Equilibrium in Solution

The chemical potential for molecules in solution is given by a formula that is very similar to that for ideal gases:
$\mu_{A}\left(T, p, c_{A}\right)=\mu_{A}^{o}(T, p)+R T \ln c_{A}=\mu_{A}^{o}(T, p)+R T \ln [A]$

The precise definition of the standard chemical potential $\mu_{A}^{o}(T, p)$ is now more complicated; it is defined at a given pH , salt concentration, etc..., all solution properties that need to be defined in advance. We will not go through those and take it as a given that the standard state is appropriately defined.

Given a standard chemical potential $\mu_{A}^{\rho}(T, p)$, then the analysis that we did for the ideal gas follows straight through and we find for a solution process

$$
v_{A} A(g, T, p)+v_{B} B(g, T, p)=v_{C} C(g, T, p)+v_{D} D(g, T, p)
$$

that following the ideal gas analysis in our previous lecture

$$
\Delta G(\varepsilon)=\varepsilon\left[v_{C} \mu_{C}^{\circ}(T)+v_{0} \mu_{0}^{\circ}(T)\right]-\left[v_{A} \mu_{A}^{\circ}(T)+v_{B} \mu_{B}^{\circ}(T)\right]+R T \ln \left(\frac{[C]^{\nu_{c}}[D]^{\nu_{0}}}{[A]^{\nu_{A}}[B]^{v_{B}}}\right)
$$

and the equilibrium constant K comes out through

$$
\Delta G_{r \times n}^{o}=-R T \ln K, \quad K=e^{-\Delta \sigma^{0} / R T}
$$

Where $K=Q_{\text {eq }}=\frac{[C]^{v_{c}}[D]^{v_{0}}}{[A]^{v_{A}}[B]^{v_{B}}}$ at equilibrium as before, and where the concentrations Q are equilibrium concentrations.

Temperature dependence of K (or K_{p})

$$
\ln K(T)=-\frac{\Delta G^{\circ}}{R T} \Rightarrow \frac{d \ln K}{d T}=\frac{d}{d T}\left(-\frac{\Delta G^{\circ}}{R T}\right)=\frac{\Delta G^{\circ}}{R T^{2}}-\frac{1}{R T} \frac{d \Delta G^{\circ}}{d T}
$$

But at fixed pressure and/or solutions properties ($p=1 \mathrm{bar}, \mathrm{pH}$ constant, etc..)

$$
\frac{d \Delta \mathcal{G}^{\circ}}{d T}=\left(\frac{\partial \Delta \mathcal{G}^{\circ}}{\partial T}\right)_{1 \text { bar.,pH constant, etc.... }}
$$

and from fundamental equation

$$
\begin{gathered}
d G=-S d T+V d p \Rightarrow\left(\frac{\partial G}{\partial T}\right)_{p}=-S \Rightarrow\left(\frac{\partial \Delta G^{\circ}}{\partial T}\right)_{p}=-\Delta S^{\circ}(T) \\
\therefore \quad \frac{d \ln K}{d T}=\frac{\Delta H^{\circ}(T)-T \Delta S^{\circ}(T)}{R T^{2}}+\frac{1}{R T} \Delta S^{\circ}(T) \\
\\
\frac{d \ln K(T)}{d T}=\frac{\Delta H^{\circ}(T)}{R T^{2}}
\end{gathered}
$$

Integrating: $\quad \ln K\left(T_{2}\right)=\ln K\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \frac{\Delta H^{0}(T)}{R T^{2}} d T$

At constant $p: \quad \Delta H^{\circ}(T)=\Delta H^{\circ}\left(T_{1}\right)+\Delta C_{p}\left(T-T_{1}\right)$

$$
\ln K\left(T_{2}\right)=\ln K\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \frac{\Delta H^{\circ}\left(T_{1}\right)+\Delta C_{p}\left(T-T_{1}\right)}{R T^{2}} d T
$$

Over small T ranges, $\Delta C_{p}\left(T-T_{1}\right)$ can be assumed small and ΔH° independent of T.

