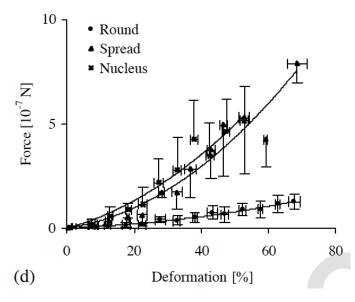
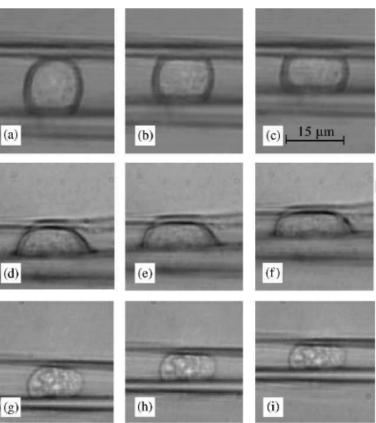

Pathologies sin which mechanics or "mechanobiology" is implicated

- Asthma
- Atherosclerosis
- Cancer
- Arthritis
- Hypertension
- Bone healing
- Loss of bone mass
- Pulmonary fibrosis
- Surfactant release in lung

# Expt. #2: Cell Squashing (and AFM)

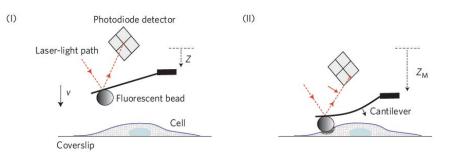


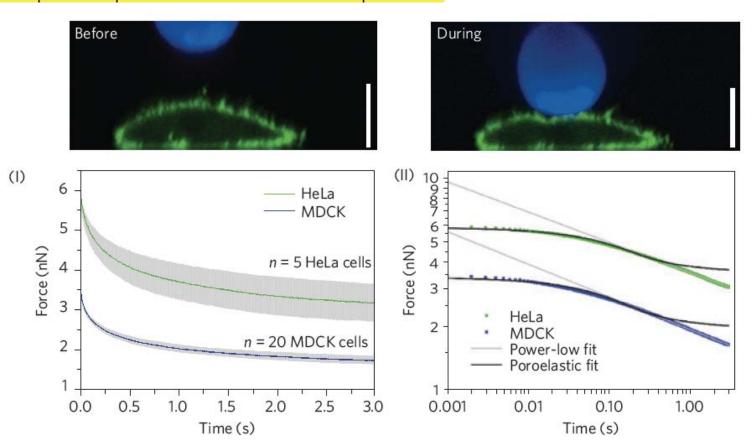


Scaling solution

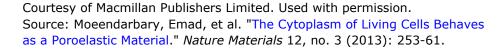
$$F \sim GR^{1/2}\delta^{3/2}$$

Exact solution for a sphere

$$F = \frac{4}{3} \frac{ER^{1/2}}{1 - v^2} \delta^{3/2}$$

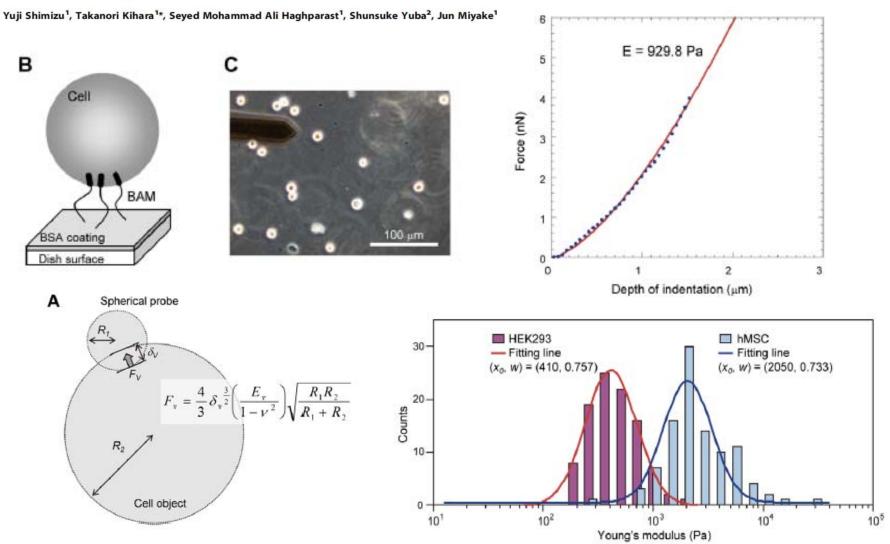




From top, a round cell, a spread cell and a nucleus. (Caille, et al., J. Biomech, 2002)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Caille, Nathalie, et al. "Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells." *Journal of Biomechanics* 35, no. 2 (2002): 177-87.

Population averaged force–relaxation curves showed similar trends for both HeLa and MDCK cells, with a rapid decay in the first 0.5 s followed by slower decay afterwards (Fig. 1d(I)). In Fig. 1d(II), we see that force–relaxation