such as no forward flow when there should be)	
MORE	More of any relevant property than there should be (such as higher pressure, higher temperature, higher flow, or higher viscosity)	
LESS	Less of a relevant physical property than there should be	Figu
AS WELL AS	An activity occurs in addition to what was intended, or more components are present in the system than there should be (such as extra vapors or solids or impurities, including air, water, acids, corrosive products)	Grigh
PART OF	Only some of the design intentions are achieved (such as only one of two components in a mixture)	
REVERSE	The logical opposite of what was intended occurs (such as backflow instead of forward flow)	
OTHER THAN	No part of the intended result is achieved, and something completely different happens (such as the flow of the wrong material)	

Figure removed due to copyright restrictions. See: Leveson, Nancy. *GUZYk UfY. GnghYa `GUZYhm`UbX`7ca di hYfg*. Addison-Wesley Professional, 1995. pp. 337.

HAZOP Strengths

- Considers more than failure accidents
- Can identify **new hazards**
 - Not limited to previously identified hazards
- Easy to apply
 - A simple method that can uncover complex accidents
- Applicable to new designs and new design features
- Performed by diverse study team, facilitator
 - Method defines team composition, roles
 - Encourages cross-fertilization of different disciplines

HAZOP Limitations

- Requires **detailed plant information**
 - Flowsheets, piping and instrumentation diagrams, plant layout, etc.
 - Tends to result in protective devices rather than real design changes
- Developed/intended for **chemical industry**
- Labor-intensive
 - Significant time and effort due to search pattern
- Relies very heavily on judgment of engineers
- May leave out hazards caused by **stable factors**
- Unusual to consider deviations for systemic factors
 - E.g. organizational, managerial factors, management systems, etc.
- Difficult to apply to **software**
- Human behavior reduces to compliance/deviation from procedures

– Ignores why it made sense to do the wrong thing © 2013 John Thomas and Nancy Leveson. All rights reserved.

Quantitative Methods

Quantitative methods

- How do you include numbers and math?
 What do you quantify?
- Tends to focus on two parameters
 - Severity
 - Probability
- Seems intuitive to multiply:
 Risk = Severity * Likelihood

Quantitative methods

- The math is usually based on probability theory and statistics
- Common assumptions
 - Behavior is random
 - Each behavior independent

Quantitative methods

- The math is usually based on probability theory and statistics
- Common assumptions
 - Behavior is random
 - Each behavior independent

Risk Matrix

Based on common idea:
 Risk = Severity * Likelihood

Risk Matrix

Based on common idea:
 Risk = Severity * Likelihood

Uses expected values (averages)

σ	Very Likely	Low Med	Medium	Med Hi	High	High
00	Likely	Low	Low Med	Medium	Med Hi	High
li H	Possible	Low	Low Med	Medium	Med Hi	Med Hi
Ke	Unlikely	Low	Low Med	Low Med	Medium	Med Hi
·	Rare	Low	Low	Low Med	Medium	Medium
		Negligible	Minor	Moderate	Significant	Severe

Expected Value Fallacy aka P-value Fallacy aka Flaw of Averages aka Jensen's Law

 Beware when averages are used to simplify the problem!

- Can make adverse decisions appear correct

Expected Value Fallacy

Image by MIT OpenCourseWare.

Ordinal Values

- Severity is usually ordinal
 - Only guarantees ordering along increasing severity
 - Distance between levels not comparable
- Ordinal multiplication can result in reversals
 - Multiplication assumes equal distance
 - ...and fixed 0
 - Assumes severity 4 is 2x worse than severity 2
 - A "Med Hi" result may actually be worse than "High"

