20.106J – Systems Microbiology Lecture 4 Prof. Schauer

- ➢ Reading for today: Chapter 6 − On Growth
- Problem set due today
- Today: Growth in microorganisms it's different from in metazoans increase in number of organisms instead of size
 - Binary fission
 - Other methods:
 - Organisms that replicate their DNA many times over, than split into many parts at once
- Next week: metabolic regulation
- Binary Fission
 - Time from bacterium to bacteria is a generation
 - Generation time is how long it takes
 - o 20 minutes is a rather fast generation time. 8 minutes is the world record.
 - We look for bacteria that can replicate fast, or that can replicate in extreme conditions.
 - Cell content replicates before division.
- Fts proteins and the "divisome"
 - FtsZ aligns before division
 - The most intense signal occurs at the center edges due to the 3dimensional shape
- Peptidoglycan synthesis
 - Peptidoglycan needs to be extgended for the cell to grow
 - The balance needs to be right, so cell integrity isn't compromised
 - Antibiotics bind to DNA binding proteins like FtsI, so that those enzymes aren't available for the peptidoglycan synthesis, and the bacterium lyses. (Autolysins without autolysis)
 - The FtsZ ring leaves a scar in the cell wall, which you can see later
- Peptidoglycan structure
 - Two planes with cross-links in between. These cross-links give it its integrity
 - MreB allows a variety of shapes -- not just spheres
- Exponential Growth
 - Because bacteria undergo binary fission, they can replicate into mindboggling numbers very fast (exponential rate)
 - After two days of unregulated growth one bacterium's offspring would weigh more than the earth (assuming a 20 minute generation time)
 - o Make a logarithmic plot of change in numbers as a function of time

- Growth Parameters
 - Write out equations
 - There will be homework problems relating to this growth
 - Related growth parameters
- The growth cycle
 - Why aren't bacteria always doubling? What limits their growth?
 - They exhaust their nutrients, causing the growth curve to level off
 - Build up of toxic waste products
 - The cell has to replicate everything before it divides
 - Therefore if you move a cell from a bad medium to a good one, there's a lag before it begins to grow.
 - Stationary phase in a batch culture, for the most part things stay the same.
 - Death in bacteria, this is exponential, like growth (very important)
 - It's not clear what's going on here people have speculated.
- Total cell count
 - o Demonstration: Prof. Schauer shows the class a counting chamber
 - Grid etched on with a laser
 - Two raised ridges glass coverslip fits directly over, allowing you to measure the space between the platform and the coverslip – count through a microscope
 - The same concept and method is used for bacterial, blood cells, environmental samples, etc.
 - Problems with this method:
 - Not very precise
 - Hard to see
 - Doesn't distinguish live cells from dead ones
 - Requires phase contrast microscope to count unstained cells
 - Dilute samples must be concentrated
- Viable count
 - This is the more common method dilute sample many times over
 - Demonstration: Prof. Schauer displays samples of test tubes with successive dilutions each test tube is progressively less cloudy.
 - Then you plate the resulting tubes and wait for colonies to appear
 - You want to count a plate with between 30 and 300 cells
 - Otherwise the error becomes too high
 - Demonstration: Prof. Schauer displays agar plates resulting from each successive dilution
 - This kind of evaluation is difficult for slow-growing bacteria you have to leave the plate to grow for up to a month.
 - This method doesn't work for bacteria that can't make colonies

- These bacteria might be viable, but clump (you can use detergents to try to fix this problem)
- Some organisms don't separate, but come in chains
- o Plating methods
 - Sometimes putting the agar on top is useful, because it stops the bacteria from moving around
- Turbidity as an indirect measure
 - Light scattering off of organisms
 - Depends on morphology of organisms larger organisms scatter more light
 - You can quantify organisms by measuring the light scattering
 - Photometers
 - This is advantageous because you can still keep using the sample
- Chemostat culture
 - Instrument called a chemostat bioreactor of sorts you grow bacteria in it
 - o Open system
 - o Number of bacteria and rate of growth are kept constant
 - It enables you to control both the bacterial concentration and the doubling time.
- Cardinal temperatures: extremophiles
 - Temperature as an environmental condition controls rate and yield
 - For every organism, you can determine maximum, optimum, and minimum temperatures for growth
 - The optimum is always closer to the maximum than it is to the minimum
 - Classes of organisms
 - Some organisms can grow in up to 113°C
 - Organisms can grow anywhere that there's water
 - o Psychrophiles
 - It's very clear why organisms can't grow at very high temperatures: proteins denature, etc.
 - However, it's less clear why they can't grow in low temperatures: you lose hydrogen bonding, but that's about all that changes
 - True psychrophiles, that prefer very cold temperatures, are rare
 - Those organisms can't handle warmer temperatures therefore they live only in areas where it's cold all year round: the North and South Poles, glaciers.
 - o Hyperthermophiles
 - Most of these are archaea
 - Archaea probably originated at very high temperatures: thermal vents, magma
 - They grow in superheated, high pressure water, over 100°C

- They have positive supercoiling of DNA everything else on earth has negative-coiled DNA
- Problems with membrane stability remember, archaea have different membranes from us (eukaryotes can never grow above 50°C
- Thermophiles
 - o Important source of enzymes for biotechnology
 - Differently colored band at Yellowstone: each colored band is a different thermophile
- Extremophiles of pH and osmolarity
 - They maintain their internal cell environment
 - They don't, for example, have such low pH or such high salt concentration inside the cell as they do outside
 - Accumulate inorganic ions or make organic solutes
 - Compatible solutes
 - $\circ~$ Note: freezing is similar to dehydration: what kills cells as they freeze is the loss of H₂O as it forms into crystals
 - Demonstration: Prof. Schauer shows the class a device for creating an anaerobic atmosphere for growth
 - Toxic forms of oxygen