clearly exhibited two separate regimes: a plateau lasting  $\sim$ 0.1–0.2 s followed by a transition to a linear <sup>(1)</sup> regime (Fig. 1d(II)). Hence, at short timescales, cellular force– relaxation does not follow a simple power law. Comparison with force–relaxation curves acquired on physical hydrogels<sup>22,23</sup>, which exhibit a plateau at short timescales followed by a transition to a second plateau at longer timescales (Supplementary Fig. S3A,B), suggests that the initial plateau observed in cellular force–relaxation may correspond to poroelastic behaviour. Indeed poroelastic








### Simple Display System of Mechanical Properties of Cells and Their Dispersion

March, 2012

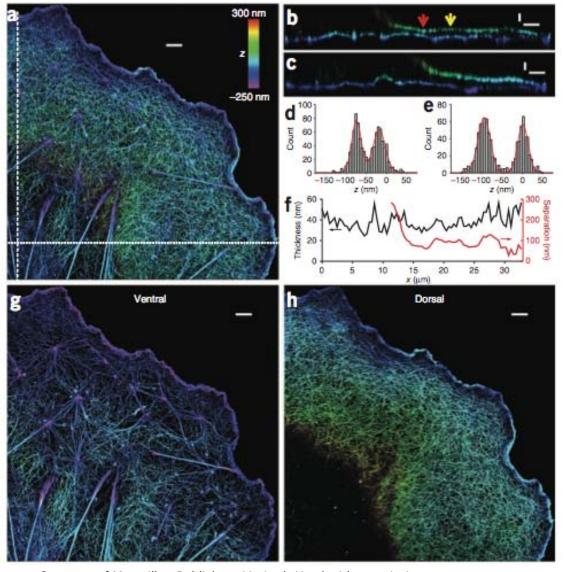


Courtesy of the authors. License: CC BY. Source: Shimizu, Yuji, et al. "Simple Display System of Mechanical Properties of Cells and their Dispersion." *PloS ONE* 7, no. 3 (2012).

### Homogeneous?? Cells in 3D matrix

Figures removed due to copyright restrictions.

MDA-MB-231 breast cancer cells migrating inside a collagen gel.


- Dense cortical actin with myosin.
- Cross-linkers more homogeneously distributed