Another Example Hazard Level Matrix

	A Frequent	B Probable	C Occasional	D Remote	E Improbable	F Impossible
Catastrophic I	Design action required to eliminate or control hazard 1	Design action required to eliminate or control hazard 2	Design action required to eliminate or control hazard 3	Hazard must be controlled or hazard probability reduced 4	9	12
Critical II	Design action required to eliminate or control hazard 3	Design action required to eliminate or control hazard 4	Hazard must be controlled or hazard probability reduced 6	Hazard control desirable if cost effective 7	Assume will not occur 12	Impossible occurrence 12
Marginal III	Design action required to eliminate or control hazard 5	Hazard must be controlled or hazard probability reduced 6	Hazard control desirable if cost effective 8	Normally not cost effective 10	12	12
Negligible IV	4 10	Neg 11	- gligible hazard 12	12	▼ 12	↓ 12

Hazard Level Assessment

- Not feasible for complex, human/computer controlled systems
- No way to determine likelihood for these systems
 - Software behaves exactly the same way every time
 - Not random
 - Humans adapt, and can change behavior over time
 - Adaptation is not random
 - Different humans behave differently
 - Modern systems almost always involve new designs and new technology
 - Historical data may be irrelevant
- Severity is usually adequate to determine effort to spend on eliminating or mitigating hazard.

© 2013 John Thomas and Nancy Leveson. All rights reserved.

Hazard Level or Risk Level:

FMECA Failure Modes Effects and Criticality Analysis

FMECA

• Same as FMEA, but with "criticality" information

- Criticality
 - Can be ordinal severity values
 - Can be likelihood probabilities
 - An expression of concern over the effects of failure in the system*

^{*}Vincoli, 2006, Basic Guide to System Safety

^{© 2013} John Thomas and Nancy Leveson. All rights reserved.

FMEA worksheet

Bridge crane system

© Wiley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse

	Failure Mode and Effect Analysis							
Program: Engineer:		System Date:_	1:	Facility Sheet:	Facility: Sheet:			
Component Name	Failure Modes	Failure Mechanisms	Failure effects (local)	Failure effects (system)	Criticality Level			
Main hoist motor	Inoperative, does not move	Defective bearings Loss of power	Main hoist cannot be raised. Brake will hold hoist stationary	Load held stationary, cannot be raised or lowered.	(5) High, customers dissatisfied			
		Broken springs						

*FMEA example adapted from (Vincoli, 2006)

Severity Level Examples

Rating	Meaning
1	No effect
2	Very minor (only noticed by discriminating customers)
3	Minor (affects very little of the system, noticed by average customer)
4	Moderate (most customers are annoyed)
5	High (causes a loss of primary function; customers are dissatisfied)
6	Very high and hazardous (product becomes inoperative; customers angered; the failure may result unsafe operation and possible injury)

Severity Level Examples

Rating	Severity of Effect
10	Safety issue and/or non-compliance with government regulation without warning.
9	Safety issue and/or non-compliance with government regulation with warning.
8	Loss of primary function.
7	Reduction of primary function.
6	Loss of comfort/convenience function.
5	Reduction of comfort/convenience function.
4	Returnable appearance and/or noise issue noticed by most customers.
3	Non-returnable appearance and/or noise issue noticed by customers.
2	Non-returnable appearance and/or noise issue rarely noticed by customers.
1	No discernable effect.

*http://www.harpcosystems.com/Design-FMEA-Ratings-PartI.htm

/iley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse

	Failure Mode and Effect Analysis							
Program: Engineer:		System Date:_	Facility: Sheet:					
Component Name	Failure Modes	Failure Mechanisms	Failure effects (local)	Failure effects (system)	Probability of occurrence			
Main hoist motor	Inoperative, does not move	Defective bearings Loss of power	Main hoist cannot be raised. Brake will hold hoist stationary	Load held stationary, cannot be raised or lowered.	0.001 per operational hour			
		Broken springs						

*FMEA example adapted from (Vincoli, 2006) © 2013 John Thomas and Nancy Leveson. All rights reserved.

Quantitative FTA

- If we can assign probabilities to lowest boxes...
 - Can propagate up using probability theory
 - Can get overall total probability of hazard!
- AND gate
 - P(A and B) = P(A) * P(B)
- OR gate
 - P(A or B) = P(A) + P(B)

Any assumptions being made?

