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Table and diagram of the key processes and prokaryotes in the nitrogen cycle removed due to copyright restrictions. 

See Figure 19-28 in Madigan, Michael, and John Martinko. Brock Biology of Microorganisms. 11th ed. 

Upper Saddle River, NJ: Pearson PrenticeHall, 2006. ISBN: 0131443291.
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Nitrification 
Chemolithoautotrophs (aerobic) 

• Ammonia Oxidizers (Nitrosomonas, Nitrosococcus)

• Nitrite Oxidizers (Nitrobacter, Nitrococcus) 
• Slow growing (less free energy available) 
• Enzyme ammonia monooxygenase 
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NITROGEN CYCLING IN AQUARIA
NITROGEN CYCLING IN AQUARIA

Image of fish swimming in an aquarium removed due to copyright restrictions.




http://www.hubbardbrook.org/research/ 
gallery/powerpoint/Slide2.jpg 



View from above Lake 226 divider curtain in August 1973. 
The bright green colour results from Cyanobacteria, 

which are growing on phosphorus added to the near side of the curtain.


What happen’s when you dump lots 
of phosphate in a lake ??? 

Aerial view of Lake 227 in 1994. Note the bright green color 

caused by algae stimulated by the experimental addition of 

phosphorus for the 26th consecutive year. 

Lake 305 in the background is unfertilized.


Aerial photographs removed due to copyright restrictions. 

View from above Lake 226 divider curtain in August 1973. 



ANABAENA 
http://www-biol.paisley.ac.uk/bioref/Eubacteria/Anabaena.jpg 

Courtesy of the University of Paisley Biodiversity Reference. 
Used with permission. 

Image of Microcystis removed due to copyright restrictions. 

filamentous 
MICROCYSTIS 

http://silicasecchidisk.conncoll.edu/Pics/Other cyanobacteria %20Algae/Blue_Green%20jpegs/Microcystis_Key221.jpg 

http://www-biol.paisley.ac.uk/bioref/
http://www-biol.paisley.ac.uk/bioref/Eubacteria/Anabaena.jpg
http://silicasecchidisk.conncoll.edu/Pics/Other


What happen’s when you dump lots 

N-limiting of phosphate in a lake ??? 

P-limiting 
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Nitrogen Fixation


• Diversity 
– Cyanobacteria 
– Proteobacteria 
– Archaea 
– But not all species of

same group can fix


Energetics 
Costs 16 ATP per molecule N2 ‘fixed’ 
N2 + 8H+ + 8e- + 16 MgATP ->  2NH3 + H2 + 16 MgADP + 16 Pi 
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Figure by MIT OCW.



The Global Nitrogen Cycle 
Tg=teragram =1012 g 
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The History of “Nitrogen Science”

--N becomes limiting?-
-
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*1898, Sir William Crookes, president of the British Association for the Advancement of Science 

Galloway JN and Cowling EB. 2002; Galloway et al., 2003a 



Photograph of Carl Bosch removed 
due to copyright restrictions. 

Fritz Haber (1868-1934)
1904
Began work on NH3,

First patent, 1908

Commercial-scale test, 1909

Developed Cl2 gas production, 1914

Nobel Prize in Chemistry, 1918

           -”for the synthesis of ammonia from its elements” 

Carl Bosch (1874-1940)
The perfect catalyst, 1910

Large-scale production, 1913

Ammonia to nitrate, 1914

Nobel Prize in Chemistry, 1931

           -”chemical high pressure methods” 

Smil, 2001




Haber-Bosch Process for the Production of Ammonia


Nitrogen 
from the air

Hydrogen
from natural gas

400-450oC
200 atm

iron catalyst
Nitrogen and Hydrogen

Gases are cooled and 
ammonia turns to liquid

1:3 by volume

Liquid Ammonia

Unreacted 
gases recycled

Figure by MIT OCW.



