Musculoskeletal Tissues

© ADAM, Inc \square All rights reserved. This content is excluded from our Creative Commons license. For more information, see hhttp://ocw.mit.edu/help/faq-fair-use/.

Equilibrium (Tensile) Modulus Pro-collagen molecule \longrightarrow

Courtesy of Elsevier, Inc., |http://www.sciencedirect.com. Used with permission. Source: Sun, Yu-Long et al. "SStretching Type II Collagen with Optical Tweezers." Journal of Biomechanics 37, no. 11 (2004): 1665-9.

Tendon

(C) Taylor \& Francis Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see |http://ocw.mit.edu/help/faq-fair-use/. Source: Kastelic, J., A. Galeski, et al. "The Multicomposite Structure Jof Tendon." Connective Tissue Research 6, no. 1 (1978): 11-23.

I Courtesy of Elsevier, Inc., |http://www.sciencedirect.com. Used with permission. I Source: Gutsmann, Thomas. "Force Spectroscopy of Collagen Fibers to Investigate |their Mechanical Properties and Structural Organization." Biophysical Journal 86, no. 5 (2004): 3186-93.

Stress vs strain curve of a rat tail

 tendon: (A-B) Toe - heel region,(C) linear region, (D) plateau, (E) rupture of the tendon.
(Gutsmann+, Biophys J, 2004)

Organization and Function of Extracellular Matrix

© Wiley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see|http://ocw.mit.edu/help/faq-fair-use/. Source: Heinegård, Dick, and Tore Saxne. "The Role of the Cartilage Matrix |in Osteoarthritis." Nature Reviews Rheumatology 7, no. 1 (2011): 50-56.
Dick Heinegård Int. J. Exp Pathol, 2009

Astronauts gain $\simeq 2$ in height during space flight: swelling of the intervertebral discs

under 0-gravity:

"swelling pressure" of highly charged aggrecan !!

Disc

Stress Relaxation: is $\tau=(\eta / E)$ the same for molecules, fibrils, fibers, tendon-tissue???

Apply constant strain $\left(\varepsilon_{11}\right)$ and measure stress vs time

Mouse tendon fascicle

Tendon Hierarchy

Figure 7.3:6 Hierarchy of structure of a tendon according to Kastelic et al. (1978). Reproduced by permission. Evidences are gathered from X ray, electron mi(rbscopy $u n g$) (EM), scanning electron microscopy (SEM), and optical microscopy (OM).
(C) Taylor \& Francis Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Kastelic, J., A. Galeski, and E. Baer. "The Multicomposite Structure of Tendon." \&RQQHFVYHDIVXH5HMHDFK 6, no. 1 (1978): 11-23.
© ASME. All rights reserved. This content is excluded from our Creative Commons license. For more information, see |http://ocw.mit.edu/help/faq-fair-use/.
Source: Robinson, Paul S. et al. "Influence of Decorin and Biglycan on Mechanical |Properties of Multiple Tendons in Knockout Mice." Journal of Biomechanical

"In silico" creep test of a segment of a collagen molecule

(Gautieri, Matrix Biology, 2012)

b

C

Fig. 1. Snapshots of the collagen peptide in water box. Panel a shows the conformation of the full atomistic model of a [(GPO) $\left.)_{21}\right]_{3}$ collagen peptide solvated in water box and equilibrated for 30 ns . After equilibration the molecule is subjected to virtual creep tests: one end of the collagen peptide is held fixed, whereas the other end is pulled with constant force (from 300 pN to 3000 pN) until end-to-end distance reaches equilibrium (Panel b). Panel c shows a schematic of the creep test; a constant force is applied instantaneously to the molecule and its response (deformation over time) is monitored. The mechanical response of collagen molecule is modeled using a KV model, from which molecular Young's modulus (E) and viscosity (η) are calculated.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Gautieri, Alfonso et al. "Niscoelastic Properties of Model Segments of
|Collagen Molecules." Matrix Biology 31, no. 2 (2012): 141-9.

Stress Relaxation: is $\tau=(\eta / E)$ the same for molecules, fibrils, fibers, tendon-tissue???

Apply constant strain $\left(\varepsilon_{11}\right)$ and measure stress vs time

Mouse tendon fascicle

Robinson+, J Biomech Eng, 2005
$\tau \sim 0.5 \mathrm{~ns}$
1 Tendon Hierarchy
© ASME. All rights reserved. This content is excluded from our Creative Commons license. For more information, see |http://ocw.mit.edu/help/faq-fair-use/. Source: Robinson, Paul S. et al. "Influence of Decorin and Biglycan on Mechanical Properties of Multiple Tendons in Knockout Mice." Journal of Biomechanical Engineering 127, no. 1 (2005): 181-5.

Need More Elements ? (e.g., Fibril \rightarrow Fiber \rightarrow Tissue)

a

Courtesy of Elsevier, Inc., |http://www.sciencedirect.com. Used with permission. Source: Gautieri, Alfonso et al. "Niscoelastic Properties of Model Segments of |Collagen Molecules." Matrix Biology 31, no. 2 (2012): 141-9.

1. The average Young's modulus decreases about six-fold from the single molecule level (5.4 GPa) to the fibrillar scale (0.9 GPa).
2. The viscosity of collagen molecules ($3.84 \mathrm{~Pa} \cdot \mathrm{~s}$) is several orders of magnitude lower than the viscosity of fibrils ($0.09-1.63 \mathrm{GPa} \cdot \mathrm{s}$). As a result, the characteristic relaxation time of the molecule $(\approx 0.5 \mathrm{~ns}$, given by $\eta / E)$ is several orders of magnitude lower that the value found for the fibril (7-102 s).

