20.106J – Systems Microbiology Lecture 3 Prof. DeLong

- ▶ Reading for today: Chapter 5 and Chapter 17 (533-555)
- Reading for next class: Chapter 6 Microbial Growth
- > For today: Bioenergetics and physiological diversity
 - Finish up chemotaxis
 - Basic modes of energy generation
 - o Thermodynamics of growth
 - Diversity in energy acquisition
- Chemotaxis
 - o Flagella rotate counterclockwise, driving the microbe forward
 - When it switches to clockwise, the flagella all fly apart change location tumble
 - To choose direction, they can't really sense space, but over time they sense the concentration of particular chemicals
 - They do this with receptors on their surface
 - Che A auto phosphorylates Che Y to cause motor to drive, in the presence of the right concentration
 - As the concentration rises over time, the cell makes a net motion along the concentration gradient
 - This is a complex feedback mechanism
 - A fully methylated receptor is not able to respond to an attractant
 - Read Chapter 8.13 in the text to understand this
 - Pili another structure that's involved in attachment and motility
- For growth and biosynthesis cells need:
 - Energy, in the form of ATP
 - Reducing power, in the form of NADH
 - $\circ~$ Basic macronutrients: C, N, P, S (nmol to mmol in the environment) $Mg^{++},\,K^{+},\,Na^{+},\,Ca^{++}$
 - o Micronutrients: Fe, Mn, B, Cr, Cu, Mo, Ni, Se, W, V, Zn
- Where do organisms get their energy?
 - Light, or chemical energy (phototrophs vs. chemotrophs)
 - Both exist in the microbial world
 - Microbial chemotrophs: chemolithotrophs (oxidize inorganic compounds) vs. chemoorganotrophs (oxidize organic compounds)
 - Microbial chemoorganotrophs can reduce elements other than oxygen. They can use Iron, or Nitrate.
 - In general, microbes are different from eukaryotes because they can oxidize and reduce a much broader variety of different chemicals

- Free energy and bioenergetics
 - For the chemical reaction $A \rightarrow B$, Gibbs Free Energy = $\Delta G = G_{\text{products}} - G_{\text{reactants}} = G_B - G_A$
 - \circ Negative ΔG : reaction releases energy, and is exergonic
 - o Positive ΔG : reaction absorbs energy, and is endergonic
 - For the reaction $aA + bB \rightleftharpoons cC + dD$,

$$\Delta G = \Delta G_o + RT \ln \frac{\left[C\right]^c \left[D\right]^d}{\left[A\right]^a \left[B\right]^b}$$

 ΔG_o is a constant called the Gibbs Standard Free Energy: you can look it up (1M, 25°C, pH 7, 1atm)

$$\circ \quad \Delta G_{o}' = -nF\Delta \varepsilon_{o}'$$

- *n* : number of electrons involved in reaction
- *F* : Faraday constant
- ε_0' : Standard reduction potential at 1M, 25°C, pH 7, and 1atm
- With these equations, you can calculate which reactions will release energy, and from this you can predict which kinds of microbes will exist
- $\circ \quad \Delta \varepsilon_{o}' = \varepsilon_{o}' \text{ (electron acceptor)} \varepsilon_{o}' \text{ (electron donor)}$

•
$$4H_2 + SO_4^= \longrightarrow S^= + 4H_2O$$

 $\Delta \varepsilon_0' = \varepsilon_0' - \varepsilon_0' = -0.21 - (-0.414) = +0.204V$
Therefore ΔG is positive, energy releasing

- $\Delta G'_o = -nF\Delta \varepsilon'_o = -8(93.67 \frac{kJ}{mol})0.204V = -152.9kJ$
- However, a 1 atm concentration of hydrogen is unrealistically high. Therefore:

$$\Delta G = \Delta G' + RT \ln \frac{[\text{products}]}{[\text{reactants}]}$$

$$\Delta G = -152.9 + (8.314 \times 10^{-3} \frac{kJ}{mol \, K} (298^{\circ} \, K)) \ln \frac{[1]^{1}}{(10^{-6})^{4} [1]^{1}}$$

$$\Delta G = -15.9$$

$$(H_{2} = 10^{-6} \, atm)$$

- Aerobic respiration: O₂ is the terminal electron acceptor
 - o Diagrams of energy production
- Modes of nutrition
 - Where does the carbon come from? (heterotrophs vs. autotrophs)
 - Where does the energy come from?
 - What molecule is the electron donor?
 - What molecule is the electron acceptor? (aerobic vs. anaerobic respiration)

- \leftarrow $CO_2 + H_2O$ $O_2 + CH_2O$ Autotrophs Heterotrophs \rightarrow
- Bacterial photosynthesis
 - Anoxygenic bacterial photosynthesis came first
 - Uses bacteriochlorophyll, not chlorophyll
 - Does not produce oxygen
 - Does not split water
 - Photoautotrophs (use CO₂) vs. photoheterotrophs (use organic compounds)
 - The Z scheme/oxygenic photosynthesis (noncyclic photosynthesis because electrons are not "recycled") vs. cyclic photosynthesis
 - o The Calvin cycle