20.106J – Systems Microbiology Lecture 2 Prof. DeLong

- Reading for next week: Chapter 5 (Biol. Energy, Couscku)
- Problem Set #1 due next week
- ▶ Reading for today: Purcell, Berg, and Pace
- Related to the last lecture:
 - o Life's history on Earth Evidence
 - Phylogenetic tree
 - The same machinery for making proteins with ribosomes is used all over Earth.
 - You can map how different the ribosomal RNA is in each species on Earth.
 - In this way we can compare microbes to eukaryotes.
 - A lot of the Eukarya tree (our own tree) is dominated by microbes Archaea.
 - Chloroplast RNA falls right next to cyanobacteria on that tree
 - This supports the endosymbiont hypothesis chloroplasts derive from cyanobacteria.
 - Similarly, mitochondrial RNA falls by agrobacteria α proteobacteria.
 - Life on Earth today: the foundation
 - CO₂/O₂ cycle
- To be covered today: Structure, Function, Motility
 - The nature of being small
 - Cell membranes and cell walls
 - o Flagella
- Shape and Appearance not where the interesting stuff is regarding microbes
 - They don't bring in solid food they bring in dissolved substrates.
 - Surface area to volume:

$$\frac{SA}{V} = \frac{4\pi r^2}{\frac{4}{3}\pi r^3} = \frac{3}{r}$$

- o "Prokaryote" vs. Eukaryote
 - In eukaryotes, there are organelles and a nucleus quite a lot of communication and transport is going on.
 - In prokaryotes, transcription and translation all occur together in the cytoplasm

- However, "Prokaryote" is in quotes because it is only a negative definition – they are defined only by the lack of a membranebound nucleus.
- One group of microbes Archaea are a lot more like eukaryotes than they are like bacteria.
 - Their informational machinery RNA polymerase, promoters are more similar to those of eukaryotes.
- Hence there are Three large branches of life: Bacteria, Archaea, and Eukarya (the two-branch representation of life as prokaryote vs. eukaryote is less accurate).
- Cell membranes: phospholipid bilayer
 - Main permeability barrier
 - Embedded integral membrane proteins communication, transport
 - o Membrane structure
 - Bacteria, eukaryotes
 - Archaea
 - Archaea can still make lipid bilayers though sometimes they hook them directly together, making a lipid monolayer.
 - This is much more structurally rigid.
 - This is never found in bacteria or eukaryotes.
 - Membranes act as a protein anchor.
 - Also energy conservation protein motive force.
 - Membrane permeability to various molecules:
 - Simple transport: let a proton down the gradient in order to move things.
 - Group translocation: chemical modification of transported substance driven by phosphoenolpyruvate.
 - ABC system: periplasmic binding proteins are involved and energy comes from ATP.
 - Transport method:
 - Uniporter: one thing comes in.
 - Antiporter: one thing in, one out.
 - Symporter: two in at once.
 - o Gram-positive bacteria have one phospholipid bilayer.
 - With a thick peptidoglycan layer outside.
 - o Gram-negative bacteria have two bilayers
 - There is periplasm in between.
 - Most of the binding proteins are located here.
 - The outer membrane (lipopolysaccharide and protein)
 - Antibiotic resistance occurs here resistance thus occurs more easily in gram-negative bacteria.
 - There is a peptidoglycan layer in the middle of the periplasm, but it's very thin.
 - It forms a net-like structure, with a single molecule of peptidoglycan that acts as a nylon stocking.

- This maintains structure, shape, and integrity.
- Lipopolysaccharide chains outside can often make people sick
- In penicillin, lysozyme chews up peptidoglycan
 - Then water all rushes in, causing lysis
 - Penicillin inhibits the crosslinks
 - Therefore penicillin only works on cells that are growing
- Archea S-layers, pseudo peptidoglycan
- Motility
 - Flagella moves like a propeller in bacteria, not like a whip they're rigid
 - Video clip: *E. coli* moving with rotating flagella <u>Inertial Forces</u> $\approx \frac{a \nu \rho}{c}$ \leftarrow Fluid Density
 - $\overline{Viscous \ Forces} \approx \overline{\eta} \quad \leftarrow \text{Fluid Viscosity}$
 - The movement is dominated by viscosity
 - Clamshell hypothesis: reciprocal motion doesn't work at low Reynolds number instead it's a rotary motor
 - Proton motive force turns a ring that drives the motor
 - Flagella are hollow on the inside
 - Made of one protein: flagellin
 - It grows from the inside-out
 - Very complex
 - o Going counter-clockwise they drive the cell forward
 - Going clockwise, they fly out in a tumble
 - By changing the frequency, you get longer or shorter runs