Fundamental Equations, Equilibrium, Free Energy, Maxwell Relations

- Fundamental Equations relate functions of state to each other using $1^{\text {st }}$ and $2^{\text {nd }}$ Laws
$1^{\text {st }}$ law with expansion work: $d U=đ q-p_{\text {ext }} d V$

Use $2^{\text {nd }}$ law: đq $^{\text {rev }}=T d S$
For a reversible process $p_{e x t}=p$ and $đ q=đ q^{\text {rev }}=T d S$

So...... ** $d U=T d S-p d V$ **

This fundamental equation only contains state variables
Even though this equation was derived for a reversible process, the equation is always correct and valid for a closed (no mass transfer) system, even in the presence of an irreversible process. This is because U, T, S, p, and V are all functions of state and independent of path.

AND The "best" or "natural" variables for U are $\underline{S \text { and } V \text {. }}$

$$
\star \star \quad U(S, V) * *
$$

** $U(S, V)$ **

From $d U=T d S-p d V \Rightarrow * *\left(\frac{\partial U}{\partial S}\right)_{V}=T ;\left(\frac{\partial U}{\partial V}\right)_{S}=-p * *$

We can write similar equations for enthalpy

$$
\begin{aligned}
& H=U+p V \Rightarrow d H=d U+d(p V)=d U+p d V+V d p \\
& \Rightarrow * * d H=T d S+V d p \\
& \text { inserting } d U=T d S-p d V
\end{aligned}
$$

The natural variables for H are then S and p

From $d H=T d S+V d p \Rightarrow * *\left(\frac{\partial H}{\partial S}\right)_{p}=T ;\left(\frac{\partial H}{\partial V p}\right)_{S}=V * *$

We can use these equations to find how S depends on T.
From $\mathrm{dU}=\mathrm{TdS}-\mathrm{pdV} \Rightarrow\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\frac{1}{\mathrm{~T}}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\frac{C_{\mathrm{V}}}{\mathrm{T}}$
From $\mathrm{dH}=\mathrm{TdS}+\mathrm{Vdp} \Rightarrow\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\frac{1}{\mathrm{~T}}\left(\frac{\partial \mathrm{H}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\frac{C_{\mathrm{p}}}{\mathrm{T}}$

Criteria for Spontaneous Change

The $2^{\text {nd }}$ Law gave the Clausius inequality for spontaneous change

$$
\mathrm{dS}>đ q / T_{\text {surr }}
$$

The $1^{s t}$ law gave us $d U=đ q+đ w$

Putting the two together, assuming only pV work, gives us the following general criterion for spontaneous change:

$$
\star * d U+p_{\text {ext }} d V-T_{\text {surr }} d S<0 * *
$$

Equilibrium is when there is no possible change of state that would satisfy this inequality.

We can now use the general criterion above under specific conditions

- Consider first an isolated system ($q=w=0, \Delta V=0, \Delta \mathrm{U}=0$)

Since $d U=0$ and $d V=0$, from the general criterion above, then

$$
(d S)_{U, V}>0
$$

is the criterion for spontaneity for an isolated system

And equilibrium for an isolated system is then achieved when entropy is maximized. At maximum entropy, no spontaneous changes can occur.

- Consider now S and V constant

$$
\Rightarrow(\mathrm{d} U)_{S, V}<0
$$

is the criterion for spontaneity under constant V and S
At constant S and V, equilibrium is achieved when energy is minimized

- Consider now \underline{S} constant and $p=p_{\text {ext }}$ constant

So

$$
\Rightarrow(\mathrm{dH})_{\text {s.pext }}<0
$$

is the criterion for spontaneity under constant S and constant $p=p_{\text {ext }}$.

- Consider now \underline{H} constant and $p=p_{\text {ext }}$ constant

$$
\begin{gathered}
d U+p d V-T_{\text {surr }} d S<0 \\
\text { but } d U+p d V=d H, \text { which is } 0(H \text { is constant }) \\
\text { So }(d S)_{H, p=\text { pext }}>0
\end{gathered}
$$

is the criterion for spontaneity under constant H and constant $p=p_{\text {ext }}$.

Now let's begin considering cases that are experimentally more controllable.

