F/A-18A/B/C/D Flight Control Computer' Software Upgrade

Military Aircraft System Verification and Validation MIT 16.885J/ESD.35J Fall 2004

CDR Paul Sohl Commanding Officer United States Naval Test Pilot School

- US Navy Acquisition Process Overview
- F/A-18 Aircraft Overview
- Flight Control Law Software Upgrade Program
 - Requirements
 - Constraints and Challenges
 - Results
- Conclusions

System Development & Demonstration Phase

System Integration

System Demonstration

Critical Design Review

System Integration

- Enter: PM has technical solution but has not integrated subsystems into complete system
- Activities: System Integration of demonstrated subsystems and components. Reduction of integration risk

Exit: Demonstration of prototypes in relevant environment

System Demonstration

Enter: Prototypes demonstrated in intended environment

• Activities: Complete development. DT/OT/LFT&E <u>Exit</u>: System demonstration in intended environment using engineering development models; meets validated requirements

System Development & Demonstration Phase

Purpose:

- To develop a system
- Reduce program risk
- Ensure operational supportability
- Ensure design for producibility
- Assure affordability
- Demonstrate system integration, interoperability, and utility

- <u>Purpose</u>: Integrate subsystems reduce systems-level risk
- Key Activities:
 - Demonstrate prototype articles
 - Conduct an Early Operational Assessment (EOA)
 - Prepare for Critical Design Review (CDR)
 - Prepare RFP for next effort/phase

System Demonstration

• <u>Purpose</u>: Demonstrate the ability of the system to operate in a useful way consistent with the validated KPPs.

Key Activities

- Conduct extensive testing: developmental, operational, and survivability/lethality testing, as appropriate
- Conduct technical reviews, as appropriate
- Demonstrate system in its intended environment
- Prepare RFP for Low Rate Initial Production
- Prepare for Milestone C
- Update: Information requirements

Summary: System Development & Demonstration Phase

- May consist of System Integration and System Demonstration depending on:
 - technology maturity
 - affordability
- System demonstrated in the intended environment; meets validated requirements; industrial capability available; meets exit criteria
- Manufacturing risk low
 <u>Bottom Line</u>: System ready to begin LRIP?

F/A-18A/B/C/D "Hornet"

- Supersonic, Multi-role, Combat Aircraft
 - Introduced to fleet in 1983
- Relevant Design Features
 - "Fly-by-wire" Flight Controls
 - Twin Vertical Stabilizers
 - Leading Edge Extension (LEX)
 - Two Turbofan Engines
- SuperHornet (E/F Models)
 - Introduced to fleet in 2001

Flight Control System

- Two Digital Flight Control Computers (FCC)
 - Four separate channels
- Control Augmentation System
 - Augments basic airframe stability
 - Gains scheduled to enhance flying qualities
 - Provides departure resistance
 - Provides protection against overstress
 - Actively controls structural mode interaction

Program Origin

- Need to upgrade the FCC software
 - Mishap Prevention
 - Suppress out of control flight modes
 - Improve departure resistance
 - Improve maneuverability at high AOA
 - Improve roll performance above 30° AOA
 - Implement "Pirouette" Feature

The Main Problem

XXXXXXXXXX XXXXXXXXX Twenty F/A-18 aircraft lost due to Out-of-Control flight

The Main Problem

Sustained Out of Control Flight Motion Following Nose-High, Banked, Zero Airspeed Flight

Eventual Recovery -Significant Altitude Loss

Loss of Aircraft

F/A-18 Out of Control Flight Modes

• Departure

- Aircraft no longer responding to pilot commands
- Post Departure Gyrations
 - Random oscillations (AOA, Airspeed, Sideforces)
- Fully Sustained OOCF Modes
 - Falling Leaf Modes
 - Spin Modes

Departure From Controlled Flight

- Inverted

Spin Modes

- Upright

- Inverted

Departure Resistance

The Usual Cause of a Departure:

Roll or yaw due to sideslip (β) overcomes control surface authority

Key to Controlled Flight:

Minimize β with control surfaces "Sideslip is the root of all evil"

 β = Sideslip =

Another Reason for Sideslip Control

Roll (Coupled) Departure

- \$15 Million dollars
- Program Timeline
 - Improved control laws developed (1988-90)
 - Baseline design used in SuperHornet (1993)
 - SuperHornet Developmental Test (1995-99)
 - "Heritage Hornet" upgrade proposed (2000)
 - New Control Law Developmental Test (2001-02)
 - Release to Fleet (June 2003)

Control sideslip buildup

Add sideslip rate (β) feedback
Enhance sideslip (β) feedback

Generate additional yaw rate

Use Adverse Yaw to our advantage
Command opposite differential-stabilator

Sideslip Control at High AOA

At low AOA...

Yawing motion produces sideslip Rudder deflection controls sideslip

At high AOA...

Rolling motion produces sideslip Rolling surfaces control sideslip

Design Process

- Implement E/F High AOA Architecture
- Adapt for A/B/C/D Architecture
- Tailor Gains to A/B/C/D Aerodynamics
- USN/Contractor Test Team Involvement
 - Integrated Test Team Philosophy
 - Team Members able to review all documentation

Program Constraints

- No hardware changes
 - FCC software changes ONLY
- No software changes to Mission Computer
- No changes to Air Data System
 - No modification to AOA Probes
 - No provision for Sideslip Probe

Program Challenges

- High Risk Flight Test
 - Intentional Out of Control Flight Maneuvers
 - Tailslides
 - Spins
 - Aggravated Inputs
 - Risk Mitigation
 - Extensive Simulations and Bench Tests
 - Spin Chute Study

Program Challenges

- No direct measurement of Sideslip
 - Must develop software to estimate Sideslip
- AOA Probe Range = -14° to 35° AOA
 Need to estimate AOA above 35° degrees
 - AOA estimate required to generate the new feedback signals (Sideslip and Sideslip Rate)
 - Also needed to schedule gains at high AOA

Developmental Flight Test

- 70 flights for 100 hrs
 - Used both two-seat and single-seat aircraft
- 8 external store loadings
- Approximately 600 test points
 - -400 Rolls
 - -48 Spins
 - 63 Tailslides
 - 1v1 Operational Maneuvering
 - Aggravated Control Inputs
 - Failure Modes

Recovery from Zero Airspeed Events

Recovery from Intentional Zero-Airspeed Tailslide

Old Control Laws

Vertical Recovery

Excessive Uncontrolled Motion

New Control Laws

163:16:07:07.683

Tailslide SD120 FCC V10.6.1 Fighter Escort + Centerline Tank

Motion Not Excessive

1

Roll Performance Enhancement

Data Includes Various Aircraft Configurations

New Roll Capability at High AOA

0.4 Mach/35K

AOA=45 deg.

Lateral Stick + Pedal