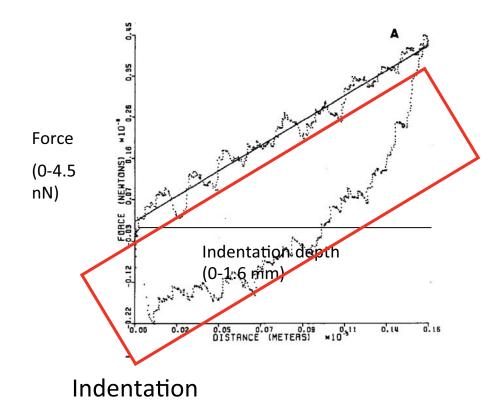
Rajagopalan, unpublished

Figure 3 | Sheet-like cell protrusion comprises two layers of actin networks with distinct structures. (a) Dual-objective STORM image of actin in a BSC-1 cell. The z positions are color coded (color bar). (b,c) Vertical cross sections (each 500-nm wide in x or y) of cell in a along dotted and dashed lines, respectively. When far from cell edge, z position of dorsal layer increases quickly and falls out of imaging range. (d,e) The z profiles for two points along vertical section (red and yellow arrows in b, respectively). Each histogram is fit to two Gaussians (red curves), yielding apparent thickness of ventral and dorsal layers and peak separation between the two layers. (f) Quantification of apparent thickness averaged over two layers and dorsal-ventral separation obtained from x-z cross-section profile in b. (g,h) Ventral and dorsal actin layers of cell in a. (i,j) Ventral and dorsal actin layers of a COS-7 cell treated with blebbistatin. (k,l) Vertical cross sections (each 500-nm wide in x or y) of cell along dotted and dashed lines, respectively. (m) Actin density of ventral and dorsal layers along yellow box in i, j, measured by localization density. Scale bars, 2 μm (a,g-j); 100 nm for z and 2 µm for x and y (b,c,k,l).

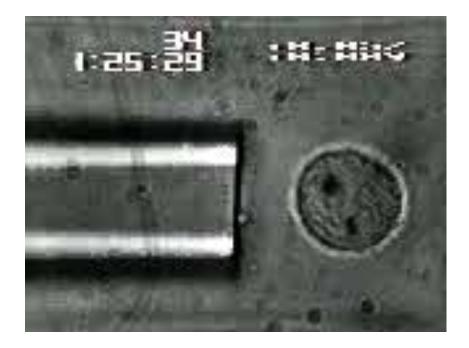
We observed two vertically separated actin layers in the sheet-like cell protrusion despite its small thickness (Fig. 3a-c). The apparent thickness of each layer was

# Isotropic??




Courtesy of Macmillan Publishers Limited. Used with permission. Source: Xu, Ke, et al. "Dual-objective STORM Reveals Three-dimensional Filament Organization in the Actin Cytoskeleton." *Nature Methods* 9, no. 2 (2012): 185-8.

#### http://www.nature.com/nmeth/video/moy2008/index.html


# Elastic??

**Micropipette Aspiration** 

#### Cells are viscoelastic



© The American Society of Mechanical Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/help/faq-fair-use/">http://ocw.mit.edu/help/faq-fair-use/</a>. Source: Zahalak, G. I., et al. "Determination of Cellular Mechanical Properties by Cell Poking, with An Application to Leukocytes." *Journal of Biomechanical Engineering* 112, no. 3 (1990): 283-94.





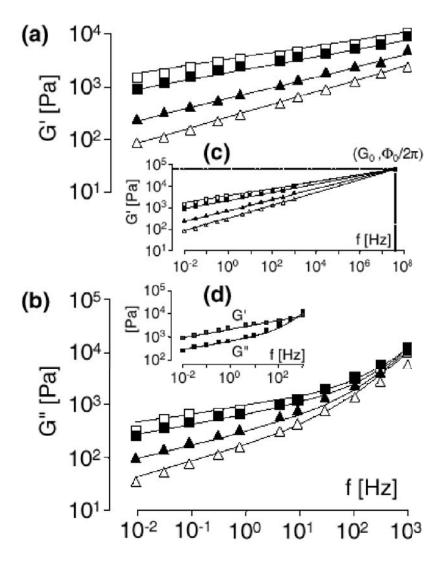
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

(Zahalak et al., 1990)

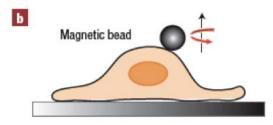
### Expt. #3: Magnetic Twisting Cytometry

Figure 1 removed due to copyright restrictions. Source: Fabry, Ben, et al. "Scaling The Microrheology of Living Cells." *Physical Review Letters* 87, no. 14 (2001): 148102.

