Clausius Clapeyron equation
Condensed phase equilibria

- CLAUSIUS-CLAPERYON EQUATION

We derived the Clapeyron Equation last lecture:

$$
\left(\frac{d p}{d T}\right)_{\text {coexist }}=\left[\frac{\bar{S}_{\beta}-\bar{S}_{\alpha}}{\bar{V}_{\beta}-\bar{V}_{\alpha}}\right]=\left(\frac{\Delta \bar{S}}{\Delta \bar{V}}\right)_{\alpha \rightarrow \beta}
$$

This is exact!
Let's examine this for equilibrium between solid-liquid and solid-solid phases. For example, fusion:
$\left(\frac{d p}{d T}\right)_{\text {coexist }}=\frac{\Delta S_{\text {fus }}}{\Delta V_{\text {fus }}} \quad$ use $\quad \Delta H_{\text {fus }}=T \Delta S_{\text {fus }}$
We can make some assumptions about these types of phase equilibria.
$\int_{p_{1}}^{p_{2}} d p=\int_{T_{m}}^{T_{m}^{\prime}} \frac{\Delta H_{\text {fus }}}{\Delta V_{\text {fus }}} \cdot \frac{d T}{T}$
assume $\Delta \mathrm{H}_{\text {fus }}, \Delta \mathrm{V}_{\text {fus }}$ are independent of p, T
$p_{2}-p_{1}=\frac{\Delta H_{\text {fus }}}{\Delta V_{\text {fus }}} \ln \left(\frac{T_{m}^{\prime}}{T_{m}}\right) \quad \mathrm{T}_{\mathrm{m}}=$ melting temp $@ \mathrm{p}_{2}, \mathrm{~T}_{\mathrm{m}}=$ melting temp $@ \mathrm{p}_{1}$
$T_{m}^{\prime}-T_{m} \sim 0$ (expect small change in T_{m})

$$
\ln \left(\frac{T_{m}^{\prime}}{T_{m}}\right)=\ln \left(\frac{T_{m}+T_{m}^{\prime}-T_{m}}{T_{m}}\right)=\ln \left(1+\frac{T_{m}^{\prime}-T_{m}}{T_{m}}\right)
$$

Since fraction is small, then
$\ln \left(\frac{T_{m}^{\prime}}{T_{m}}\right) \approx\left(\frac{T_{m}^{\prime}-T_{m}}{T_{m}}\right)=\frac{\Delta T}{T}$
Then

Lecture 18

$$
\Delta p \cong \frac{\Delta H_{\mathrm{fus}}}{\Delta V_{\mathrm{fus}}} \cdot \frac{\Delta T_{m}}{T_{m}}
$$

gives you ΔT_{m}, the melting point increase corresponding to a $\Delta \mathrm{p}$ increase
also says: the coexistence line is approximately linear

- Equilibrium between gas/liquid or gas /solid (gas/condensed phase)

 substance A:$$
\begin{array}{rcr}
\mathrm{A}(\mathrm{l})=\mathrm{A}(\mathrm{~g}) & \text { or } & \mathrm{A}(\mathrm{~s})=\mathrm{A}(\mathrm{~g}) \\
\Delta \mathrm{H}_{\text {vap }} & \Delta \mathrm{H}_{\text {sub }} \\
\left(\frac{d p}{d T}\right)=\frac{\Delta \bar{S}}{\Delta \bar{V}}=\frac{\Delta \bar{H}}{T\left(\bar{V}_{\mathrm{g}}-\bar{V}_{c}\right)} \quad & \mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\text {solid }} \text { or } \mathrm{V}_{\text {liquid }}
\end{array}
$$

a) We can approximate
$\bar{V}_{g}-\bar{V}_{c} \approx \bar{V}_{g}$ because $\mathrm{V}_{\mathrm{g}} \gg \mathrm{V}_{\mathrm{c}}$
b) We can assume the gas is ideal

$$
\bar{V}_{g}=\frac{R T}{p}
$$

Clausius Clapeyron Equation

$$
\begin{aligned}
& \left(\frac{d p}{d T}\right) \approx \frac{\Delta \bar{H}}{T\left(\bar{V}_{\mathrm{g}}\right)}=\frac{\Delta \bar{H} \cdot p}{R T^{2}} \\
& \left(\frac{d \ln p}{d T}\right) \approx \frac{\Delta \bar{H}}{R T^{2}}
\end{aligned}
$$

to get here we made approximations, but very good far from Tc.

Relates the vapor pressure of a liquid to $\Delta \mathrm{H}_{\text {vap }}$ or vapor pressure of a solid to $\Delta \mathrm{H}_{\text {sub }}$.
c) We can make yet another approximation: assume $\Delta \mathrm{H}$ independent of T . Then can integrate:

$$
\int_{p_{0}}^{p} d \ln p=\int_{T_{0}}^{T} \frac{\Delta H}{R T^{2}} d T
$$

$$
\ln \left(\frac{p}{p_{0}}\right) \approx-\frac{\Delta \bar{H}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)
$$

This equation allows us to get $\Delta \mathrm{H}_{\text {sub }}$ from p
$\ln \left(\frac{p}{p_{0}}\right) \approx-\frac{\Delta \bar{H}}{R T}+\frac{\Delta \bar{H}}{R T_{0}}$