- If we can assign probabilities to lowest boxes...
 - Can propagate up using probability theory
 - Can get overall total probability of hazard!
- AND gate - P(A and B) = P(A) * P(B) OR gate
 - P(A or B) = P(A) + P(B)

Only if events A,B are independent!

- Is independence a good assumption?
 - Hardware?
 - Software?
 - Humans?

Fault trees removed due to copyright restrictions. See RTCA DO-312 Safety, Performance and Interoperability Requirements Document for the In-Trail Procedure in the Oceanic Airspace (ATSA-ITP) Application http://www.rtca.org/store_product.asp?prodid=1095.

- Where do the probabilities come from?
 - Historical data
 - Simulations
 - Expert judgment

Are there any issues using these sources?

Qualitative Frequency and Relation to Quantitative Probability for Basic Causes					
Qualitative Frequency	Qualitative Probability				
Very Often	1E-01 to 1E-02				
Often	1E-02 to 1E-03				
Rare	1E-03 to 1E-04				
Very Rare	Less than 1E-04				

Image by MIT OpenCourseWare. Based on qualitative-quantitative conversion from RTCA DO-312.

Quantitative ETA

Quantitative Event Tree Analysis

Quantitative Event Tree Analysis									
ОН	Barrier 1a	Barrier 1b	Barrier 1c	Barrier 1d	Barrier 2	Barrier 3	OE Sev.	Effects	Pe
	0.993116 A						5	No safety effect	
OH 2U-7		0.987384 B					4	Loss of separation 5 < x < 10 NM	6.80E-03 X&B
	6.88E-03 X		0.992699 C				3	Significant reduction in separation 1 < x < 5 NM	8.62E-05 X&C&C
		1.26E-02 Y		0.93577236 D	0.90 E	0.80 F	2	Large reduction in safety margins x < 1 NM	6.21E-07 X&Y&Z& (D or E or F)
			7.30E-03 Z						
				5.36E-02 V	0.10 W	0.20 S	1	Near mid-air collision/collision	6.80E-10 X&Y&Z& V&W&S

Image by MIT OpenCourseWare. Based on event tree from RTCA DO-312.

- Quantify p(success) for each barrier
- Limitations
 - P(success) may not be random
 - May not be independent
 - May depend on order of events and context
 - Ex: Fukushima

PRA Probabilistic Risk Assessment

Probabilistic Risk Assessment

- Based on chain-of-events model
 - Usually concentrates on failure events
- Combines event trees and fault trees
 - 1975 : WASH-1400 NRC report
 - Fault trees were too complex
 - Used event trees to identify specific events to model with fault trees
- Usually assumes independence between events
- Events chosen will affect accuracy, but usually arbitrary (subjective)

Risk Measurement

- Risk = f (likelihood, severity)
- Impossible to measure risk accurately
- Instead use risk assessment
 - Accuracy of such assessments is controversial

"To avoid paralysis resulting from waiting for definitive data, we assume we have greater knowledge than scientists actually possess and make decisions based on those assumptions." William Ruckleshaus

- Cannot evaluate probability of very rare events directly
- So use models of the interaction of events that can lead to an accident

Risk Modeling

- In practice, models only include events that can be measured.
- Most causal factors involved in major accidents are unmeasurable.
 - Unmeasurable factors tend to be ignored or forgotten
- Can we measure software? (what does it mean to measure "design")?

"Risk assessment data can be like the captured spy; if you torture it long enough, it will tell you anything you want to know,"

William Ruckleshaus

Misinterpreting Risk

Risk assessments can easily be misinterpreted:

Fukushima

Power plants heavily based on probabilistic risk assessments

- Despite the reaction, probability theory is not really "safe" or "unsafe"
 - It just has certain limitations

16.63J / ESD.03J System Safety Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.