20.106J – Systems Microbiology Lecture 9 Prof. DeLong

- Elena & Lanski, National Review Genetics 4:457
- > Marx et al. Flux Analysis
- > For next lecture: Guest speaker Prof. Chris Marx from Harvard
 - Freezing generations of E. coli
 - Genetic material is not static it's changing all the time. While it is preserved over time, there are also evolutionary mechanisms to automatically create variability.
- > To cover today: Genetic Exchange in Bacteria
 - Homologous recombination
 - Promiscuous genetic exchange
 - o Transformation
 - Plasmids and conjugation
 - o Transposable elements
 - Transduction (virus mediated exchange)
- Three main mechanisms of gene exchange in bacteria:
 - o Transformation
 - Extracellular DNA uptake
 - This was important historically in the discovery of what DNA actually is
 - DNA that's taken up can be used in different ways
 - Conjugation
 - Bacterial mating systems
 - This often involves pili
 - o Transduction
 - Virally mediated gene exchange
- Slide: RecA mediated homologous recombination
- Slide: Tryptophan
- Slide: Transformation
 - Griffith's experiment in 1928: the rough morphotype can kill the mice in the presence of the dead smooth mophotype
 - Slide: experiment by Avery, MacLeod, and McCarthy (1944)
 - They repeated Griffith's experiment in fractions. They found that the DNA from the smooth morphotype was the essential part not the protein
 - Some species undergo transformation more easily than others.
 - Slide: the binding mechanisms involved in transformation
- Conjugation

- o Specialized pili involved, allowing the transfer of the DNA the "pilus"
- o Plasmids:
 - Extrachromosomal DNA, usually circular (the distinction is a little fuzzy these days
 - They encode the functions for the plasmid to replicate
 - When plasmids are lost it's generally because they fail to keep up with the cell's replication
 - There are high copy and low copy plasmids
 - Resistance can be placed on plasmids
 - Transposable elements and insertion elements
 - Plasmids are a conveniently plastic entity, which helps explain how bacteria can get so resistant to antibiotics so quickly.
 - F Plasmid
 - A lot of early studies made a lot of use of the F factor
 - It can incorporate itself into the cell's chromosome, creating an F' cell (the original origin of replication ends up in the middle)
 - It encodes for a sex pilus, allowing conjugation. $F \rightarrow F^+$
 - Creation of an F' strain
 - Hfr Strains
 - We can map out how long the gene transfer takes in minutes
 - High resolution Mapping using Hfr strain
- Movie: bacteriophage T4
 - Temperate phage and lysogeny
 - Phage conversion
 - o In some cases phage make cells pathogenic
 - Specialized transduction (in phage lambda)
 - Picks up genes that are flanking the pro-phage
 - Generalized transduction: sometimes the phage makes a mistake and packages the E. coli DNA instead of the phage DNA
- DNA transposition and transposons
 - o Mobile genetic elements
 - o Bacterial transposable elements
 - Transposon formation
 - Strategy for transposon mutagenesis
 - Mobile elements