A Generalized Maxwell Model for Creep Behavior of Artery

Opening Angle

W. Zhang ${ }^{1}$, X. Guo ${ }^{1}$, and G. S. Kassab ${ }^{1,2,3}$

J Biomech Eng, 2008

Fig. 3.
A generalized Maxwell viscoelastic model (a linear spring in serial with m Voigt elements).

Fig. 2.
Photographs of a porcine coronary artery at the (a) loaded state with hardened elastomer in the lumen and (b) zero-stress state where opening angle is larger than 180°.
© ASME. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see |http://ocw.mit.edu/help/faq-fair-use/.
Source: Zhang, W., et al. "A Generalized Maxwell Model for Creep Behavior of Artery
Ppening Angle." Journal of Biomechanical Engineering 130, no. 5 (2008): 054502.

PSet 4: P2 (text P7.9 part c)

Time-varying loading

$$
\begin{equation*}
T+\alpha \frac{d T}{d t}=E_{1} e+\beta \frac{d e}{d t} \tag{7.73}
\end{equation*}
$$

Courtesy of Elsevier, Inc.,|http://www.sciencedirect.com. Used with permission.
Source: Lee, BoBae et al. '|Dynamic Mechanical Properties of the Tissue-engineered Matrix Associated with Individual Chondrocytes." Journal of Biomechanics 43, no. 3 (2010): 469-76.

PSet 4: P3 (text P7.9 part d)

Frequency

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Lee, BoBae et al. "Dynamic Mechanical Properties of the Tissue-engineered |Matrix Associated with Individual Chondrocytes." -RXLQDQRI[PdRP HFKDQIFV 43, no. 3 (2010): 469-76.

Read p. 258, Example 7.4.4 "....we can convert from the time domain to the frequency domain using $d / d t \rightarrow j \omega$ and replacing $T(t)$ with $\hat{T}(\omega)$ and $e(t)$ with $\hat{e}(\omega)$...."

$$
T(t)=\operatorname{Re}\left[\hat{T}(\omega) e^{j \omega t}\right]
$$

$$
\hat{E}(\omega) \equiv \frac{\hat{T}(\omega)}{e_{0}}
$$

(d) Based on the differential equation (7.73), derive an expression for the complex modulus that describes the frequency behavior of the three-element model of Figure 7.32(a) having the form

$$
\hat{E}(\omega)=E^{\prime}(\omega)+j E^{\prime \prime}(\omega)
$$

Show that $E^{\prime}(\omega)$ and $E^{\prime \prime}(\omega)$ have the frequency dependences shown qualitatively in Figure 7.33 by reasoning the low- and high-frequency limits. Find the constants A and B in terms of the element values E_{1} and E_{2} based on physical (and/or mathematical) arguments.

Dynamic mechanical analysis of newly synthesized chondrocyte pericellular matrix (for tissue engineering)

a

C

© VRXUFH CXQNQRZQ Q All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Viscoelasticity of human alveolar epithelial cells subjected to stretch

Xavier Trepat, ${ }^{1}$ Mireia Grabulosa, ${ }^{1}$ Ferranda Puig, ${ }^{1}$
Amer J Physiol, 2004
Geoffrey N. Maksym, ${ }^{2}$ Daniel Navajas, ${ }^{1}$ and Ramon Farré ${ }^{1}$

Magnetic Twisting Cytometry

Questions:

- What mechanism(s) are responsible for time / frequency dependence:

Poroelasticity v. "solid-phase" viscoelasticity?

- Does poroelasticity operate at cellular and molecular scales as well as tissue scale??

(b)

AFM detects contact, initiates step displacement

closed-loop control holds constant displacement

Time Domain: creep; stress relax.

$$
\begin{equation*}
T+\alpha \frac{d T}{d t}=E_{1} e+\beta \frac{d e}{d t} \tag{7.73}
\end{equation*}
$$ by Atomic Force Microscopy." 2 WARDUKUUMPQG\&RDUNJ H 14, no. 6 (2006): 571-9.

Non-equilibration of hydrostatic pressure in blebbing cells

Guillaume T. Charras ${ }^{1}$, Justin C. Yarrow ${ }^{1}$, Mike A. Horton ${ }^{2}$, L. Mahadevan ${ }^{1,3,4}$ \& T. J. Mitchison ${ }^{1}$

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Charras, Guillaume T., et al. '|Non-equilibration of Hydrostatic |Pressure in Blebbing Cells." Nature 435, no. 7040 (2005): 365-9.
Current models of the cytoplasm cannot account for spatiotemporal variations in hydrostatic pressure. We propose a new description of the cytoplasm based on poroelasticity. We consider cytoplasm to be composed of a porous, actively contractile, elastic network (cytoskeletal filaments, organelles, ribosomes), infiltrated with an interstitial fluid (...water, ions, soluble proteins), similar to a fluid-filled sponge. Contraction of the acto-myosin cortex creates a compressive stress on the cytoskeletal network, leading to localized increase in hydrostatic pressure \& ... cytosol flow out of the network; ... the resulting pressure can lead to membrane detachment and bleb inflation

Non-equilibration of hydrostatic pressure in blebbing cells

Guillaume T. Charras ${ }^{1}$, Justin C. Yarrow ${ }^{1}$, Mike A. Horton ${ }^{2}$, L. Mahadevan ${ }^{1,3,4}$ \& T. J. Mitchison ${ }^{1}$

MIT OpenCourseWare
http://ocw.mit.edu
20.310J / 3.053J / 6.024J / 2.797J Molecular, Cellular, and Tissue Biomechanics Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