VOLUME 87, NUMBER 14 PHYSICAL REVIEW LETTERS


1 October 2001

#### Scaling the Microrheology of Living Cells

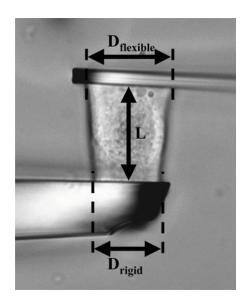

Ben Fabry,<sup>1,\*</sup> Geoffrey N. Maksym,<sup>2</sup> James P. Butler,<sup>1</sup> Michael Glogauer,<sup>3</sup> Daniel Navajas,<sup>4</sup> and Jeffrey J. Fredberg<sup>1</sup>

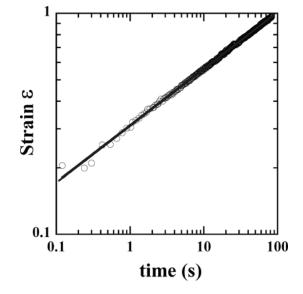
### Background: Linear Rheology of the Cytoskeleton

G



Fabry et al., PRL, 2001





Courtesy of Nature Publishing Group. Used with permission. Source: Bao, Gang, and S. Suresh. "Cell and Molecular Mechanics of Biological Materials." *Nature Materials* 2, no. 11 (2003): 715-25.

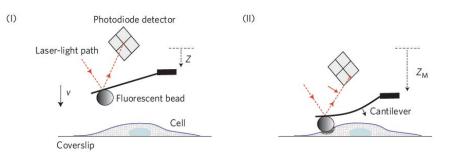
- Cells exhibit a weak power-law rheology, similar to soft glassy materials.
- This behavior is consistent over a range of experimental conditions and for all different types of cells.

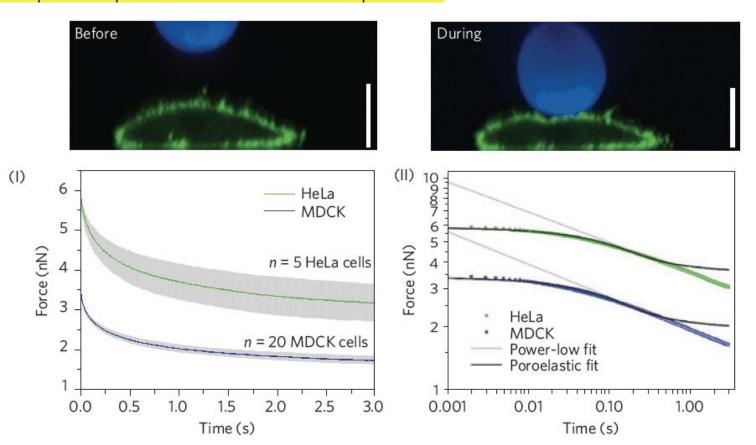
$$G^* = G' + jG'' = \alpha \frac{M(t)}{\delta(t)}$$
$$= G_0 \left(\frac{\omega}{\omega_0}\right)^{x-1} ((1+j\overline{\eta})\Gamma(x-2)\cos\left[\frac{\pi}{2}(x-1)\right] + j\omega\mu$$
$$\overline{\eta} = \tan(x-1)\frac{\pi}{2}$$







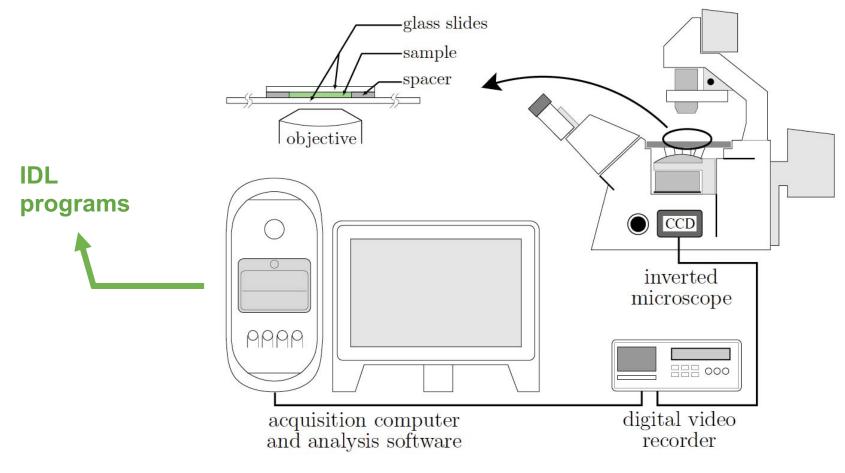

0.8 0.8 Strain Strain 0.60.6 0.4 0.4 0.2 0.2 20 40 60 80 100100 80 time (s) с d Strain  $\eta_0$ 0.1 KΛ 10 100 0.1 1 time (s)


Power-law behavior observed over a wide range of strains.