The History of Nitrogen

--Nr Creation, Haber Bosch process--
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The History of Nitrogen

--Nr Creation, People and Nature--
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Nitrogen Drivers in 1860 

Grain 
Photo of a small-scale single farmer grain field. Production 

Meat 
Photo of one cow. Production


Energy

Photo of trees in a forest. Production 

Images removed due to copyright restrictions. 



Nitrogen Drivers in 1860 & 1995


Grain 
Photo of a small-scale single farmer grain field. Photo of a massive modern grain farm. 

Production 

MeatPhoto of a large-scale modern cattle farm.Photo of one cow. 

Production


Energy

Photo of burning fuel.Photo of trees in a forest. Production 

Images removed due to copyright restrictions.




The Global Nitrogen Budget in 1860 and mid-1990s, TgN/yr


Diagram removed due to copyright restrictions.




•

Nitrogen Fixation


• Diversity 
– Cyanobacteria 
– Proteobacteria 
– Archaea 
– But not all species of

same group can fix





Energetics 
Costs 16 ATP per molecule N2 ‘fixed’ 
N2 + 8H+ + 8e- + 16 MgATP ->  2NH3 + H2 + 16 MgADP + 16 Pi 
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Figure by MIT OCW.



Images and tables removed due to copyright restrictions. 
See Figures 17-71, 17-75, 17-73, and Table 17-10 in Madigan, Michael, and John Martinko. Brock Biology 
of Microorganisms. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291. 



Nitrogen Fixation 
 
Anabaena heterocyst formation: 
• Photosynthetic cyanobacterium 
• Filamentous bacterium (chains of cells) 
• Under low-nitrogen conditions, every 10th cell becomes an 

anaerobic heterocyst  
• DNA rearrangement allows expression of heterocyst and 

nitrogenase genes: bacterial development! 
 
 

 
 
 
 
 
 
 
 
 
 

Image removed due to copyright restrictions.



Richelia 

• N2 fixing Symbiont in diatom Rhizosolenia


Image removed due to copyright restrictions. 



Teredo navalis 

Image removed due to copyright restrictions. 



Nitrogen-fixing bacteria in soya plant root nodules


Image removed due to copyright restrictions. 



Images removed due to copyright restrictions.

See Figures 19-58, 19-59, 19-61, and Table 19-8 in Madigan, Michael, and John Martinko. 

Brock Biology of Microorganisms. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.




Rhizobium 
 
• Free-living Rhizobium in soil is aerobic (no N2 fixation) 
• Specific species associate with specific legumes 
• Both partners undergoes developmental changes 

o Plant responds to bacteria by producing anaerobic nodule 
o Bacteria develop into N2-fixing anaerobic bacteroid form 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image removed due to copyright restrictions.



Rhizobium 
 
Development of the nodule 
• Root hairs of plant release flavonoids 

o Attract Rhizobium 
o Signal bacteria to make NodD (transcriptional activator) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image removed due to copyright restrictions.



Different flavinoids can either induce or inhibit nodulation
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Figure by MIT OCW.



Examples of plant-released molecules that are recognized as signals 
for induction of specific responses in various plant-associated bacteria 
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Image removed due to copyright restrictions.

See Figure 19-64 in Madigan, Michael, and John Martinko.

Brock Biology of Microorganisms. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.


Nod genes, nitrogenase genes, and host specificity genes 
are on the Sym plasmid of Rhizobium leguminosarum 



Nod genes are typically carried on a plasmid - The Sym plasmid - these can encode nod genes, 
host recognition/specificity genes, and nif (nitrogen fixation) genes.  Can confer host specificity 
by cross-transforming different rhizopbia with Sym plasmids 

Inactive NodD

Promoter Promoter
nod genes nod genes

Transcription Transcription

+
Flavonoid Active NodD

Development of the nodule:
- NodD turns on transcription of nod genes

Rhizobium

Figure by MIT OCW.



