<u>Fundamental Equations, Equilibrium, Free Energy,</u> <u>Maxwell Relations</u>

 <u>Fundamental Equations</u> relate functions of state to each other using 1st and 2nd Laws

 1^{st} law with expansion work: dU = $dq - p_{ext}dV$

need to express đq in terms of state variables because đq is path dependent

Use 2nd law: dq^{rev} = TdS

```
For a <u>reversible</u> process p_{ext} = p and dq = dq^{rev} = TdS
```

So...... ** dU = TdS - pdV **

This fundamental equation only contains state variables

Even though this equation was derived for a reversible process, the equation is <u>always correct and valid</u> for a closed (no mass transfer) system, even in the presence of an irreversible process. This is because U, T, S, p, and V are all functions of state and independent of path.

AND The "best" or "natural" variables for U are <u>S and V</u>,

Lecture #8

** U(S,V) **

page 2

From dU = TdS - pdV
$$\Rightarrow ** \left(\frac{\partial U}{\partial S}\right)_{V} = T ; \left(\frac{\partial U}{\partial V}\right)_{S} = -p **$$

We can write similar equations for <u>enthalpy</u>

$$H = U + pV \implies dH = dU + d(pV) = dU + pdV + Vdp$$
inserting dU = TdS - pdV

$$\Rightarrow$$
 ** dH = TdS + Vdp **

The natural variables for H are then <u>S and p</u>

**
$$H(S,p)$$
 **
From dH = TdS + Vdp \Rightarrow ** $\left(\frac{\partial H}{\partial S}\right)_{p} = T$; $\left(\frac{\partial H}{\partial Vp}\right)_{S} = V$ **

We can use these equations to find how S depends on T.

From dU = TdS - pdV
$$\Rightarrow$$
 $\left(\frac{\partial S}{\partial T}\right)_{V} = \frac{1}{T} \left(\frac{\partial U}{\partial T}\right)_{V} = \frac{C_{V}}{T}$
From dH = TdS + Vdp \Rightarrow $\left(\frac{\partial S}{\partial T}\right)_{p} = \frac{1}{T} \left(\frac{\partial H}{\partial T}\right)_{p} = \frac{C_{p}}{T}$

page 3

<u>Criteria for Spontaneous Change</u>

The 2nd Law gave the Clausius inequality for spontaneous change

 $dS > dq/T_{surr.}$

The $1^{s^{\dagger}}$ law gave us dU = dq + dw

Putting the two together, assuming only pV work, gives us the following <u>general</u> criterion for spontaneous change:

** $dU + p_{ext}dV - T_{surr}dS < 0$ **

Equilibrium is when there is no possible change of state that would satisfy this inequality.

We can now use the general criterion above under <u>specific</u> conditions

• Consider first an isolated system (q=w=0, Δ V=0, Δ U=0)

Since dU=0 and dV=0, from the general criterion above, then

(dS)_{U,V} > 0

is the criterion for spontaneity for an isolated system

And equilibrium for an <u>isolated</u> system is then achieved when <u>entropy</u> <u>is maximized</u>. At maximum entropy, no spontaneous changes can occur.

• Consider now <u>S and V constant</u>

Lecture #8

is the criterion for spontaneity under <u>constant V and S</u>

At constant S and V, equilibrium is achieved when energy is minimized

Consider now <u>S constant and p=p_{ext} constant</u>

$$\Rightarrow dU + pdV < 0 \Rightarrow d(U + pV) < 0$$

So

is the criterion for spontaneity under constant S and constant $p=p_{ext}$.

• Consider now <u>H constant and p=p_{ext} constant</u>

 \Rightarrow (dH)_{S,pext} < 0

$$dU + pdV - T_{surr}dS < 0$$

but dU + pdV = dH, which is 0 (H is constant)

So $(dS)_{H,p=pext} > 0$

is the criterion for spontaneity under constant H and constant $p=p_{ext}$.

Now let's begin considering cases that are <u>experimentally</u> more controllable.

Consider now constant T=T_{surr} and constant V

Lecture #8

\Rightarrow dU - TdS < 0 \Rightarrow d(U - TS) < 0

Define A = U - TS, the Helmholtz Free Energy

Then $(dA)_{V,T=Tsurr} < 0$

is the criterion for spontaneity under <u>constant $T=T_{surr}$ and constant V.</u>

For constant V and constant $T=T_{surr}$, equilibrium is achieved when the <u>Helmholtz free energy is minimized</u>.