 $d\epsilon/dt = const \cdot t^{\alpha}$ .

Cells can appear to exhibit simple viscoelastic behavior in a linear plot, but on log-log scales the power-law behavior becomes obvious.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Desprat, Nicolas, et al. "Creep Function of a Single Living Cell." *Biophysical Journal* 88, no. 3 (2005): 2224-33. Population averaged force–relaxation curves showed similar trends for both HeLa and MDCK cells, with a rapid decay in the first 0.5 s followed by slower decay afterwards (Fig. 1d(I)). In Fig. 1d(II), we see that force–relaxation clearly exhibited two separate regimes: a plateau lasting  $\sim$ 0.1–0.2 s followed by a transition to a linear <sup>(1)</sup> regime (Fig. 1d(II)). Hence, at short timescales, cellular force– relaxation does not follow a simple power law. Comparison with force–relaxation curves acquired on physical hydrogels<sup>22,23</sup>, which exhibit a plateau at short timescales followed by a transition to a second plateau at longer timescales (Supplementary Fig. S3A,B), suggests that the initial plateau observed in cellular force–relaxation may correspond to poroelastic behaviour. Indeed poroelastic



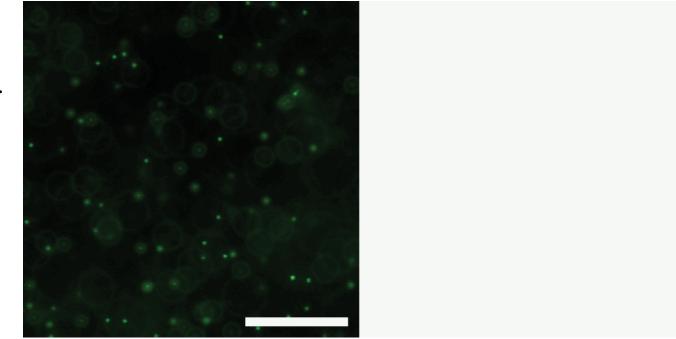



Courtesy of Macmillan Publishers Limited. Used with permission. Source: Moeendarbary, Emad, et al. "The Cytoplasm of Living Cells Behaves as a Poroelastic Material." *Nature Materials* 12, no. 3 (2013): 253-61.

### Expt. #5: Particle Tracking Microrheology (PTM) (T. Savin)

Standard video microscopy tracking setup




Courtesy of MIT.

Source: Savin, Thierry. "Multiple Particle Tracking to Assess the Microstructure of Biological Fluids." PhD Dissertation, Massachusetts Institute of Technology, 2006.

# Video Microscopy Particle Tracking

Tracking algorithms

Example: 1  $\mu$ m diameter spheres in water, *T*=25°C



#### $30\,\mu m$

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Crocker and Grier, 1996 http://www.physics.emory.edu/~weeks/idl/

# Particle tracking microrheology

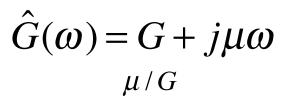
- Thermal fluctuations of particles reflect the mechanics of their local environment
- Evaluate the mean-squared displacement of the particles :

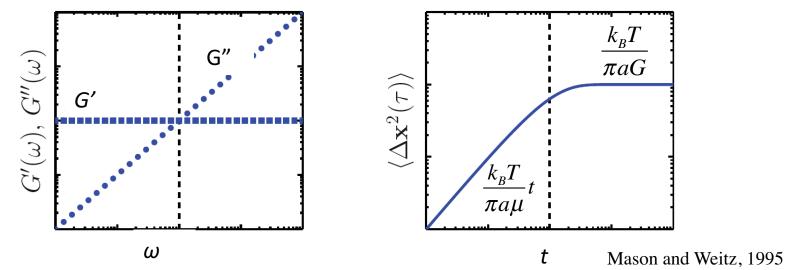
$$\left\langle \Delta x^2(t) \right\rangle = \left\langle \left| x(t) - x(0) \right|^2 \right\rangle$$

