Entropy, Reversible and Irreversible Processes and Disorder

Examples of spontaneous processes

Connect two metal blocks thermally in an isolated system $\quad(\Delta U=0)$

Initially $\quad T_{1} \neq T_{2}$

$$
d S=d S_{1}+d S_{2}=\frac{\AA q_{1}}{T_{1}}-\frac{d q_{2}}{T_{2}}=đ q_{1} \frac{\left(T_{2}-T_{1}\right)}{T_{1} T_{2}} \quad\left(₫ q_{1}=-đ q_{2}\right)
$$

$d S>0$ for spontaneous process

$$
\left.\Rightarrow \quad \text { if } \begin{array}{rl}
& T_{2}>T_{1} \\
& \Rightarrow đ q_{1}>0 \\
& T_{2}<T_{1}
\end{array} \Rightarrow \text { d } q_{1}<0\right\} \text { in both cases heat flows }
$$

Joule expansion with an ideal gas

$$
\begin{gathered}
1 \mathrm{~mol} \text { gas }(V, T) \stackrel{\text { adiabatic }}{=} 1 \mathrm{~mol} \text { gas }(2 V, T) \\
\Delta U=0 \quad q=0 \quad w=0
\end{gathered}
$$

Need a reversible path to compute ΔS from q! Close the cycle and go back to the initial state reversibly and isothermally

$$
\Delta S=-\Delta S_{\text {backwards }}
$$

$$
\begin{aligned}
& 1 \text { mol gas }(2 V, T)=1 \mathrm{~mol} \text { gas }(V, T) \\
& \Delta S_{\text {rev }} \neq 0 \\
& \Delta S_{\text {backwords }}=\int \frac{\mathrm{d} q_{\text {rev }}}{T}=-\int \frac{\mathrm{d} w}{T}=\int_{2 V}^{V} \frac{R d V}{V}=R \ln \frac{1}{2} \\
& \therefore \Delta S=R \ln 2>0 \quad \text { spontaneous }
\end{aligned}
$$

IMPORTANT!! To calculate ΔS for the irreversible process, we needed to find a reversible path so we could determine $\mathrm{d} \boldsymbol{q}_{\text {rev }}$ and $\int \frac{\mathrm{d} q_{\text {rev }}}{T}$.

- Mixing of ideal gases at constant T and p

$$
\begin{gathered}
n_{A} A\left(g, V_{A}, T\right)+n_{B} A\left(g, V_{B}, T\right)=n(A+B)(g, V, T) \\
\begin{array}{|c:c}
n_{A} \\
V_{A} & n_{B} \\
V_{B}
\end{array} \underset{\substack{\text { spontaneous } \\
\text { mixing }}}{ } \begin{array}{l}
n=n_{A}+n_{B} \\
V=V_{A}+V_{B}
\end{array}
\end{gathered}
$$

To calculate $\Delta S_{\text {mix }}$, we need to find a reversible path between the two states.

$$
\Delta S_{\text {demix }}=-\Delta S_{\text {mix }} \quad \text { function of state }
$$

For demixing process

$$
\begin{aligned}
& \Rightarrow \quad \Delta U=0 \Rightarrow q_{\text {rev }}=-W_{\text {rev }}=p_{A} d V_{A}+p_{B} d V_{B} \\
& \text { work of compression of each gas } \\
& \therefore \quad \Delta S_{\text {demix }}=\int \frac{d q_{\text {rev }}}{T}=\int_{V}^{V_{A}} \frac{p_{A} d V_{A}}{T}+\int_{V}^{V_{B}} \frac{p_{B} d V_{B}}{T}=n_{A} R \ln \frac{V_{A}}{V}+n_{B} R \ln \frac{V_{B}}{V}
\end{aligned}
$$

Put in terms of mole fractions $\quad X_{A}=\frac{n_{A}}{n} \quad X_{B}=\frac{n_{B}}{n}$

Ideal gas $\Rightarrow \quad X_{A}=\frac{V_{A}}{V} \quad X_{B}=\frac{V_{B}}{V}$

$$
\begin{array}{ll}
\therefore & \Delta S_{\text {demix }}=n R\left[X_{A} \ln X_{A}+X_{B} \ln X_{B}\right] \\
\Rightarrow & \Delta S_{\text {mix }}=-n R\left[X_{A} \ln X_{A}+X_{B} \ln X_{B}\right]
\end{array}
$$

Since $X_{A}, X_{B}<1 \Rightarrow \Delta S_{\text {mix }}>0$ mixing is always spontaneous

The mixed state is more "disordered" or "random" than the demixed state.

$$
S_{\text {mixed }}>S_{\text {demixed }}
$$

This is a general result:
Entropy is a measure of the disorder of a system
$\therefore \quad$ For an isolated system (or the universe)
$\Delta S>0 \quad$ Spontaneous, increased randomness
$\Delta S=0 \quad$ Reversible, no change in disorder
$\Delta S<0$ Impossible, order cannot "happen" in isolation

There is an inexorable drive for the universe to go to a maximally disordered state.

