Nucleic Acids

- Carries and stores genetic information of species
- Chemically stable
- Very long

	base pairs (kb)	length (µm)
SV40	5.1	1.7
lambda phage	48.6	17
T2 phage	166	56
Mycoplasma	760	260
E.coli	4,000	1,360
Yeast	13,500	4,600
Drosophila	165,000	56,000
Human	2,900,000	990,000

Two slides removed due to copyright restrictions.

- Diagrams of hydrophilic amino acids removed due to copyright restrictions. (From Lodish et al)
- Chemical structure of adenosine triphosphate (ATP). Fig. 2.9 in Alberts et al., *Molecular Biology of the Cell*.
- Diagrams of aggrecan (proteoglycan) referencing work by Dick Heinegard (1989) – and chondroitin sulfate.

IGF-I INSULIN-LIKE GROWTH FACTOR-I "Folds" like x-helical Insulin in regions Aqueous Solution 6/ PROTEIN: (70 amino acids) • M.W. ~ 7,600Da • pI~8.4 (basic) (€ at pH~7)

Courtesy of Prof. Alan Grodzinsky. Used with permission.

Exception : Migratory Birds (pigeons)

Image removed due to copyright restrictions.

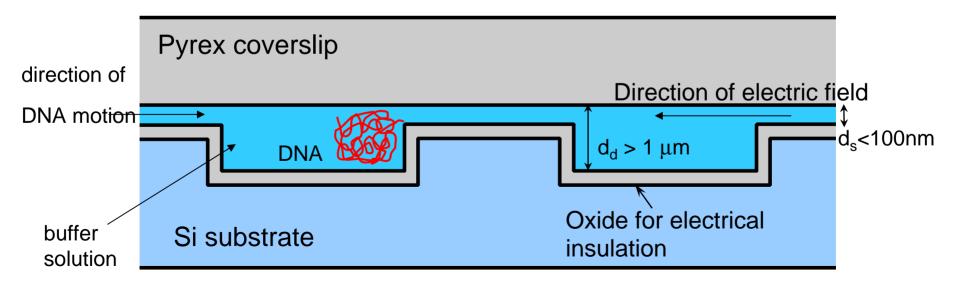
Figure 1 in Mora, Cordula V. "Magnetoreception and its Trigeminal Mediation in the Homing Pigeon." *Nature* 432 (2004): 508-511.

Collection of bacteria using Dielectrophoretic force

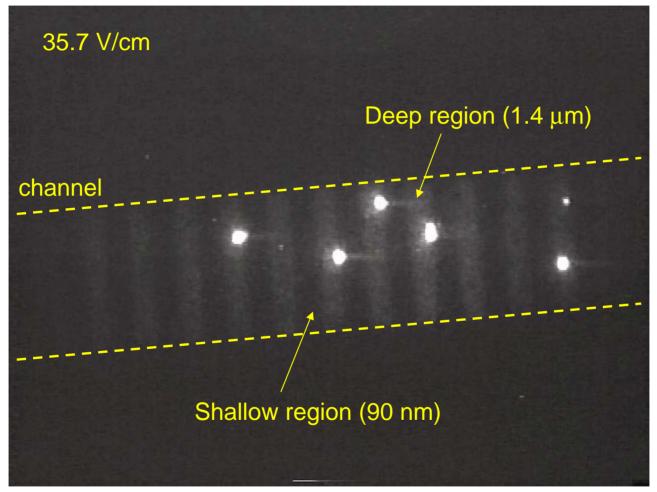
Figures 3 and 4 removed due to copyright restrictions.

See B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, Y. Fintschenko Anal. Chem.2004, 76,1571-1579

Dielectrophoretic Manipulation of Cells


See Grey et al. "Cells trapped by dielectrophoresis." Biosensors and Bioelectronics 19 (2004) 1765–1774

See Prof. Joel Voldman's group website: http://www.rle.mit.edu/biomicro/dep.htm


Design of nanofluidic channel

- Constriction much smaller than R_q (the radius of gyration of DNA)
- Open (deep) region where DNA can relax into equilibrium spherical shape
- Entropic hindrance for DNA from entering the shallow region
- Trapping affects DNA motion driven by an electric field

Cross sectional diagram of the channel

Motion of DNA in Channels

From Prof. Han's Ph.D thesis

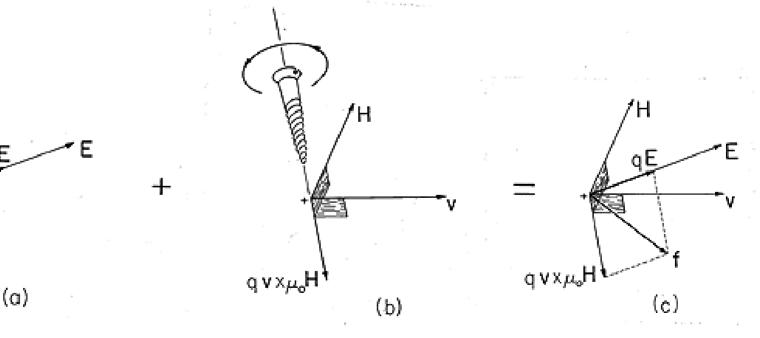
Key Concepts for this section

- 1: Lorentz force law, Field, Maxwell's equation
- 2: Ion Transport, Nernst-Planck equatioin
- 3: (Quasi)electrostatics, potential function,
- 4: Laplace's equation, Uniqueness
- 5: Debye layer, electroneutrality

Goals of Part II:

(1) Understand when and why electromagnetic (E and B) interaction is relevant (or not relevant) in biological systems.

