Analysis of the Interferon Network

8 October 2004 Essigmann

The Players:

IFN:	Interferon
TF:	Transcription Factor
STAT:	Signal Transducers and Activators of Transcription
PK-R:	RNA-activated protein kinase
OAS:	Oligo-A-Synthetase
ADAR:	Adenine Deaminase
IRF:	Interferon Regulatory Factor (TF, or component of a TF)
IFN _{α} R ₁	
IFN _{α} R ₂ \succ	cell surface IFN receptors
IFN _{α} R ₃	-
JaK and TyK:	Janus Kinases (JaK1, 2, 3; TyK2)
ISRE:	IFN-Stimulated Response Elements (DNA structures)
RNaseL:	endonuclease that cleaves double-stranded RNA of viral genomes

Q: What happens when you get sick? A: You feel like crap.

White blood cells work better at a higher temperature. Most pathogens are optimized for body temp.

Feeling like crap = protein synthesis inhibition. Interferons do this.

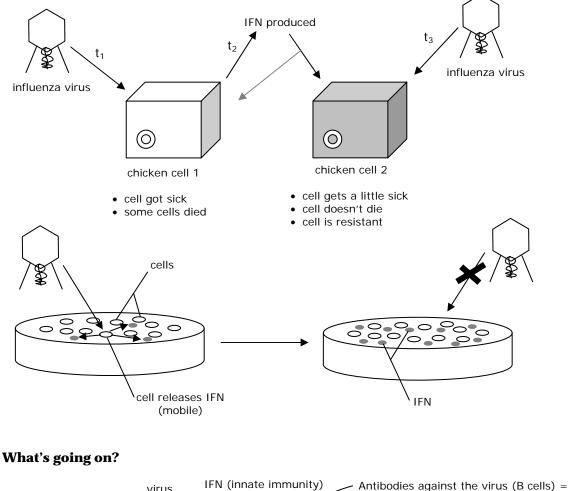
Properties of IFNs:

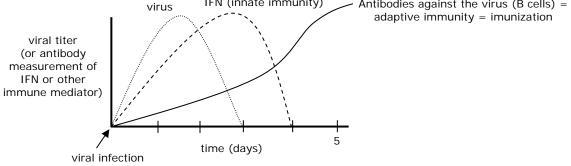
- a) cytokines: a protein that is produced by cell 1 and acts on cell 2 (and cell 1)
- b) proteins ~16-46 Kda (small)
- c) glycoproteins
- d) have disulfide bonds

Classification of IFNs:

- a) by cell surface receptors which they bind
- b) by a diagnostic antibody to which they react (historically, antibodies were used as diagnostic reagents

<u>Type I</u>: (by receptor) IFNa: 14 known polypeptides / 14 genes


IFNβ: 1 peptide / 1 gene IFNω: 1 protein / 1 gene IFNτ: 1 gene


<u>Type II</u>: (by receptor) IFNγ: 1 protein / 1 gene

What cells make IFNs?

Type I: almost every cell in the body Type II: immune system cells (T-cells, NK)

Discovery of IFNs: Isaacs & Lindeman (1957)

 \rightarrow Interferon sort of "teaches" the B cells what to look for.


Why did Chiron shut down their flu vaccine plant?

Quality control on purity of the product important to the FDA. How flu vaccine is made: Room the size of a football field full of 400,000 fertilized chicken eggs. Inject virus into the eggs, suck off fluid, purify a bit, inactivate, inject into humans.

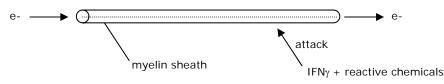
IFN in the world of Biotech:

After the 1957 experiment, people started thinking, "If I had this stuff, I could sell it and make a fortune!" However, when biotech was a budding industry, there were a limited number of proteins they had to work with.

Biogen started clinical trials on a marketable IFN α to "eliminate the cold":

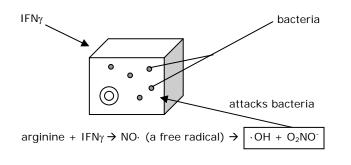
 \rightarrow IFN α *is* the symptoms of the flu!

Uses of IFN:

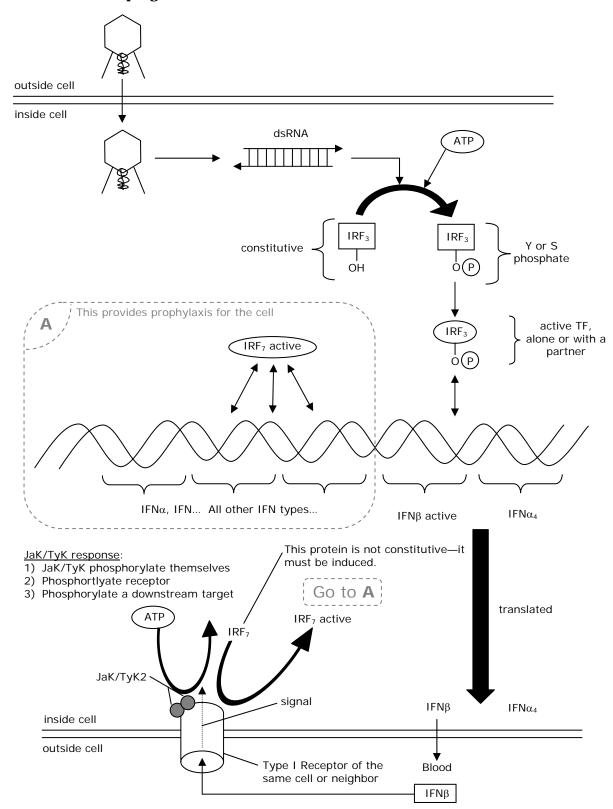

<u>IFNα</u>:

- a) common cold (not so good...)
- b) hairy cell leukemia (Gutterman) this is what made $\text{IFN}\alpha$ into a multi-billion-dollar market
- c) other cancers (colon, melanoma, lung, renal cell, Karposi sarcoma...)
- d) viral diseases (e.g. hepatitis C) currently there's a huge hepC problem in Japan because of a contaminated immunization process)

<u>IFNβ</u>:


- a) anticancer properties (squam. carcinoma)
- b) multiple sclerosis (primary use)

MS causes the immune system to attack nerves' myelin shealth. IFN β blocks the action of IFN γ , which is believed to be what's attacking the myelin.



IFN_γ: (Type II)

a) chronic granulomatosis disease

- b) Leishmanaisis (a parasitic disease)
- c) idiopathic pulmonary fibrosis (like Crohn's disease of the airways)

Let's look at the progression of a cold on three different timescales: