Work, Heat, and the First Law

- Work:

Epansion work: $w=-\left(p_{\text {ext }} A\right) \ell=-p_{\text {ext }} \Delta V$

If $p_{\text {ext }}$ is not constant, then we have to look at infinitesimal changes

$$
đ w=-p_{\text {ext }} d V \quad \text { d means this is not an exact differential }
$$

Integral $\quad w=-\int_{1}^{2} p_{\text {ext }} d V$ depends on the path!!!

Other kinds of work
Surface work: $đ w=\gamma_{\text {ext }} d A$... where $\gamma_{\text {ext }}$ is the surface tension $\left(\mathrm{J} / \mathrm{m}^{2}\right)$ and $d A$ is the differential change in area. This is the work to change surface area.

Elongation work: $đ w=f d \ell$ where f is the force per unit length and $d l$ is the length differential. This is important for discussing changing the length of polymers or DNA.

Electrostatic work: $đ w=V$ de where V is a fixed potential and de is the change in charge.

- Path dependence of w

Example: assume a reversible process so that $p_{\text {ext }}=p$

$$
\operatorname{Ar}\left(g, p_{1}, V_{1}\right)=\operatorname{Ar}\left(g, p_{2}, V_{2}\right)
$$

Compression $\quad V_{1}>V_{2}$ and $p_{1}<p_{2}$
$20.110 \mathrm{~J} / 2.772 \mathrm{~J} / 5.601 \mathrm{~J}$
Thermodynamics of Biomolecular Systems
Instructors: Linda G. Griffith, Kimberly Hamad-Schifferli, Moungi G. Bawendi, Robert W. Field
20.110/5.60 Fall 2005

Two paths:
(1) First $V_{1} \rightarrow V_{2}$ at $p=p_{1}$
(2) First $p_{1} \rightarrow p_{2}$ at $V=V_{1}$
then $p_{1} \rightarrow p_{2}$ at $V=V_{2}$ then $\quad V_{1} \rightarrow V_{2}$ at $p=p_{2}$

$$
\operatorname{Ar}\left(g, p_{1}, V_{1}\right)=\operatorname{Ar}\left(g, p_{1}, V_{2}\right)=\operatorname{Ar}\left(g, p_{2}, V_{2}\right) \quad \operatorname{Ar}\left(g, p_{1}, V_{1}\right)=\operatorname{Ar}\left(g, p_{2}, V_{1}\right)=\operatorname{Ar}\left(g, p_{2}, V_{2}\right)
$$

$$
\begin{aligned}
w_{(1)}= & -\int_{V_{1}}^{V_{2}} p_{\text {ext }} d V-\int_{V_{2}}^{V_{2}} p_{\text {ext }} d V \\
= & -\int_{V_{1}}^{V_{2}} p_{1} d V=-p_{1}\left(V_{2}-V_{1}\right) \\
& w_{(1)}=p_{1}\left(V_{1}-V_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
w_{(2)} & =-\int_{1}^{V_{1}} p_{\text {ext }} d V \\
& =-\int_{V_{1}}^{V_{2}} p_{2} d V=-p_{2}\left(V_{2}-V_{1}\right) \\
& w_{(2)}=p_{2}\left(V_{1}-V_{2}\right)
\end{aligned}
$$

(Note w>0, work done to system to compress it)

$$
W_{(1)} \neq W_{(2)}!!!
$$

Note for the closed cycle [path (1)] - [path (2)], $\oint d w \neq 0$ closed cycle

Work (w) is not a function of state.
For a cyclic process, it is possible for $\oint đ w \neq 0$

Heat Heat (q), like w, is a function of path. Not a state function
It is possible to have a change of state
$\left(p_{1}, V_{1}, T_{1}\right)=\left(p_{2}, V_{2}, T_{2}\right)$
adiabatically (without heat transferred)
or nonadiabatically.
Historically measured in calories [$1 \mathrm{cal}=$ heat needed to raise $1 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O} 1^{\circ} \mathrm{C}$, from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$]

The modern unit of heat (and work) is the Joule.

$$
1 \mathrm{cal}=4.184 \mathrm{~J}
$$

Heat Capacity $\underline{\underline{C}}$ - connects heat with temperature

$$
\mathrm{d} q=C_{\text {path }} \mathrm{d} T \quad \text { or } \quad \overbrace{\text { path }}=\left(\frac{\mathrm{d} q}{d T}\right)_{\text {path }}
$$

Constant volume: $\quad C_{v}$

Constant pressure: C_{p}

$$
\therefore \quad q=\int_{\text {path }} C_{p a t h} d T
$$

Equivalence of work and heat [Joule (1840's)]

Joule showed that it's possible to raise the temperature of $\mathrm{H}_{2} \mathrm{O}$
(a) with only heat

(b) with only work (weight falls \&
 churns propeller)

Experimentally it was found that

$$
\oint(đ w+đ q)=0
$$

$\Rightarrow \quad$ The sum $(w+q)$ is independent of path
$\Rightarrow \quad$ This implies that there is a state function whose differential is $\mathrm{d} w+\mathrm{d} q$

We define it as U, the "internal energy" or just "energy"

$$
\therefore \quad d U=\mathrm{d} w+\mathrm{d} q
$$

For a cyclic process $\oint d U=0$

For a change from state 1 to state 2,
$\Delta U=\int_{1}^{2} d U=U_{2}-U_{1}=q+w$ does not depend on path each depends on path individually, but not the sum

For fixed n, we just need to know 2 properties, e.g. (T, V, to fully describe the system.

So $\quad U=U(T, V))$
U is an extensive function (scales with system size).
$\bar{U}=\frac{U}{n} \quad$ is molar energy (intensive function)

Corollary: Conservation of energy

$$
\begin{gathered}
\Delta U_{\text {system }}=q+w \quad \Delta U_{\text {surroundings }}=-q-w \\
\Rightarrow \quad \Delta U_{\text {universe }}=\Delta U_{\text {system }}+\Delta U_{\text {surroundings }}=0
\end{gathered}
$$

Clausius statement of $1^{\text {st }}$ Law:

The energy of the universe is conserved.