We now come to the most important and applicable constraint:

• Consider now <u>constant T=T_{surr} and constant p=p_{ext}.</u>

 $(dU + pdV - TdS) < 0 \implies d(U + pV - TS) < 0$

<u>Define</u> G = U + pV - TS, the Gibbs Free Energy

(can also be written as G = A + pV and G = H - TS)

Then $(dG)_{p=pext,T=Tsurr} < 0$

is the criterion for spontaneity under <u>constant $T=T_{surr}$ and constant</u> <u> $p=p_{ext}$ </u>.

At constant $p=p_{ext}$ and constant $T=T_{surr}$, equilibrium is achieved when the <u>Gibbs free energy is minimized</u>.

Consider the process:

A(p,T) = B(p,T) (keeping p and T constant)

Lecture #8

Under constant p=p _{ext} and T=T _{surr} ,				
∆ <i>G</i> < 0	$A \rightarrow B$ is spontaneous			
∆ <i>G</i> = 0	A and B are in equilibrium			
∆G > 0	then B $ ightarrow$ A is spontaneous			

Maxwell Relations

• With the free energies

Helmholtz free energy	A = U - TS
Gibbs free energy	G= H- TS

we've introduced all our state functions. For closed systems,

U(S,V)	\Rightarrow	dU=TdS – pdV
H(S,p)	\Rightarrow	dH = TdS + Vdp
A(T,V)	\Rightarrow	dA = -SdT - pdV
$\mathcal{G}(\mathcal{T},p)$	\Rightarrow	

Fundamental equations

From

and

$$d\mathcal{A} = \left(\frac{\partial \mathcal{A}}{\partial T}\right)_{V} dT + \left(\frac{\partial \mathcal{A}}{\partial V}\right)_{T} dV$$
$$d\mathcal{G} = \left(\frac{\partial \mathcal{G}}{\partial T}\right)_{p} dT + \left(\frac{\partial \mathcal{G}}{\partial p}\right)_{T} dp$$

$\left[\left(\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{V}} = -\boldsymbol{S}\right]$	$\left(\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{V}}\right)_{T} = -\boldsymbol{p}$
$\left(\frac{\partial \boldsymbol{\mathcal{G}}}{\partial \boldsymbol{\mathcal{T}}}\right)_{\boldsymbol{p}} = -\boldsymbol{\mathcal{S}}$	$\left(\frac{\partial \boldsymbol{\mathcal{G}}}{\partial \boldsymbol{p}}\right)_{\boldsymbol{\mathcal{T}}} = \boldsymbol{\mathcal{V}}$

Lecture #8

The Maxwell relations:
$$\frac{\partial^2 A}{\partial V \partial T} = \frac{\partial^2 A}{\partial T \partial V}$$
 and $\frac{\partial^2 G}{\partial p \partial T} = \frac{\partial^2 G}{\partial T \partial p}$

now allow us to find how S depends on V and p.

$$\Rightarrow \qquad \left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{V} \qquad \left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p}$$

These can be obtained from an equation of state.

We can now also relate U and H to p-V-T data.

$$\left(\frac{\partial U}{\partial V} \right)_{T} = T \left(\frac{\partial S}{\partial V} \right)_{T} - p = T \left(\frac{\partial p}{\partial T} \right)_{V} - p$$

$$\left(\frac{\partial H}{\partial p} \right)_{T} = T \left(\frac{\partial S}{\partial p} \right)_{T} + V = V - T \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$\rightarrow U \text{ and } H \text{ from equations of state!}$$

• For an ideal gas *pV* = *nRT*

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{nR}{V} = \frac{p}{T} \qquad \Rightarrow \qquad \left(\frac{\partial U}{\partial V}\right)_{T} = 0$$
$$\left(\frac{\partial V}{\partial T}\right)_{p} = \frac{nR}{p} = \frac{V}{T} \qquad \Rightarrow \qquad \left(\frac{\partial H}{\partial p}\right)_{T} = 0$$

This <u>proves</u> that for an ideal gas U(T) and H(T), functions of Tonly. We had <u>assumed</u> this was true from Joule and Joule-Thomson expansion experiments. Now we know it is rigorously true.