Thermochemistry

Much of thermochemistry is based on finding "easy" paths to calculate changes in enthalpy, i.e. understanding how to work with thermodynamic cycles.

- Goal: To predict ΔH for every reaction, even if it cannot be carried out in the laboratory

The heat of reaction $\Delta H_{r x}$ is the ΔH for the isothermal reaction at constant pressure (the complete transfer from reactants to products, not to some equilibrium state).
e.g.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(s, T, p)+3 \mathrm{H}_{2}(g, T, p)=2 \mathrm{Fe}(s, T, p)+3 \mathrm{H}_{2} \mathrm{O}(l, T, p)
$$

$$
\Delta H_{r x}(T, p)=2 \bar{H}_{F e}(T, p)+3 \bar{H}_{H_{2} O}(T, p)-3 \bar{H}_{H_{2}}(T, p)-\bar{H}_{F_{e} O_{3}}(T, p)
$$

$$
\left[\Delta H_{r x}=H(\text { products })-H(\text { reactants })\right]
$$

We cannot know \bar{H} values because enthalpy, like energy, is not an absolute scale. We can only measure differences in enthalpy.

- Define a reference scale for enthalpy
$\bar{H}(298.15 \mathrm{~K}, 1$ bar $) \equiv 0 \quad$ For every element in its most stable form at 1 bar and 298.15K
$\left.\begin{array}{ll}\text { e.g. } & \bar{H}_{H_{(\text {(g) }}^{\circ}}^{\circ}(298.15 K)=0 \\ \bar{H}_{C(\text { graphite })}^{\circ}(298.15 K)=0\end{array}\right\} \quad$ The "o" means 1 bar
- $\Delta H_{f}^{\circ}(298.15 K)$ The heat of formation is the heat of reaction to create 1 mole of that compound from its constituent elements in their most stable forms.

Example ($T=298.15 \mathrm{~K}$)

$$
\begin{aligned}
& \frac{1}{2} H_{2}(g, T, 1 \text { bar })+\frac{1}{2} \operatorname{Br}_{2}(l, T, 1 \text { bar })=\operatorname{HBr}(g, T, 1 \text { bar }) \\
& \Delta \bar{H}_{f, H B r}^{\circ}(T)=\Delta H_{r x}(T, 1 \text { bar })=\bar{H}_{H B r}^{\circ}(g, T)-\underbrace{\frac{1}{2} \bar{H}_{H_{2}}^{\circ}(g, T)-\frac{1}{2} \bar{H}_{r_{2}}^{\circ}(1, T)}_{0 \text { - elements in most stable forms }}
\end{aligned}
$$

We can tabulate $\Delta H_{f}^{\circ}(298.15 K)$ values for all known compounds. We can calculate $\Delta H_{r x}^{\circ}(298.15 K)$ for any reaction.
e.g. $(T=298.15 K)$
$\mathrm{CH}_{4}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{H}_{2} \mathrm{O}(l, T, 1$ bar $)$

- First decompose reactants into elements
- Second put elements together to form products
- Use Hess's law [An example of a thermodynamic cycle applied to thermochemistry]
$\mathrm{CH}_{4}(\mathrm{~g}, \mathrm{~T}, 1$ bar $)=\mathrm{C}_{\text {graphite }}(s, T, 1$ bar $)+2 \mathrm{H}_{2}(g, T, p) \quad \Delta H_{I}$
$2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar}) \quad \Delta H_{\text {II }}$
$C_{\text {graphite }}(s, T, 1$ bar $)+\mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar}) \quad \Delta H_{\text {III }}$
$2 \mathrm{H}_{2}(g, T, p)+\mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1$ bar $)=2 \mathrm{H}_{2} \mathrm{O}(l, T, 1$ bar $) \quad \Delta H_{\text {IV }}$
$\mathrm{CH}_{4}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{O}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})=\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{~T}, 1 \mathrm{bar})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}, \mathrm{T}, 1 \mathrm{bar})$

