Lecture 16

Absolute Entropy

Third Law of thermodynamics

• Absolute Entropies

Absolute entropy of an ideal gas Start with fundamental equation

$$dU = TdS - pdV$$
$$dS = \frac{dU + pdV}{T}$$

for ideal gas:

$dU = C_V dT$ and $p = \frac{nRT}{V}$ $dS = \frac{C_V dT}{T} + \frac{nR}{V} dV$

At constant T, dT=0

$$dS_T = \frac{pdV}{T}$$

For an ideal gas, pV = nRT

$$dS_T = \frac{nRdV}{V}$$

At constant T

$$d(pV) = d(nRT) = 0$$
$$pdV = -Vdp$$

plugging into dS_T:

$$dS_T = -\frac{nRdp}{p}$$

This allows us to know how S(p) if T held constant. Integrate!

1

5.60/20.110/2.772

5.60/20.110/2.772

Lecture 16 For an arbitrary pressure p,

$$S(p,T) = S(p^{\circ},T) - \int_{p^{\circ}}^{p} \frac{nRdp}{p} = S(p^{\circ},T) - nR\ln\left(\frac{p}{p^{\circ}}\right)$$

where p° is some reference pressure which we set at 1 bar.

But to finish, we still need $\overline{S}^{o}(T)$!

Suppose we had $\overline{S}^{\circ}(OK)$ (standard molar entropy at 0 Kelvin)

$$dH = TdS + Vdp$$
$$dH = C_{p}dT$$

for ideal gas

$$C_{p}dT = TdS + Vdp$$
$$dS = \frac{C_{p}}{T}dT - \frac{V}{T}dp$$

5.60/20.110/2.772

Then using
$$\left(\frac{\partial S}{\partial T}\right)_p = \frac{C_p}{T}$$

we should be able to get $\overline{S}^{o}(T)$. Integrating over dS eqn, assuming C_p constant over T range:

$$dS = \int_{T_1}^{T_2} \frac{C_p}{T} dT - \int_{p_1}^{p_2} \frac{nR}{p} dp$$

So then

Lecture 16

$$\Delta S = C_p \ln\left(\frac{T_2}{T_1}\right) - nR \ln\left(\frac{p_2}{p_1}\right)$$

= $C_p \ln\left(\frac{T_2}{T_1}\right) - nR \ln p$ for p = 1bar

Given $C_p,\,T_1,\,p_1,\,\rightarrow T_2,\,p_2,$ can calculate $\Delta S.$

We will use T=0K as a reference point.

Consider the following sequence of processes for the substance A:

 $A(s,0K,1bar) = A(s,T_m,1bar) = A(I,T_m,1bar) = A(I,T_b,1bar) = A(g,T_b,1bar) = A(g,T,1bar)$

$$\overline{S}(T,1bar) = \overline{S}^{o}(0K) + \int_{0}^{T_{m}} \frac{\overline{C}_{p}(s)dT}{T} + \frac{\Delta \overline{H}_{fus}}{T_{m}} + \int_{T_{m}}^{T_{b}} \frac{\overline{C}_{p}(\ell)dT}{T} + \frac{\Delta \overline{H}_{vap}}{T_{b}} + \int_{T_{b}}^{T} \frac{\overline{C}_{p}(g)dT}{T}$$

Lecture 16

5.60/20.110/2.772

Since ΔS^0 is *positive* for each of these processes, the entropy must have its smallest possible value at 0 K. If we take $\overline{S}^{\circ}(OK)$ = zero for every pure substance in its crystalline solid state, then we could calculate the entropy at any other temperature.

This leads us to the Third Law of Thermodynamics:

• THIRD LAW:

First expressed as Nernst's Heat Theorem:

Nernst (1905):

As $T \to 0 \; K$, $\; \Delta S \to 0 \;$ for all isothermal $\; processes$ in condensed phases

More general and useful formulation by M. Planck:

Planck (1911):

As $T \to 0 \; K$, $\; S \to 0 \;$ for every chemically homogeneous substance in a perfect crystalline state

Justification:

- ① It works!
- ② Statistical mechanics (5.62) allows us to calculate the

entropy and indeed predicts $\overline{S}^{\circ}(OK) = 0$.

This leads to the following interesting corollary:

It is <u>impossible</u> to decrease the temperature of <u>any</u> system to T = 0 K in a finite number of steps.

How can we rationalize this statement? Recall the fundamental equation, dU = T dS - p dV

- $dU = C_v dT$ For 1 mole of ideal gas, P = RT/V
- so $C_v dT = T dS (RT/V) dV$ $dS = C_v d (In T) + R d (In V)$

Lecture 16

5.60/20.110/2.772

For a spontaneous adiabatic process which takes the system from T_1 to a lower temperature T_2 ,

$$\Delta S = C_v \ln (T_2/T_1) + R \ln (V_2/V_1) \ge 0$$

but if $T_2 = 0$, $C_v \ln (T_2/T_1)$ equals minus infinity !

Therefore R In (V_2/V_1) must be greater than plus infinity, which is impossible. Therefore no actual process can get you to $T_2 = 0$ K.

But you can get very very close!

In W. Ketterle's experiments on "Bose Einstein Condensates" (recent MIT Nobel Prize in Physics), atoms are cooled to nanoKelvin temperatures (T = 10^{-9} K) ... but not to 0 K !

Some apparent violations of the third law (but which are not !)

Any disorder at T = 0 K gives rise to S > 0

• mixed crystals

But if mixed crystal:

 N_A of A N_B of B

 $N_A + N_B = N$

If have an unmixed crystal, N atoms in N sites:

$$\Omega = \frac{N!}{N!} = 1$$

$$S = k \ln 1 = 0$$

$$\Omega = \frac{N!}{N_A! N_B!}$$

$$S = k \ln \frac{N!}{N_A! N_B!}$$

Use Stirling's approx:

 $\ln N! = N \ln N - N$

Lecture 16

5.60/20.110/2.772

$$S = k (N \ln N - N - N_A \ln N_A + N_A - N_B \ln N_B + N_B)$$

= $-k (-N \ln N + N_A \ln N_A + N_A + N_B \ln N_B)$

Using mole fractions: $N_A = x_A N$, $N_B = x_B N$

$$\Delta S_{mix} = -nR \left[X_A \ln X_A + X_B \ln X_B \right] > 0 \quad \text{Always !!! Even at T=0K}$$

But a mixed crystal is not a pure substance, so the third law is not violated.

• Any impurity or defect in a crystal also causes S > 0 at 0 K

• Any orientational or conformational degeneracies such as in a molecular crystal causes S > 0 at 0 K, for example in a carbon monoxide crystal, two orientations are possible:

СО	СО	СО	СО	СО	СО	СО
СО	СО	СО	СО	СО	0 C	СО
СО	СО	СО	0 C	СО	СО	СО
СО	СО	СО	СО	СО	СО	СО