$$
\Rightarrow \quad \ln K\left(T_{2}\right) \approx \ln K\left(T_{1}\right)+\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)=\ln K\left(T_{1}\right)+\frac{\Delta H^{\circ}\left(\frac { T _ { 2 } - T _ { 1 } } { R } \left(T_{1} T_{2}\right.\right.}{}
$$

If $\Delta H^{\circ}(T)<0$ (Exothermic) $T_{2}>T_{1}$ means $K_{p}\left(T_{2}\right)<K_{p}\left(T_{1}\right)$ The equilibrium shifts toward reactants

If $\quad \Delta H^{\circ}(T)>0$ (Endothermic) $T_{2}>T_{1}$ means $K_{p}\left(T_{2}\right)>K_{p}\left(T_{1}\right)$ The equilibrium shifts toward products

This is Le Chatelier's principle for Temperature

- Example: The Haber process

$$
\begin{gathered}
\frac{1}{2} N_{2}(g, T, p)+3 / 2 \mathrm{H}_{2}(g, T, p)=\mathrm{NH}_{3}(g, T, p) \\
\Delta H_{r \times n}^{0}(298 \mathrm{~K})=-46.21 \mathrm{~kJ} / \mathrm{mol} \\
\Delta G_{r \times n}^{\times}(298 \mathrm{~K})=-16.74 \mathrm{~kJ} / \mathrm{mol} \\
K_{p}=\frac{P_{\mathrm{NH}_{3}}}{p_{H_{2} / 2}^{3 / 2}} p_{N_{2}}^{1 / 2}
\end{gathered} p^{-1} \frac{X_{\mathrm{NH}_{3}}}{X_{H_{2}}^{3 / 2} X_{N_{2}}^{1 / 2}}=e^{\frac{16.740 \mathrm{~J} / \mathrm{mol}}{(8.314 / \mathrm{J} / \mathrm{mol})(298 \mathrm{~K})}}=860 \mathrm{l}
$$

For $p=1$ bar this is pretty good, lots of product. However, the reaction at room T is slow (this is kinetics, not thermodynamics). Raising T to 800 K can speed it up. But since $\Delta H^{\circ}(T)<0$ (exothermic), Le Chatelier tells us that the equilibrium will shift toward the reactants.

Indeed: $\quad K_{p}(800 \mathrm{~K})=0.007$

What to do? $\quad \Rightarrow$ Note above $K_{x}=p K_{p}$

Again use Le Chatelier, but with pressure! If we increase p, Eq. shifts toward products.
$\Rightarrow \quad$ Run reaction at high T and high p
For $p=1$ bar, $T=800 \mathrm{~K}, K_{p}=0.007$

$$
K_{X}=\frac{X_{N+3}}{X_{H_{2}}^{3 / 2} X_{N_{2}}^{1 / 2}}=(1) K_{p}=0.007
$$

But at $p=100$ bar, $K_{x}=(100) K_{p}=0.7 \quad$ much better!

- Heterogeneous Equilibria

If a product or reactant is a solid or liquid, it will not appear in the ratio of partial $p^{\prime} s$ for K_{p} or in the concentrations if the equilibrium is in solution. However, it must be used in ΔG.

Why? Take $\quad v_{A} A(s)+v_{B} B(g)=v_{C} C(l)+v_{D} D(g)$

The solid and liquid are not mixed - they are pure states.
$\Delta G=\left[v_{C} \mu_{C}(s\right.$, pure,$p)+v_{D} \mu_{D}(g$, mix, $\left.p)\right]-\left[v_{A} \mu_{A}(1\right.$, pure,$p)+v_{B} \mu_{B}(g$, mix, $\left.p)\right]$