Two limits
<u>Viscous</u>

<u>Elastic</u>

 $\left< \Delta x^2(t) \right> = \frac{k_B T}{\pi a \mu} t$ 


 $\left\langle \Delta x^2(t) \right\rangle = \frac{k_B T}{\pi \alpha G}$ 


## Particle tracking microrheology

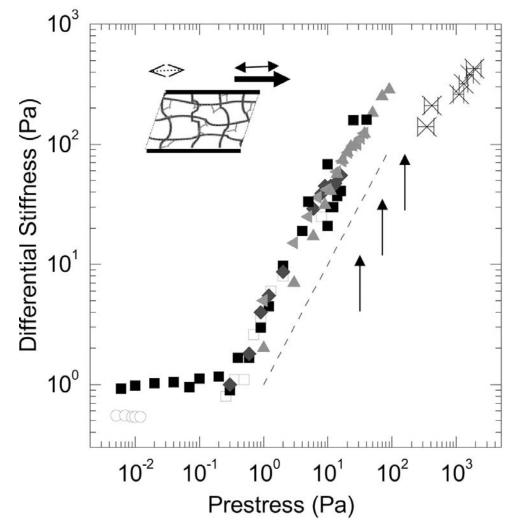
• Generalized Stokes-Einstein Relation (GSER)  $\hat{G}(\omega) = \frac{k_B T}{\pi a j \omega F_t^u \left[ \left\langle \Delta x^2(t) \right\rangle \right]} = G'(\omega) + j G''(\omega)$ 



 $G/\mu$ 






© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

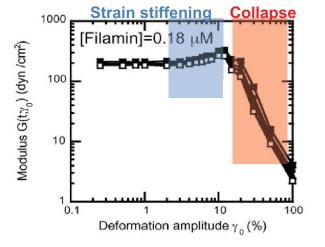
### Tumor cell escaping from the circulation

Figure removed due to copyright restrictions. Source: Chen, Michelle B., et al. "Mechanisms of Tumor Cell Extravasation in an in Vitro Microvascular Network Platform." *Integrative Biology* 5, no. 10 (2013): 1262-71.

Michelle Chen, Integr Biol, 2013

### Nonlinear modulus at higher levels of prestress




Courtesy of the National Academy of Sciences. Used with permission. Source: Gardel, M. L., et al. "Prestressed F-actin Networks Cross-linked by Hinged Filamins Replicate Mechanical Properties of Cells." *Proceedings of the National Academy of Sciences* 103, no. 6 (2006): 1762-7. A prestress is applied to the network and the deformation is measured in response to an additional oscillatory stress

The response is **approximately linear** with prestress above a threshold value

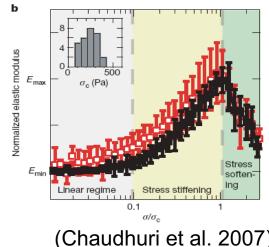
Incremental modulus is independent of actin or cross-link concentration

### Pre-stress increases moduli of reconstituted F-actin networks, up to a critical point

Reconstituted actin gels



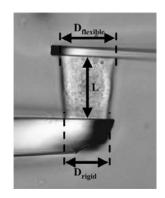
(Tseng et. al. 2004)


© Journal of Biological Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Tseng, Yiider, et al. "The Bimodal Role of Filamin in Controlling the Architecture and Mechanics of F-actin Networks." Journal of Biological Chemistry 279, no. 3 (2004): 1819-26.

