Propulsion Systems

Major US Airline Year 2000 Operating Costs

"Other" includes contracted services, asset write-downs, other non-recurring items

777-200ER/PW4090 \$0.75/gal Fuel Price

Thrust Sizing Requirements

- Number of Engines
- Aircraft Max Take Off Gross Weight
- Take Off Field Length
- Time to Climb
- Cruise Altitude and Mach Number
- Lift to Drag of Wing
- Aircraft Potential Growth

<u>Thrust</u> = (Velocity of exhaust - velocity of aircraft) Mass

Overall engine efficiency = η thermal X η propulsive

Overall Engine Efficiency Includes Two Processes: Energy Conversion and Thrust Production

 η overall = η thermal X η propulsive

Thermal efficiency measures the process of converting chemical energy of the fuel into energy available for propulsion

- Function of overall pressure ratio and component efficiencies -

h

s

Current engines at 40:1 overall pressure ratio

Future engines at 60:1 overall pressure ratio

Propulsive efficiency measures the process of converting energy available for propulsion into useful propulsive power

Lower specific thrust is fundamental to improving fuel economy

Commercial Turbofan