(2) Be able to analyze quasistatic electric fields in 2D and 3D.


The "field" theory of electromagnetic forces

Source (charge, current) \rightarrow E and B field \rightarrow Lorentz force

Lorentz Force Law

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

- Electric Force on a charge q : qE
- Magnetic Force on a charge q : q $\mathbf{v} \times \mathbf{B}$

H&M Figure 1.1.1

Courtesy of Herman Haus and James Melcher. Used with permission. Source: http://web.mit.edu/6.013_book/www/

Coulomb's law

$$F_{Coulomb} = \frac{1}{4\pi\varepsilon_o} \frac{Q_1 Q_2}{r^2}$$
$$\varepsilon_o = 8.85 \times 10^{-12} (F/m)$$

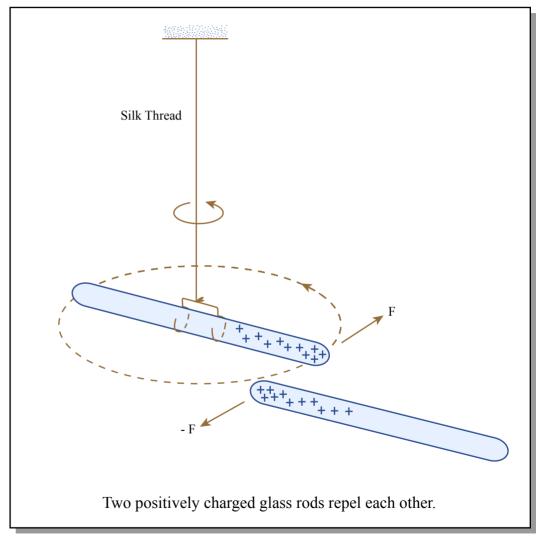


Figure by MIT OCW.

Gauss's Law : Electric vs Magnetic field

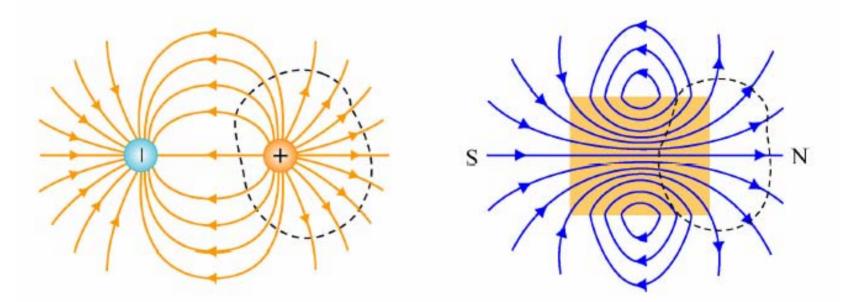


Figure 13.2.1 Gauss's law for (a) electrostatics, and (b) magnetism.

Oerstead (1820)

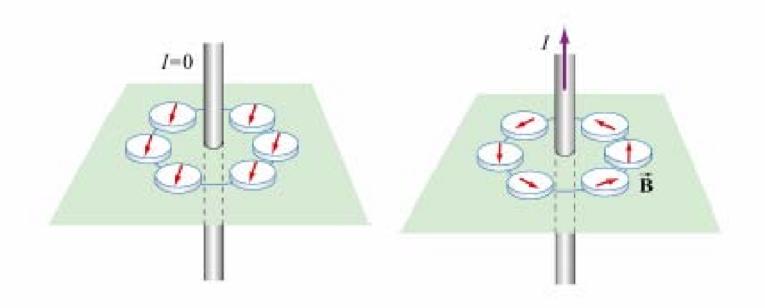
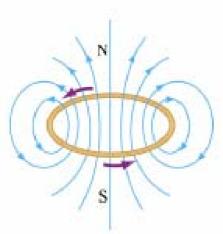



Figure 9.3.1 Deflection of compass needles near a current-carrying wire

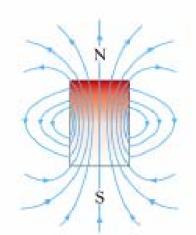


Figure 9.8.3 Magnetic field lines due to (a) a current loop, and (b) a small bar magnet.