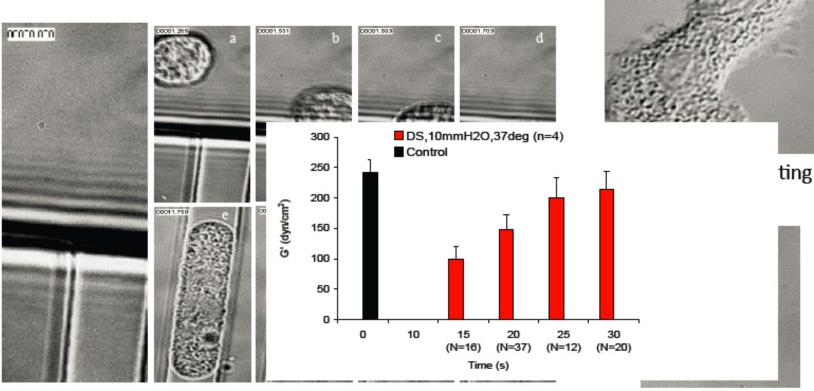
Strain-stiffening of F-actin/ABP at low strains

Nonlinear stress response and matrix collapse at large strain


Reversible stress stiffening and softening



Reconstituted cellular cytoskeletons


(Chaudhuri et al. 2007)

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Chaudhuri, Ovijit, et al. "Reversible Stress Softening of Actin Networks." Nature 445, no. 7125 (2007): 295-8.

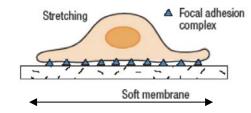


Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Desprat, Nicolas, et al. "Creep Function of a Single Living Cell." Biophysical Journal 88, no. 3 (2005): 2224-33.

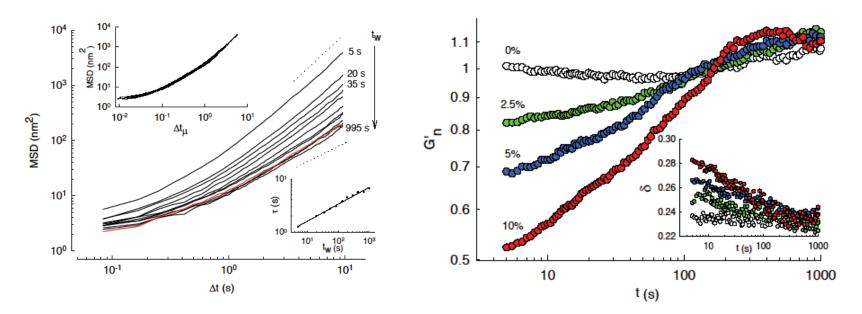
### Neutrophil elastic moduli fall abruptly upon deformation into a capillary



### As a function of time after entering channel, until protrusion


In non-adherent, neutrophils

00001.594


© American Physiological Society All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Yap, Belinda, and Roger D. Kamm. "Mechanical Deformation of Neutrophils into Narrow Channels Induces Pseudopod Projection and Changes in Biomechanical Properties." *Journal of Applied Physiology* 98, no. 5 (2005): 1930-39.

#### (Yap & Kamm, J Appl Physiol, 2005)

### Cells that have been suddenly stretched immediately exhibit a lower G' but recover in ~ 200s



Courtesy of Nature Publishing Group. Used with permission. Source: Bao, Gang, and S. Suresh. "Cell and Molecular Mechanics of Biological Materials." *Nature Materials* 2, no. 11 (2003): 715-25.



Courtesy of Macmillan Publishers Limited. Used with permission. Source: Trepat, Xavier, et al. "Universal Physical Responses to Stretch in the Living Cell." *Nature* 447, no. 7144 (2007): 592-5.

#### Universal physical responses to stretch in the living cell

10 November 2006

Xavier Trepat<sup>1</sup>, Linhong Deng<sup>1,2</sup>, Steven S. An<sup>1,3</sup>, Daniel Navajas<sup>4</sup>, Daniel J.

Tschumperlin<sup>1</sup>, William T. Gerthoffer<sup>5</sup>, James P. Butler<sup>1</sup>, and Jeffrey J. Fredberg<sup>1</sup>

Cytoskeletal fluidization is a common attribute of cells

20.310J / 3.053J / 6.024J / 2.797J Molecular, Cellular, and Tissue Biomechanics  $\ensuremath{\mathsf{Spring}}\xspace$  2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.