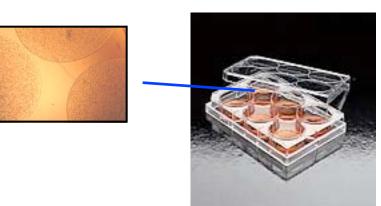

Basic Statistics; Standards in Scientific Communities I

Module 3, Lecture 3

20.109 Spring 2010

Lecture 2 review

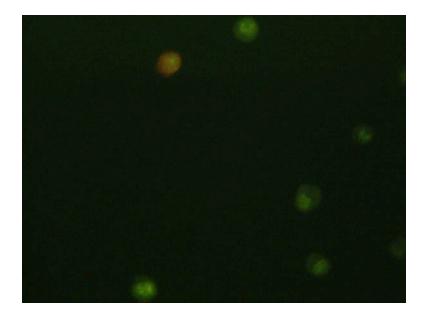
- What properties of hydrogels are advantageous for soft TE?
- What is meant by bioactivity and how can it be introduced?
- What are the two major matrix components of cartilage and how do they support tissue function?

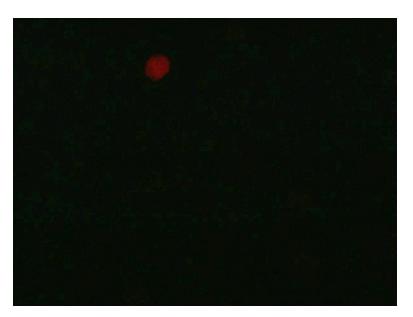


Topics for Lecture 3

- Module 3 so far, and Day 3 plan
- Introduction to statistics
 - confidence intervals
 - -t-test
- Standards in scientific communities
 - general engineering principles
 - standards in synthetic biology
 - standards in data sharing

Module progress: week 1

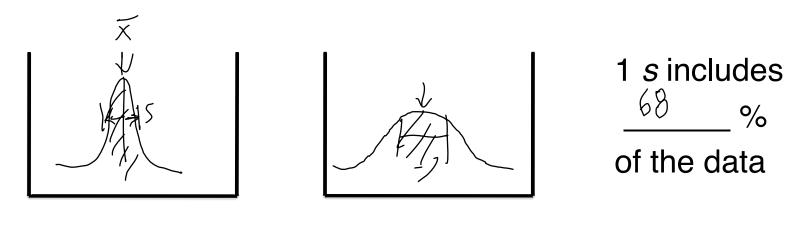

- Day 1: culture design
 - What did you test?
 - · pressure (compression)
 - · high + low pH conditions



© BD. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- Day 2: culture initiation
 - Cells receiving fresh media every 2 days

Module day 3: test cell viability

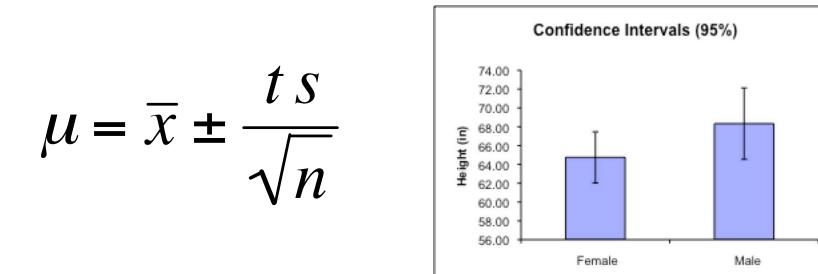


Green stain: SYTO10 = viability Red stain: ethidium = cytotoxicity } Assay readout: fluorescence

Working principle? Relative cell-permeability

Statistics review: basics

- Essential concepts: standard deviation (*s*), mean (\overline{x}) , sample size *n*, degrees of freedom *DOF*
- Normal (Gaussian) distribution



x-axis: measured value (intensity) y-axis: # of samples w/ that value

Confidence intervals (CI): principle

- $\overline{x} = 60$ (sample/measured mean)
- 95% CI calculated to be ± 3
- Thus: 95% likely that the range 60 \pm 3 contains the population (true) mean μ
 - exact definition is subtle
- 90% CI: μ= x̄ ± a where a < 3 a > 3 a = 3?
 trade-off precision + confidence
- Consider betting example
- What about n? as n?, more precise

Calculating confidence intervals (CI)

- *t* is tabulated by DOF vs Cl% -DOF = n - 1 (why? $\leq |errors = x_n - \overline{x}| = 0$ $\Rightarrow constraint$
- In Excel, us *TINV* function
 input *p*-value = (100-CI)/100

Introduction to t-test

- Every statistical test
 - has assumptions
 - asks a specific question
 - requires human interpretation
- Some t-test assumptions
 - normal distribution (cf. Mann-Whitney test)
 - equal variances (type 2 in Excel; type 3 unequal)
- · Question are male and lenale heights different at a confidence level of 9570?