Microscopic understanding: Boltzmann Equation of Entropy:

$$
S=k \ln \Omega
$$

Where k is Boltzmann's constant ($k=R / N_{A}$).
And Ω is the number of equally probable microscopic arrangements for the system.

This can also be used to calculate ΔS

In the case of the Joule expansion of an ideal gas in volume V expanding to a volume 2 V (as on the first page of these notes): if we divide the initial volume V into m small cubes, each with volume v, so that $m v=V$, the number of ways of placing the N molecules of ideal gas into these small cubes initially is m^{N}. After the expansion the number of ways of placing the n molecules of ideal gas into the now 2 m small cubes is $(2 \mathrm{~m})^{\mathrm{N}}$.

The number of probably microscopic arrangements initially is:

$$
\Omega \propto(m)^{N}, \text { or } \Omega=C(m)^{N} \quad(C \text { is a constant })
$$

After the expansion it is:
$\Omega \propto(2 m)^{N}$, or $\Omega=C(2 m)^{N}$

So using Boltzmann's equation to calculate ΔS for the expansion:

$$
\Delta S=k \ln \left[(2 m)^{N}\right]-k \ln \left[m^{N}\right]=k N \ln 2=R \ln 2
$$

As we had found above!

More examples of ΔS calculations

In all cases, we must find a reversible path to calculate $\int \frac{d q_{\text {rev }}}{T}$
(a) Mixing of ideal gases at constant T and p
$n_{A} A\left(g, V_{A}, T\right)+n_{B} A\left(g, V_{B}, T\right)=n(A+B)\left(g, V=V_{A}+V_{B}, T\right)$

$$
\Delta S_{\text {mix }}=-n R\left[X_{A} \ln X_{A}+X_{B} \ln X_{B}\right]
$$

(b) Heating (or cooling) at constant V

$$
\begin{gathered}
A\left(T_{1}, V\right)=A\left(T_{2}, V\right) \\
\Delta S=\int \frac{\mathrm{d} q_{\text {rev }}}{T}=\int_{T_{1}}^{T_{2}} \frac{C_{V} d T}{T} \stackrel{\text { if } C_{V} \text { is }}{=} \underset{T \text {-independent }}{=} C_{V} \ln \frac{T_{2}}{T_{1}} \\
\quad\left[\text { Note } \Delta S>0 \text { if } T_{2}>T_{1}\right]
\end{gathered}
$$

(c) Reversible phase change at constant T and p
e.g. $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}, 100^{\circ} \mathrm{C}, 1 \mathrm{bar}\right)=\mathrm{H}_{2} \mathrm{O}\left(\mathrm{g}, 100^{\circ} \mathrm{C}, 1 \mathrm{bar}\right)$

$$
q_{p}=\Delta H_{v a p}
$$

$$
\Delta S_{\text {vap }}\left(100^{\circ} \mathrm{C}\right)=\frac{q_{p}^{\text {vap }}}{T_{b}}=\frac{\Delta H^{\text {vap }}}{T_{b}} \quad\left(T_{b}=\text { boiling Temp at } 1 \text { bar }\right)
$$

(d) Irreversible phase change at constant T and p
e.g. $\mathrm{H}_{2} \mathrm{O}\left(c,-10^{\circ} \mathrm{C}, 1\right.$ bar $)=\mathrm{H}_{2} \mathrm{O}\left(s,-10^{\circ} \mathrm{C}, 1\right.$ bar $)$

This is spontaneous and irreversible.
$\therefore \quad$ We need to find a reversible path between the two states to calculate ΔS.

Note: $\Delta H_{\text {fus }}$ is for the process going from the solid state to the liquid state, the opposite of what we have above, same for $\Delta \mathrm{S}_{\text {fus }}$.

$$
\begin{aligned}
\Delta S & =\Delta S_{\text {heating }}-\Delta S_{\text {fus }}+\Delta S_{\text {cooling }} \\
& =\int_{T_{1}}^{T_{\text {tes }}} \frac{C_{p}(\ell) d T}{T}+\frac{-\Delta H_{\text {fus }}}{T_{\text {fus }}}+\int_{T_{\text {tus }}}^{T_{1}} \frac{C_{p}(S) d T}{T} \\
\therefore & \Delta S=\frac{-\Delta H_{\text {fus }}}{T}+\int_{T_{1}}^{T_{\text {tus }}}\left[C_{p}(\ell)-C_{p}(\mathrm{~s})\right] \frac{d T}{T}
\end{aligned}
$$

$\Delta S=\frac{-\Delta H_{\text {fus }}}{T}+\left[C_{p}(\ell)-C_{p}(\mathrm{~s})\right] \ln \frac{T_{\text {fus }}}{T_{1}} \quad$ if C_{p} values are T-independent