Rhizobium
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Development of the nodule:

1. nod gene products make Nod factors (polysaccharides)
2. Nod factors act as plant hormones
3. Nod factors signal root hair to curl and form an invagination called the infection thread		

Figure by MIT OCW.
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Rhizobium

Bacteria enter 
root hair

Infection thread Bacteroid

Bacteroids

NH2

NH3

Development of the nodule:
1. Bacteria lose flagella, attach to root hair and move along infection thread
2. Bacteria invade root cells
3. Root cells differentiate into nodule, bacteria differentiate into large, spherical bacteroids

Figure by MIT OCW.



Image showing bacteroids and the infection thread removed due to copyright restrictions. 



Rhizobium 
 
What happens in the nodule? 
• Bacteria leave the infection thread and are inside cells 
• Plant cell and bacteria cooperate to make leghemoglobin  

o Plant genes encode the leghemoglobin protein 
o Bacteria produce the heme group 

• Leghemoglobin binds O2 tightly 
o Maintains anaerobic environment for nitrogenase 
o Allows aerobic respiration for bacteria (obligate aerobe!) 

• Plant makes malate as carbon/energy source for bacteria 
o Used in TCA to make NADH      ETS to make ATP 

• ATP and NADH provide energy and electrons for N2  NH3 



Root nodules 

Image removed due to copyright restrictions.

See Figure 19-60 in Madigan, Michael, and John Martinko. Brock Biology of Microorganisms.

11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.




The nitrogen-fixing nodule hosts symbiotic Rhizobium bacteroids


Image removed due to copyright restrictions. 

Leghemoglobin O2:free O2 ~ 10,000 :1




Images removed due to copyright restrictions.

See Figures 19-67 and 19-55 in Madigan, Michael, and John Martinko. Brock Biology of Microorganisms.

11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.




Ti plasmid & crown gall disease

A portion of the Ti plasmid is inserted into the plant chromosome. These cells 
grow to form the tumor or gall. 

Ti plasmid
T-DNA Bacterial genome

Agrobacterium 
tumefaciens

Plant chromosomal DNA

T-DNA

Transformed plant cell

Crown gall

Figure by MIT OCW.



Ti plasmid of Agrobacterium tumefaciens


Images removed due to copyright restrictions.

See Figures 19-56 and 19-57 in Madigan, Michael, and John Martinko. Brock Biology of Microorganisms.

11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.




Image removed due to copyright
restrictions. 
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Figure by MIT OCW.



The Ti plasmid 
T-DNA transfer functions are encoded in a specific part of the plasmid. Transfer occurs by 
a mechanism almost identical to bacterial conjugation. Insert a gene into the T-DNA and 
let the mechanism of DNA transfer take over transfer into plant cells. Ti plasmids are too 
large to manipulate so a methodology to insert DNA into the T-DNA has been developed. 
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T-DNA Transfer
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Ti Plasmid

T-DNA

Tumor 
Production

Nopaline 
Synthesis

Origin of 
Replication

Figure by MIT OCW.



The use of Ti plasmids in engineering transgenic plants (GM plants)


Diagram removed due to copyright restrictions.

See Figure 31-13 in Madigan, Michael, and John Martinko. Brock Biology of Microorganisms.

11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.


Successfully used for tomatoe potato, soybean, tobacco, cotton -
Also trees, including apples & walnuts 



Creating a transgenic plant. 

Creating a transgene delivery 
system based on the Ti plasmid 

Figure by MIT OCW.
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Figure by MIT OCW.
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Segregation of the transgene 
The transgene segregates at meiosis and mitosis like any normal mendelian 
gene 
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1/2Self
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Figure by MIT OCW.



Non-plant species 
that can be genetically 
transformed by 
Agrobacterium 

Trends Genetics 22: 2006 
Doi 10.1016/j.tig.2005.10.004 

Table listing the kingdom, phylum, family, and species of non-plant species that can be genetically
transformed by Agrobacterium removed due to copyright restrictions.



GMOs - societial issues 

Photographs removed due to copyright restrictions. 

http://www.ornl.gov/sci/techresources/Human_Genome/elsi/gmfood.shtml 

http://www.ornl.gov/sci/techresources/Human_Genome/elsi/gmfood.shtml