And for (l) or (s) $\quad \mu_{c}($ pure, $p) \approx \mu^{\circ}($ pure $) \quad$ (no p-dependence)
$\Rightarrow \quad \Delta \boldsymbol{G}=v_{C} \mu_{C}^{\circ}+v_{D} \mu_{D}^{\circ}-v_{A} \mu_{A}^{\circ}-v_{B} \mu_{B}^{0}+R T \ln \frac{p_{D}^{\nu_{0}}}{p_{B}^{\nu_{B}}}=\Delta G^{\circ}+R T \ln Q$

$$
\therefore \quad K_{p}=\left[\frac{p_{0}^{\nu_{0}}}{p_{B}^{\nu_{B}}}\right]_{E q .} \quad \text { No A or C involved. }
$$

But we still have $\quad \Delta G_{\text {rxn }}^{\circ}=v_{C} \mu_{C}^{0}+v_{D} \mu_{D}^{\circ}-v_{A} \mu_{A}^{0}-v_{B} \mu_{B}^{\circ}$

$$
\text { and } \quad \ln K_{p}=-\frac{\Delta G_{r \times n}^{\circ}}{R T}
$$

e.9. the decomposition of limestone
$\mathrm{CaCO}_{3}(\mathrm{~s})=\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{T}=25^{\circ} \mathrm{C}$

Calculate equilibrium vapor pressure at room T and elevated T.
Data at $25^{\circ} \mathrm{C}$:

Substance	$\mathrm{CaCO}_{3}(\mathrm{~s})$	$\mathrm{CaO}(\mathrm{s})$	$\mathrm{CO}_{2}(\mathrm{~g})$
$\mu^{\circ}(\mathrm{kJ} / \mathrm{mol})$	-1128.8	-604.0	-394.36
$\Delta \bar{H}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	-1206.9	-635.09	-393.51

At equilibrium,

$$
\begin{aligned}
& \Delta \boldsymbol{G}=\mu(\mathrm{CaO}, \mathbf{s})+\mu\left(\mathrm{CO}_{2}, \mathrm{~g}\right)-\mu\left(\mathrm{CaCO}_{3}, \mathbf{s}\right) \\
& =\mu^{\circ}(\mathrm{CaO}, \mathbf{s})+\mu^{\circ}\left(\mathrm{CO}_{2}, \mathrm{~g}\right)+R T \ln p_{\mathrm{CO}_{2}-\mu^{\circ}\left(\mathrm{CaCO}_{3}, \mathrm{~s}\right)} \\
& =\Delta \boldsymbol{G}^{\circ}+R T \ln K_{p} \quad \text { where } K_{p}=p_{\mathrm{co}_{2}} \text { (at eq.) }
\end{aligned}
$$

The equilibrium constant includes only the gas, but $\Delta \mathcal{G}^{\circ}$ includes the solids too.

$$
\begin{aligned}
& \Delta G^{\circ}(\mathrm{kJ} / \mathrm{mol})=-604.0-394.4-(-1128.8)=130.4 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})=-635.1-393.5-(-1206.9)=178.3 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Equilibrium pressure:

$\ln K_{p}=-\frac{\Delta G^{\circ}}{R T}=-\frac{130,400 \mathrm{~J} / \mathrm{mol}}{(8.314 \mathrm{~J} / \mathrm{K}-\mathrm{mol})(298.15 \mathrm{~K})}=-52.50$
$K_{p}=1.43 \times 10^{-23}$ bar

Nothing there at room T! Try 1100 K :

$$
\begin{aligned}
& \ln p_{\mathrm{CO}_{2}}(1100 \mathrm{~K}) \approx \ln p_{\mathrm{CO}_{2}}(298 \mathrm{~K})+\frac{\Delta H^{\circ}}{R}\left(\frac{1}{1100 \mathrm{~K}}-\frac{1}{298 \mathrm{~K}}\right) \\
& \quad=-52.50-\frac{178,300 \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{~J} / \mathrm{K}-\mathrm{mol}}\left(\frac{1}{1100 \mathrm{~K}}-\frac{1}{298 \mathrm{~K}}\right)=0.17 \\
& p_{\mathrm{CO}_{2}}(1100 \mathrm{~K}) \approx 0.84 \mathrm{bar}
\end{aligned}
$$

There's probably some change in $\Delta \bar{H}_{f}^{\circ}$ over such a wide T range, but clearly the equilibrium shifts dramatically.