Calculating t-test significance

$$t_{calc} = \frac{\overline{x_1} - \overline{x_2}}{\underset{\text{pooled}}{\text{Solut}}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \qquad \begin{array}{c} \text{DOF} = n_1 + n_2 - 2 \\ \text{table liskd by DOF us. CL} \end{array}$$

- If $t_{calc} > t_{table}$ difference *is* significant $= t_{table} + t_{calc}$.
- In Excel, us *TTEST* function
- Excel returns *p*-value \rightarrow confidence level (CL)

Assignment for report

- Get live cell count and/or live cell percent values for both culture conditions
- Calculate 95% CI for both means
- Plot means on bar graph with CI error bars
- Apply t-test to the means
 - For multiple comparisons, ANOVA is better
 - Comparing many means requires correction
 - Remember, p = 0.05 means 1 in 20 false positives!

Interlude: intersection of science and commerce

1. HeLa cells

http://www.colbertnation.com/the-colbert-report-videos/267542/ march-16-2010/rebecca-skloot (~00:30-3:00)

Patenting genes
"Judge invalidates human gene patent"
NY Times March 2010
"Metastasizing patent claims on BRCA1"
Genomics May 2010

Thinking critically about module goals

- Purpose of experiment
 - Local compare 2 culture conditions = Reflect on cell phenotype
 - Global cartilage regineration
- All well and good, but...
- Can we move beyond empiricism tissue *engineering*
- E.g., broadly useful biomaterials
 - goal: control degradability over wide range
 - "a lot of chemical calculations later, we estimated that the anhydride bond would be the right one"
 - Robert Langer, MRS Bulletin 31(2006).

Engineering principles, after D. Endy

- D. Endy, *Nature* **438**:449 (2005)
- Is biology too complex to engineer, or does it simply require key "foundational technologies"?
- Systematic vs. ad hoc approach
- Abstraction
 - software function libraries
 - copy-editor vs. editor
- Decoupling
 - architecture vs. construction
 - design vs. fabrication
- Standardization
 - screw threads, train tracks, internet protocols
 - what would we standardize to engineer biology?

Public domain image (Wikimedia Commons)

Application to synthetic biology

- D. Endy, *Nature* **438**:449 (2005)
- Synthetic biology, in brief: "programming" cells/DNA to perform desired tasks
 - artimisinin synthesis in bacteria
 - genetic circuits
- Abstraction
 - DNA \rightarrow parts \rightarrow devices \rightarrow systems
 - materials processing to avoid unruly structures
- Decoupling
 - DNA design vs. fabrication (rapid, large-scale)
- Standardization
 - Registry of Standard Biological Parts
 - standard junctions, off-the-shelf RBS, etc.

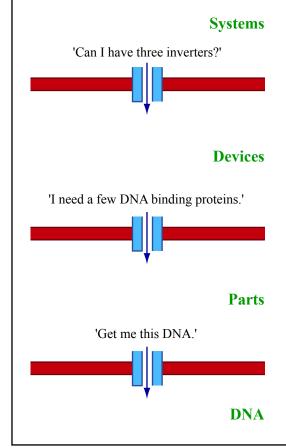
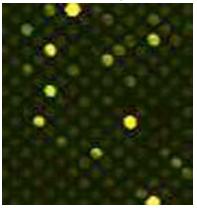


Image by MIT OpenCourseWare.

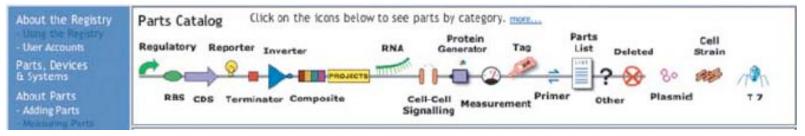
See D. Endy, Nature 433: 449

Data standards: what and why?

- Brooksbank & Quackenbush, OMICS, 10:94 (2006)
- High-throughput methods are data-rich
- Standards for collection and/or sharing
- Reasons
 - shared language (human and computer)
 - compare experiments across labs
 - avoid reinventing the wheel
 - integration of information across levels
- Examples
 - MIAME for microarrays
 - Gene Ontology (protein functions)
- Who drives standards?
 - scientists, funding agencies, journals, industry


collagen, type II, alpha 1 gene from <u>Mus musculus</u> (house mouse)
Term associations
Term Associations
gene association format C RDF-XML
 ▼ Filter associations displayed Filter Associations Ontology Evidence Code All biological process cellular component molecular function EP
Select all Clear all Perform an action with th
Accession, Term
GO:0001502 : cartilage 33 condensation
GO:0030199 : collagen fibril 36 organization
GO:0043066 : negative regulation 808

http://www.geneontology.org/ Screenshot image captured April 2010. Courtesy of the Gene Ontology. Used with permission.


Lecture 3: conclusions

- Confidence intervals and t-tests are two useful statistical concepts.
- Standardizing data sharing and collection is of interest in several BE disciplines.

Microarray data

See: D. Endy, Nature 438:449 (standardized biological "parts")

Next time: *discussion* of standards in TE; more about cell viability and microscopy

© Registry of Standard Biological Parts. License CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 20.109 Laboratory Fundamentals in Biological Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.