$$
\begin{aligned}
& \Delta H_{r x}=\Delta H_{I}+\Delta H_{I I}+\Delta H_{I I I}+\Delta H_{I V} \\
& \Delta H_{I}=\bar{H}_{C}+2 \bar{H}_{H_{2}}-\bar{H}_{C H_{4}}=-\Delta H_{f, C H_{4}}^{\circ} \\
& \Delta H_{I I}=\bar{H}_{O_{2}}-\bar{H}_{O_{2}}=0 \\
& \Delta H_{I I I}=\bar{H}_{C O_{2}}-\bar{H}_{C}-\bar{H}_{O_{2}}=\Delta H_{f, C O_{2}}^{\circ} \\
& \Delta H_{I V}=2 \bar{H}_{H_{2} \mathrm{O}}-2 \bar{H}_{H_{2}}-\bar{H}_{O_{2}}=2 \Delta H_{f, H_{2} \mathrm{O}}^{\circ} \\
& \therefore \quad \Delta H_{r x}=2 \Delta H_{f, H_{2} \mathrm{O}}^{\circ}+\Delta H_{f, C \mathrm{O}_{2}}^{\circ}-\Delta H_{f, C H_{4}}^{\circ}
\end{aligned}
$$

In general,

$$
\begin{aligned}
& \Delta H_{r x}=\sum_{i} v_{i} \Delta H_{f, i}^{\circ}(\text { products })-\sum_{i} v_{i} \Delta H_{f, i}^{\circ}(\text { reactants }) \\
& v \equiv \text { stoichiometric coefficient }
\end{aligned}
$$

- ΔH at constant p and for reversible $p V$ process is $\Delta H=q_{p}$
$\Rightarrow \quad$ The heat of reaction is the heat flowing into the reaction from the surroundings

If $\Delta H_{r x}<0, \quad q_{p}<0 \quad$ heat flows from the reaction to the surroundings (exothermic)

If $\Delta H_{r x}>0, \quad q_{p}>0$ heat flows into the reaction from the surroundings (endothermic)

Calorimetry

The objective is to measure

- Constant pressure (for solutions)

I) $\quad \Delta H_{I} \quad$ React. $\left(T_{1}\right)+\mathrm{Cal} .\left(T_{1}\right) \underset{\substack{\text { adiabatic } \\ \text { constant } p}}{\substack{\text { cod }}} \operatorname{Prod}\left(T_{2}\right)+\mathrm{Cal} .\left(T_{2}\right)$
II) $\Delta H_{I I} \quad \operatorname{Prod} .\left(T_{2}\right)+\operatorname{Cal} .\left(T_{2}\right) \underset{\text { constant } p}{=} \operatorname{Prod.}\left(T_{1}\right)+\operatorname{Cal} .\left(T_{1}\right)$
$\Delta H_{r x}\left(T_{1}\right) \quad$ React. $\left(T_{1}\right)+\operatorname{Cal} .\left(T_{1}\right) \underset{\text { constant } p}{=} \operatorname{Prod.}\left(T_{1}\right)+\operatorname{Cal} .\left(T_{1}\right)$

$$
\Delta H_{r x}\left(T_{1}\right)=\Delta H_{I}+\Delta H_{I I}
$$

$$
\Delta H_{r x}\left(I_{1}\right) \quad \text { React. }\left(I_{1}\right)+\text { Cal. }\left(I_{1}\right) \underset{\text { constant } p}{=} \text { Prod. }\left(I_{1}\right)+\text { Cal. }\left(I_{1}\right)
$$

(I) Purpose is to measure $\left(T_{2}-T_{1}\right)$

Adiabatic, const. $p \Rightarrow q_{p}=0 \Rightarrow \Delta H_{I}=0$
(II) Purpose is to measure heat q_{p} needed to take prod. + cal. from T_{2} back to T_{1}.

$$
\begin{aligned}
& q_{p}=\int_{T_{2}}^{T_{1}} C_{p}(\text { Prod. }+ \text { Cal. }) d T=\Delta H_{I I} \\
\therefore & \Delta H_{r x}\left(T_{1}\right)=-\int_{T_{1}}^{T_{2}} C_{p}(\text { Prod. }+ \text { Cal. } .) d T
\end{aligned}
$$

- Constant volume (when gases involved)

$$
\begin{aligned}
& 11111111111111 \\
& \text { = } \\
& \text { = } \\
&= \text { reaction } \\
&= \text { adiabatic } \\
&= \text { calorimeter } \\
&= \\
&=1111111111111 \backslash
\end{aligned}
$$

