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Absolute Entropy 
Third Law of thermodynamics 

 

• Absolute Entropies 
Absolute entropy of an ideal gas 
Start with fundamental equation 
 

pdVTdSdU −=  

 

dS =
dU + pdV

T  

for ideal gas: 

dTCdU V=  and V
nRTp =  

dV
V
nR

T
dTCdS V +=  

At constant T, dT=0   

dST =
pdV
T  

For an ideal gas,   pV = nRT       

dST =
nRdV

V  

At constant T    

( ) ( )
VdppdV

nRTdpVd

−=

== 0
 

plugging into dST: 

dST = −
nRdp

p  

This allows us to know how S(p) if T held constant. Integrate! 
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For an arbitrary pressure p, 
 

S(p,T ) = S( po,T )−
nRdp

pp o

p

� = S(po,T )− nRln
p
po

� 
� � 

� 
� �  

 
where po is some reference pressure which we set at 1 bar. 
 

�   S(p,T) = So(T) – nR lnp     (p in bar) 
 
   

 
 
 
 

S ↓ as P↑ 
 
 
 
 
 
 

But to finish, we still need  S o(T )  ! 

 

Suppose we had )K0(S o  (standard molar entropy at 0 Kelvin) 
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for ideal gas 
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Then using  
∂S
∂T

� 
� 

� 
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p
=

Cp

T  

we should be able to get S o(T ) . Integrating over dS eqn, assuming Cp constant over T range: 
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   for p = 1bar 

 

Given Cp, T1, p1, → T2, p2, can calculate ∆S. 
 
We will use T=0K as a reference point. 
     Consider the following sequence of processes for the substance A: 
 
A(s,0K,1bar) = A(s,Tm,1bar) = A(l,Tm,1bar) = A(l,Tb,1bar) = A(g,Tb,1bar) = A(g,T,1bar) 
 
 

��

S (T,1bar)= S o (0K )+
C p (s)dT

T0

T m

� +
∆H fus

Tm
+

C p(�)dT
TTm

T b

� +
∆H vap

Tb
+

C p (g)dT
TTb

T

�
 

 
 
 
 
 
 
 
 
 
 
 

Liquid boils, ∆S = ∆H vap

T  

Solid melts, 
T
HS

fus∆=∆  

T
0 

So(T) 
�=∆

T
dTC

S p
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Since ∆S0 is positive for each of these processes, the entropy must have its smallest possible value 
at 0 K. If we take )K0(S o  = zero for every pure substance in its crystalline solid state, then we could 
calculate the entropy at any other temperature. 
 
This leads us to the Third Law of Thermodynamics: 
 

• THIRD LAW: 
 
First expressed as Nernst's Heat Theorem: 
Nernst (1905):   

 

As T → 0 K ,  ∆S → 0   for all isothermal  processes in condensed phases 
 

More general and useful formulation by M. Planck: 
Planck (1911):   

 

As T → 0 K ,  S → 0   for every chemically homogeneous substance in a perfect crystalline state 
 

Justification: 

  ���� It works! 

  ���� Statistical mechanics (5.62) allows us to calculate the 

   entropy and indeed predicts )K0(S o  = 0. 

 
This leads to the following interesting corollary: 

 
It is impossible to decrease the temperature of any system to   T = 0 K in a finite number of steps. 

 

How can we rationalize this statement? 
Recall the fundamental equation, dU = T dS – p dV 
 
dU = Cv dT   For 1 mole of ideal gas, P = RT/V 
 
so   Cv dT  = T dS – (RT/V) dV 
    dS = Cv d (ln T) + R d (ln V) 
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 For a spontaneous adiabatic process which takes the system from T1 to a lower temperature 
T2, 

   ∆S = Cv ln (T2/T1) + R ln (V2/V1) ≥ 0 
but if T2 = 0, Cv ln (T2/T1) equals minus infinity ! 
 
 Therefore R ln (V2/V1) must be greater than plus infinity, which is impossible. Therefore no 
actual process can get you to T2 = 0 K. 
 But you can get very very close! 
 In W. Ketterle's experiments on "Bose Einstein Condensates" (recent MIT Nobel Prize in 
Physics), atoms are cooled to nanoKelvin temperatures (T = 10-9 K) … but not to 0 K ! 
_______________ 
 
Some apparent violations of the third law (but which are not !) 
 
Any disorder at T = 0 K gives rise to S > 0 
 

• mixed crystals  
If have an unmixed crystal, N atoms in N sites: 

01ln

1
!
!

==

==Ω

kS
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But if mixed crystal: 
NA of A 
NB of B 
NA + NB = N 

!!
!ln

!!
!
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BA

NN
NkS

NN
N

=
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Use Stirling’s approx: 
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Using mole fractions: NA =xAN, NB =xBN  
 

∆Smix = −nR XA lnXA + XB lnXB[ ]   > 0   Always !!! Even at T=0K 

 But a mixed crystal is not a pure substance, so the third law is not violated. 
 

• Any impurity or defect in a crystal also causes S > 0 at   0 K 

• Any orientational or conformational degeneracies such as in a molecular crystal causes S > 0 at 0 
K, for example in a carbon monoxide crystal, two orientations are possible: 
 
C O C O C O C O C O C O C O 

C O C O  C O C O C O O C C O 

C O C O  C O O C C O C O C O 

C O C O  C O C O C O C O C O 
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