- Consider now constant $T=T$ surr and constant V

$$
\Rightarrow d U-T d S<0 \Rightarrow d(U-T S)<0
$$

Define $A=U-T S$, the Helmholtz Free Energy

$$
\text { Then }(d A)_{V, T=T \text { surr }}<0
$$

is the criterion for spontaneity under constant $\mathrm{T}=\mathrm{T}_{\text {surr }}$ and constant V .
For constant V and constant $\mathrm{T}=\mathrm{T}_{\text {surr, }}$ equilibrium is achieved when the Helmholtz free energy is minimized.

We now come to the most important and applicable constraint:

- Consider now constant $T=T_{\text {surr }}$ and constant $p=p_{\text {ext }}$.

$$
(d U+p d V-T d S)<0 \Rightarrow d(U+p V-T S)<0
$$

Define $G=U+p V-T S$, the Gibbs Free Energy
(can also be written as $G=A+p V$ and $G=H-T S$)
Then $(d G)_{p=p e x t, T=T_{\text {surr }}}<0$
is the criterion for spontaneity under constant $T=T_{\text {surr }}$ and constant

$$
\mathrm{p}=\mathrm{p}_{\text {ext }} \text {. }
$$

At constant $p=p_{\text {ext }}$ and constant $T=T_{\text {surr_ }}$ equilibrium is achieved when the Gibbs free energy is minimized.

Consider the process:

$$
A(p, T)=B(p, T) \quad \text { (keeping } p \text { and } T \text { constant) }
$$

Under constant $p=p_{\text {ext }}$ and $T=T_{\text {surr }}$,
$\Delta G<0 \quad A \rightarrow B$ is spontaneous
$\Delta G=0 \quad A$ and B are in equilibrium
$\Delta G>0 \quad$ then $B \rightarrow A$ is spontaneous

Maxwell Relations

- With the free energies

$$
\begin{array}{ll}
\text { Helmholtz free energy } & A=U-T S \\
\text { Gibbs free energy } & G=H-T S
\end{array}
$$

we've introduced all our state functions. For closed systems,

$$
\begin{array}{|lll|}
\hline U(S, V) & \Rightarrow & d U=T d S-p d V \\
H(S, p) & \Rightarrow & d H=T d S+V d p \\
A(T, V) & \Rightarrow & d A=-S d T-p d V \\
G(T, p) & \Rightarrow & d G=-S d T+V d p \\
\hline
\end{array}
$$

From $\quad d A=\left(\frac{\partial A}{\partial T}\right)_{V} d T+\left(\frac{\partial A}{\partial V}\right)_{T} d V$
and $\quad d G=\left(\frac{\partial G}{\partial T}\right)_{p} d T+\left(\frac{\partial G}{\partial p}\right)_{T} d p$

$$
\begin{array}{ll}
\left(\frac{\partial \boldsymbol{A}}{\partial T}\right)_{V}=-S & \left(\frac{\partial \boldsymbol{A}}{\partial V}\right)_{T}=-p \\
\left(\frac{\partial G}{\partial T}\right)_{p}=-S & \left(\frac{\partial G}{\partial p}\right)_{T}=V
\end{array}
$$

The Maxwell relations: $\quad \frac{\partial^{2} A}{\partial V \partial T}=\frac{\partial^{2} A}{\partial T \partial V} \quad$ and $\quad \frac{\partial^{2} G}{\partial p \partial T}=\frac{\partial^{2} G}{\partial T \partial p}$
now allow us to find how S depends on V and p.

$$
\Rightarrow \quad\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V} \quad\left(\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p}
$$

These can be obtained from an equation of state.
We can now also relate U and H to $p-V-T$ data.
$\left.\begin{array}{l}\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-p=T\left(\frac{\partial p}{\partial T}\right)_{V}-p \\ \left(\frac{\partial H}{\partial p}\right)_{T}=T\left(\frac{\partial S}{\partial p}\right)_{T}+V=V-T\left(\frac{\partial V}{\partial T}\right)_{p}\end{array}\right\} \rightarrow U$ and H from equations of state!

- For an ideal gas $p V=n R T$
$\left(\frac{\partial p}{\partial T}\right)_{V}=\frac{n R}{V}=\frac{p}{T} \quad \Rightarrow \quad\left(\frac{\partial U}{\partial V}\right)_{T}=0$
$\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{n R}{p}=\frac{V}{T} \Rightarrow\left(\frac{\partial H}{\partial p}\right)_{T}=0$

This proves that for an ideal gas $U(T)$ and $H(T)$, functions of T only. We had assumed this was true from Joule and Joule-Thomson expansion experiments. Now we know it is rigorously true.