I) $\quad \Delta U_{I} \quad$ React. $\left(T_{1}\right)+\mathrm{Cal}$. $\left(T_{1}\right) \underset{\substack{\text { constant } V \\ \text { codibatic }}}{ } \operatorname{Prod.}\left(T_{2}\right)+\operatorname{Cal} .\left(T_{2}\right)$
II) $\Delta U_{I I} \quad \operatorname{Prod} .\left(T_{2}\right)+\operatorname{Cal} .\left(T_{2}\right) \underset{\text { constant } v}{=} \operatorname{Prod.}\left(T_{1}\right)+\operatorname{Cal} .\left(T_{1}\right)$

$$
\Delta U_{r x}\left(T_{1}\right) \quad \text { React. }\left(T_{1}\right)+\text { Cal. }\left(T_{1}\right) \underset{\text { constant } v}{=} \operatorname{Prod.}\left(T_{1}\right)+\text { Cal. }\left(T_{1}\right)
$$

$$
\Delta U_{r x}\left(T_{1}\right)=\Delta U_{I}+\Delta \bigcup_{I I}
$$

(I) Purpose is to measure $\left(T_{2}-T_{1}\right)$

Adiabatic, const. $V \Rightarrow q_{V}=0 \Rightarrow \Delta U_{I}=0$
(II) Purpose is to measure heat q_{v} needed to take prod. + cal. from T_{2} back to T_{1}.

$$
q_{V}=\int_{T_{2}}^{T_{1}} C_{V}\left(\operatorname{Prod}_{.}+C a I_{.}\right) d T=\Delta U_{I I}
$$

$$
\therefore \quad \Delta U_{r x}\left(T_{1}\right)=-\int_{T_{1}}^{T_{2}} C_{V}(\operatorname{Prod} .+C a l .) d T
$$

Now use $H=U+p V$ or $\Delta H=\Delta U+\Delta(p V)$
Assume only significant contribution to $\Delta(p V)$ is from gases.
Ideal gas $\quad \Rightarrow \quad \Delta(p V)=R \Delta(n T)$
Isothermal $\quad T=T_{1} \Rightarrow \quad \Delta(p V)=R T_{1} \Delta n_{\text {gas }}$

$$
\therefore \quad \begin{aligned}
& \Delta H_{r x}\left(T_{1}\right)=\Delta U_{r x}\left(T_{1}\right)+R T_{1} \Delta n_{g a s} \\
& \Delta H_{r x}\left(T_{1}\right)=-\int_{T_{1}}^{T_{2}} C_{V}(\operatorname{Prod} .+C a l .) d T+R T_{1} \Delta n_{g a s}
\end{aligned}
$$

e.g.

$$
4 \mathrm{HCl}(g)+\mathrm{O}_{2}(g)=2 \mathrm{H}_{2} \mathrm{O}(1)+2 \mathrm{Cl}_{2}(g)
$$

$$
T_{1}=298.15 \mathrm{~K}
$$

$$
\Delta U_{r x}\left(T_{1}\right)=-195.0 \mathrm{~kJ} \quad \Delta n_{g a s}=-3 \text { moles }
$$

$$
\Delta H_{r x}\left(T_{1}\right)=-195.0 \mathrm{~kJ}+(-3 \mathrm{~mol})(298.15 \mathrm{~K})\left(8.314 \times 10^{-3} \mathrm{~kJ} / \mathrm{K}-\mathrm{mol}\right)
$$

$$
=-202.43 \mathrm{~kJ}
$$

Temperature dependence of $\Delta H_{r x}$

Suppose know $\Delta H_{r x}$ at some temperature T_{1} (e.g. at 298.15 K) and we want to know it at some other temperature T_{2}.

Generally the difference is small... often we assume that there is no temperature dependence if the difference between T_{1} and T_{2} is "small". If the difference between T_{1} and T_{2} is large enough, we can calculate $\Delta H_{r x}\left(T_{2}\right)$ from the heat capacities of the reactants and products (assuming no phase change in any component).

$$
\begin{aligned}
& \Delta H_{r x}\left(T_{2}\right)=\Delta H_{I}+\Delta H_{r x}\left(T_{1}\right)+\Delta H_{I I} \\
& \Delta H_{r x}\left(T_{2}\right)=\Delta H_{r x}\left(T_{1}\right)+\int_{T_{2}}^{T_{1}} C_{p}(\text { react. }) d T+\int_{T_{1}}^{T_{2}} C_{p}(\text { prod. }) d T \\
& \Delta H_{r x}\left(T_{2}\right)=\Delta H_{r x}\left(T_{1}\right)+\int_{T_{1}}^{T_{2}}\left[C_{p}(\text { prod. })-C_{p}(\text { react. })\right] d T
\end{aligned}
$$

$$
\Delta H_{r x}\left(T_{2}\right)=\Delta H_{r x}\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \Delta C_{p} d T
$$

