20.106J – Systems Microbiology Lecture 13 Prof. DeLong

- Genome Evolution and Ecology
 - LGT and Genome Evolution
 - Genomics of Endosymbionts
 - Live inside of other organisms, thus they're protected from the outside environment
 - Environmental Genomics (Meta-genomics)
 - Looking at genomes in the environment
- Mechanisms and consequences of lateral gene transfer
 - Three methods:
 - DNA transfer by phage
 - DNA transfer by conjugation (uses pili)
 - DNA transfer by transformation
 - These methods of transfer can all speed up the rate of mutation enormously
 - Thus huge genetic variation exists among these organisms
 - Remember, only around 40% of E. coli DNA is shared among all three major E. coli strains
 - Map of genetic differences between Uropathogenic and enterohaemorrhagic E. coli
 - Transfer RNAs are a place of frequent insertions
 - o Molecular phylogenetics
 - Making Phylogenetic trees simply based on the number of sequence differences
 - Requires certain conditions:
 - You must be comparing homologous sites and homologous sequences
 - Watch for paralogous genes the result of a gene duplication within a cell, so that one form can develop a different function, inside the same organism
 - Homologous, on the other hand, implies the same gene function in different species
 - These gene phylogies can be misleading if lateral gene transfer has occurred
 - Phylogenic diagram showing lateral gene transfer
 - We can't just think about the genes that are inherited from parent cells the genes that microbes pick up from other microbes by lateral transfer is also prominent it's a way of rapidly acquiring new traits
 - It has big implications for the evolution of these organisms, particularly with antibiotic resistance.
 - Detecting horizontal transfers
 - Not all genes are easily transferred

- For example, ribosomal DNA is too complex a machinery to move around easily
 - Thus you can use ribosomal DNA to map a cell's genetic descent, ignoring lateral transfers.
- You can also detect later transfer by comparing operons conservation of gene order
- Anomalous DNA composition is also relevant if there's a block of much higher AT or GC composition, for example
- Genome Evolution in the context of natural history and the organism. We'll focus on one system that is particularly well understood the aphid.
 - They poke holes in plants and eat the flow
 - This food is very nutritionally poor mostly carbohydrates no amino acids, very little nitrogen.
 - The only reason they're able to survive this way is that they have bacterial endosymbionts that produce amino acids for them.
 - Essential amino acids there are ten amino acids that we have to get in our diet, because we can't produce them ourselves
 - Back in the 1900s, with light microscropy, scientists could see that many insect cells contain packaged organelles called bacteriomes that are just stuffed full of bacteria obligate endosymbionts
 - These endosymbionts were providing the insects with amino acids
 - o A map of co-evolution: symbiont phylogeny mirrors host phylogeny
 - This doesn't show time though
 - However, there's a fossil record for aphids, showing that it looks like aphids arose together with their sybionts around 150 million years ago
 - You can extract the DNA of these symbionts and assemble the whole genome
 - The genome is a lot smaller, since they don't have to live out in the environment
 - Somewhere around 400 kilobase pairs
 - o These Buchnera endosymbionts are derived from E. coli
 - We can reconstruct a common ancestor, which would have looked very much like E. coli
 - The gene loss must have happened very rapidly
 - This process is described in a paper by Siv Andersson
 - After 70 million years, there are no chromosomal rearrangements or gene acquisitions
 - But considerable sequence divergence does occur
 - They're changing around 2000 times faster
 - Accumulation of pseudo-genes restrict the diet of the aphids
 - The evolutionary dynamic is very different there isn't any rearrangement
 - Many fewer non-synonymous substitutions occur
 - Also very few repeats

- This sort of genome reduction can get really extreme, as long as the host relationship is stable enough
- The symbiont has lost the ability to regulate its own gene control it doesn't have the mechanisms that free-living bugs like E. coli have, so it can't make more or less amino acids depending on the diet that the aphid is on
- Another system: Baumannia and Sulcia in the Glassy-winged Shapshooter
 - The genomes are pretty similar to Buchnera
 - You have to think of the insect like an ecosystem
 - One wonders: how much are there similar things going on in out own systems?
 - For example, it looks like human genetics determines which bacteria live in our stomach and intestines, which influences obesity.