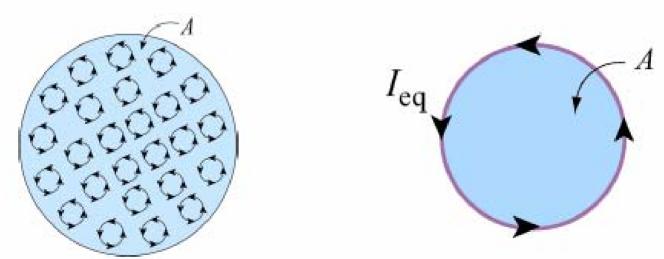
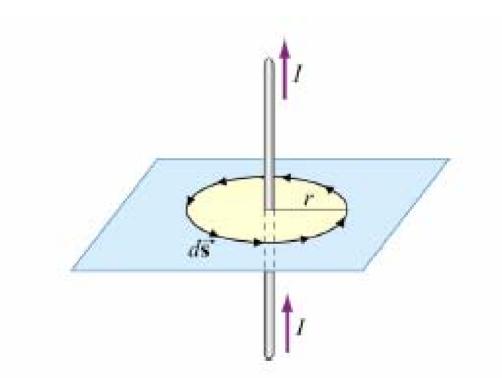
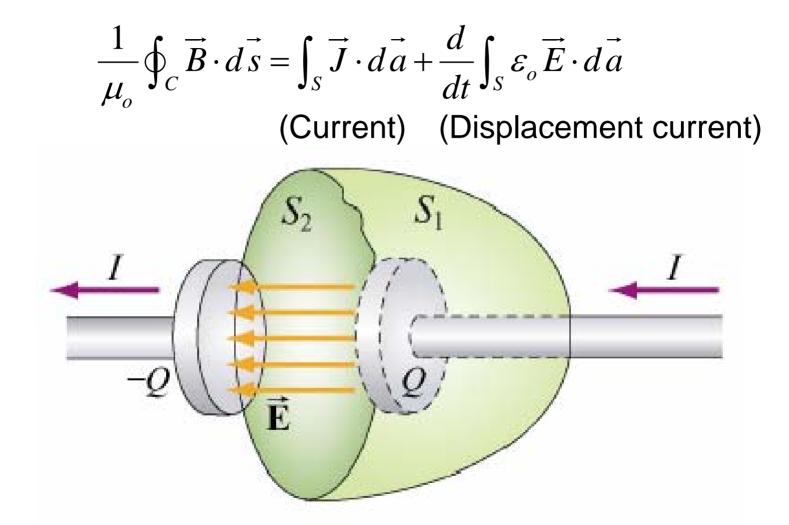



Figure 9.6.2 (a) Top view of the cylinder containing magnetic dipole moments. (b) The equivalent current.


Ampere's law

$$\frac{1}{\mu_o} \oint_C \vec{B} \cdot d\vec{s} = \int_S \vec{J} \cdot d\vec{a} = I$$

Figure 9.3.2 Amperian loop

Maxwell displacement current

Figure 13.1.2 Displacement through S_2 Image source: MIT 8.02 class notes. Courtesy of Dr. Sen-ben Liao, Dr. Peter Dourmashkin, and

Professor John W. Belcher. Used with permission.

Faraday

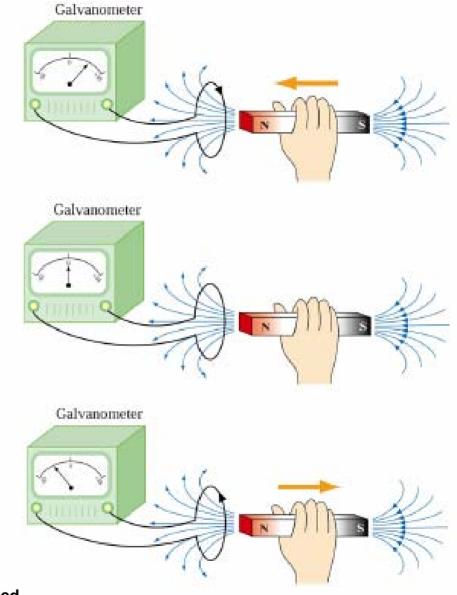


Image source: MIT 8.02 class notes. Courtesy of Dr. Sen-ben Liao, Dr. Peter Dourmashkin, and Professor John W. Belcher. Used with permission.

Figure 10.1.1 Electromagnetic induction

Maxwell's four equations for E

Law	Equation	Physical Interpretation
Gauss's law for $\vec{\mathbf{E}}$	$\bigoplus_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q}{\varepsilon_0}$	Electric flux through a closed surface is proportional to the charged enclosed
Faraday's law	$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\frac{d\Phi_B}{dt}$	Changing magnetic flux produces an electric field
Gauss's law for \vec{B}	$ \bigoplus_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0 $	The total magnetic flux through a closed surface is zero
Ampere – Maxwell law	$\oint \vec{\mathbf{B}} \cdot d \vec{\mathbf{s}} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$	Electric current and changing electric flux produces a magnetic field

$$\oint_{s} \vec{J} \cdot \vec{ds} = -\frac{d}{dt} \left(\int_{V} \rho dV \right)$$
$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Charge Continuity

Lorentz Force Law