Systems Theory

- Developed for biology (von Bertalanffy) and engineering (Norbert Wiener)
- Basis of system engineering and system safety (ICBMs of 1950s)
- Focuses on systems taken as a whole, not on parts taken separate
 - Some properties can only be treated adequately in their entirety, taking into account all social and technical aspects
 - These properties derive from relationships among the parts of the system

How they interact and fit together

Hierarchy and Emergence

- Complex systems can be modeled as a hierarchy of organizational levels
 - Each level more complex than one below
 - Levels characterized by emergent properties
 - Irreducible
 - Represent constraints on the degree of freedom of components at lower level
- Safety is an emergent system property
 - It is NOT a component property
 - It can only be analyzed in the context of the whole

SYSTEM DEVELOPMENT

SYSTEM OPERATIONS

Communication and Control

- Hierarchies characterized by control processes working at the interfaces between levels
- A control action imposes constraints upon the activity at a lower level of the hierarchy
- Systems are viewed as interrelated components kept in a state of dynamic equilibrium by feedback loops of information and control
- Control in open systems implies need for communication

Control processes operate between levels of control

Process models must contain:
Required relationship among process variables

- Current state (values of process variables
- The ways the process can change state

Relationship Between Safety and Process Models

- Accidents occur when models do not match process and
 - Required control commands are not given
 - Incorrect (unsafe) ones are given
 - Correct commands given at wrong time (too early, too late)
 - Control stops too soon
- (Note the relationship to component interaction accidents)

Explains software errors, human errors, component interaction accidents ...

System's Theoretic View of Safety

- Safety is an emergent system property
 - Accidents arise from interactions among system components (human, physical, social)
 - That violate the constraints on safe component behavior and interactions
- Losses are the result of complex processes, not simply chains of failure events
- Most major accidents arise from a slow migration of the entire system toward a state of high-risk
- Based on systems theory rather than reliability theory

STAMP

- Treat safety as a dynamic control problem rather than a component failure problem.
 - O-ring did not control propellant gas release by sealing gap in field joint of Challenger Space Shuttle
 - Software did not adequately control descent speed of Mars Polar Lander
 - Temperature in batch reactor not adequately controlled in system design
 - Public health system did not adequately control contamination of the milk supply with melamine
 - Financial system did not adequately control the use of financial instruments
- Events are the <u>result</u> of the inadequate control
 - Result from lack of enforcement of safety constraints in system design and operations

STAMP (3)

• A change in emphasis:

"prevent failures"

"enforce safety constraints on system behavior"

- Losses are the result of complex dynamic processes, not simply chains of failure events
- Most major accidents arise from a slow migration of the entire system toward a state of high-risk
 - Need to control and detect this migration

Summary: Accident Causality

- Accidents occur when
 - Control structure or control actions do not enforce safety constraints
 - Unhandled environmental disturbances or conditions
 - Unhandled or uncontrolled component failures
 - Dysfunctional (unsafe) interactions among components
 - Control actions inadequately coordinated among multiple controllers
 - Control structure degrades over time (asynchronous evolution)

Uncoordinated "Control Agents"

Uses for STAMP

- More comprehensive accident/incident investigation and root cause analysis
- Basis for new, more powerful hazard analysis techniques (STPA)
- Safety-driven design (physical, operational, organizational))
 - Can integrate safety into the system engineering process
 - Assists in design of human-system interaction and interfaces
- Organizational and cultural risk analysis
 - Identifying physical and project risks
 - Defining safety metrics and performance audits
 - Designing and evaluating potential policy and structural improvements
 - Identifying leading indicators of increasing risk ("canary in the coal mine")

Does it work? Is it practical?

Technical

- Safety analysis of new missile defense system (MDA)
- Safety-driven design of new JPL outer planets explorer
- Safety analysis of the JAXA HTV (unmanned cargo spacecraft to ISS)
- Incorporating risk into early trade studies (NASA Constellation)
- Orion (Space Shuttle replacement)
- Safety of maglev trains (Japan Central Railway)
- NextGen (for NASA, just starting)
- Accident/incident analysis (aircraft, petrochemical plants, air traffic control, railway accident, ...)

Does it work? Is it practical?

Social and Managerial

- Analysis of the management structure of the space shuttle program (post-Columbia)
- Risk management in the development of NASA's new manned space program (Constellation)
- NASA Mission control re-planning and changing mission control procedures safely
- Food safety
- Safety in pharmaceutical drug development
- Risk analysis of outpatient GI surgery at Beth Israel Deaconess Hospital
- Analysis and prevention of corporate fraud

16.863J / ESD.863J System Safety Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.