

Fundamentals of Systems Engineering

Prof. Olivier L. de Weck

Session 12 Future of Systems Engineering

The "V-Model" of Systems Engineering

16.842/ENG-421 Fundamentals of Systems Engineering

Numbers indicate the session # in this class

Status quo approach for managing complexity in SE

Undesirable interactions (thermal, vibrations, EMI)

Change Request Generation Patterns

© Olivier de Weck, December 2015,

Historical schedule trends with complexity

DARPA META Approach to 5x acceleration of SE

A bitstream-programmable, "foundry-style" factory

This image is in the public domain.

Vensim Model of META (5x) Process

Simulation Case	Schedule to complete	NRE \$ to complete
Idealistic Project	42.25 months	\$27.9M
Realistic Project w/changes	70 months	\$51.9M
META-enabled project	15.75 months	\$31.5M

Simulation Assumptions: All: Schedule Pressure = 1.5 META: 3-layers of abstraction (CB=9) META: C2M2L library coverage: 50% META: Novelty: 50% META: C2M2L library integrity: 80% Problems caught early: 70%

Key Result:

META speedup factor = 70/16=4.4

Confirmed that META speedup of 5x is possible but cost reduction is only 1.5 x !

META-Enablers Sensitivity Analysis is very revealing !

Increasing Layers of Abstraction from 2 → 3 significantly improves schedule, there is much less benefit in going from 3 → 4 or from 3 → 5

- C2M2L Model Library Coverage (completeness) is key for both schedule and NRE
- META ability to catch problems early has big budget impact
- Schedule Pressure speeds up schedule also in META but costs more

Validation: 777 Electric Power System (EPS)

- Project Parameters from Hamilton Sundstrand:
 - 5 Years Feb 1990 (project work authorized) Jan 1995 (final qualification test complete)
 - Source control drawing was completed in 1993
 This is the complete equipment spec.
 - Number of customer requirements: ~1,500
 - Number of Change Request: ~300
 - Total number of major components: 33
 - 2 Integrated Drive Generators (IDG); 1 auxiliary generator (APU driven); 3 Generator Control Units; 1 Bus Power Control Unit; 24 Current Transformers; 2 Quick attach/detach Units
 - Ratio of systems people working CDR to people working Qualification test was 1:1.5

Approach:

- 1. Approximately simulate B777 EPS Program execution
- 2. Simulate META version of B777 EPS and see impact

DC and Flight Control Electrical Systems Schematic

Comparison of B777 EPS Program (actual vs. META)

12

Summary META (5x) Model

- We are continuing to quantify the schedule and cost impact of the proposed META Design Flow based on a sophisticated Vensim System Dynamics Model:
 - Speedup factor of 4-5 x seems feasible
 - Cost improvement is only about 1.5x (w/o cost to build and maintain C2M2L) → META will be much faster but not much cheaper !
- Most important META Design Flow Tool Chain factors are (in order)

META Factor Rank	Schedule Impact for 5x	NRE \$ Cost Impact
1. Most important	Schedule Pressure	Catch problems early
2.	Layers of Abstraction	C2M2L Library Coverage
3.	C2M2L Library Coverage	Schedule Pressure
4. Less important	Catch Problems early	C2M2L Library Integrity

- B777 Electric Power System (EPS) design project was simulated and compared actual (1990-1995) vs. predicted outcome had META been available
 - B777 EPS might have been developed in 16 months (vs. 60) with META

What is the current state of SE?

- In 2010 Dr. Mike Griffin wrote a controversial article "How do we fix Systems Engineering?":
 - Organization of characteristics of an "elegant design"
 - Current state of the art in Systems Engineering research and education and strength of academia-industry interactions

Griffin M.D., "HOW DO WE FIX SYSTEM ENGINEERING?", IAC-10.D1.5.4, 61st International Astronautical Congress, Prague, Czech Republic, 27 September – 1 October 2010

"... lacking quantitative means and effective analytical methods to deal with the various attributes of design elegance, the development of successful complex systems is today largely dependent upon the intuitive skills of good system engineers."

"Academic researchers and research teams are rarely, if ever, exposed to the actual practice of system engineering as it occurs on a major development program. Similarly, few if any successful practicing system engineers ... make a transition to academia."

This image is in the public domain.

Characteristics of an "Elegant Design"

- According to Dr. Griffin
- Workability (system produces the anticipated behavior, the expected output)
- Robustness (system should not produce radical departures from its expected behavior in response to small changes)
- Efficiency (produces the desired result for what is thought to be a lesser expenditure of resources than competing alternatives)
- Predictability (accomplishes its intended purposes while minimizing unintended actions, side effects, and consequences)

- According to Dr. de Weck
- Functional Compliance (performs the functions we desire at or above the expected level of performance)
- Simple Architecture (structural arrangement of the physical parts of form with only essential complexity)
- Minimal Lifecycle Cost (including design effort, manufacturing cost, capital expenditures, operating expenses)
- Superior Lifecycle Properties (robustness, safety, flexibility to change, maintainability, sustainability)

The main job of the systems engineer is to ensure that these properties are achieved and balanced

Importance of Illities over Time

Cumulative Number of Journal Articles published about each Illity

Source: Compendex and Inspec, analysis by O. de Weck, July 2010

Epoch of Complex Systems

Epoch of Engineering Systems

Epoch of Great Inventions

Relationships amongst the Illities

Source: Google keyword 2-tupel correlation analysis, July 2010

Trends in SE: "Utopia" in 2035

- We design systems with only essential complexity and they don't fail unexpectedly
 - "accidents" may not be preventable altogether but they may be predictable and humans can get out of harms way
- The Technical, Process and Social Layers of the system are co-designed and in harmony with each other
- All system designs are essentially "elegant" and tradeoffs between lifecycle properties are made deliberately
 - Value maximizing sustainable designs are the norm, not the exception
- Projects don't overrun their budgets because rework is eliminated or iterations are included in realistic plans that are accepted by all
- There is a "Nobel Prize" awarded for Systems Engineering or Systems Science
- The 1st, 2nd, 3rd. Law of systems science and engineering is well established and widely accepted (similar to thermodynamics)

SE Vision 2025

Available online at http://www.incose.org/AboutSE/sevision

Final Words

Thank you for your attention this semester !

Consider <u>submitting a manuscript</u> to the INCOSE Wiley Journal Systems Engineering

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1520-6858

MIT OpenCourseWare http://ocw.mit.edu

16.842 Fundamentals of Systems Engineering Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.