\qquad TA: \qquad

7.012 Quiz 2 Answers

$A \geq 85$
~12\% of test takers
$B \geq 72$
$C \geq 60$
$D \geq 50$
$F \geq 49$
~31.2\% of test takers
~34.1\% of test takers
~16.3\% of test takers
~6.2\% of test takers

Regrade requests (with a note attached indicating the problem and part you want looked at) accepted until Thursday November $4^{\text {th }}, 5 \mathrm{pm}$.

Question	Value	Score
1	17	
2	16	
3	30	
4	17	
5	20	
	100	

Question 1

In the bacterium Funditus fabricatus, the metabolism of the sugar ridiculose is dependent on the rid operon shown below.

The ridiculose operon encodes the enzymes shown in the following pathway.

The rid W gene is constitutively expressed. The expression of ridU, ridV, and ridX genes is off in the absence of ridiculose and is activated by the product of the rid W gene in the presence of ridiculose.

There is an artificial inducer of ridUVX expression, called GIG-L, and an artificial substrate for Rid X, called STRN that turns red in the presence of active Rid X protein.
a) Several specific Rid- mutants of F. fabricatus are shown below. Predict their phenotypes when grown in the presence of STRN, with and without the addition of the inducer, GIG-L. 10 pts (Fill in the chart with either RED or WHITE)

Strain of F. Fabricatus	+ GIG-L	- GIG-L
WT	RED	WHITE
M1 (deletion of Puvx)	White	White
M2 (control region that can't bind RidW protein)	White	White
M3 (RidW protein that can't bind ridiculose)	White	White
M4 (nonsense mutation early in ridX)	Red	Red
M1337 (RidW protein that always binds control region)		

\qquad TA: \qquad
b) Predict whether the following F. fabricatus strains, that are merodiploid for the ridiculose operon, will grow on minimal media with or without ridiculose as the only carbon source.

Fill in the chart with YES if the merodiploid will GROW or
NO if the merodiploid will NOT GROW
7 pts (5 points for the first column,
2 pts for entire last column)

Merodiploid	+Ridiculose	- Ridiculose
WT / WT	YES	NO
$\begin{aligned} & \text { M1 / M2 } \\ & \quad \text { (deletion of Puvx) } \\ & \hline \text { (control region that can't bind RidW) } \end{aligned}$	NO	NO
M2/ M3 $\frac{\text { (control region that can't bind RidW) }}{\text { (RidW protein that can't bind ridiculose) }}$	YES	NO
M3 / M1337 (RidW protein that can't bind ridiculose) (RidW protein that always binds control region)	YES	NO
$\begin{aligned} & \text { M4 / M } 1 \\ & \quad \text { (nonsense mutation early in ridX) } \\ & \hline \text { (deletion of } P_{u v x} \text {) } \end{aligned}$	NO	NO
M1337 / M4 (RidW protein that always binds control region) (nonsense mutation early in ridX)	YES	NO

Question 2

You believe that a disruption in a gene, sokS, may contribute to an interesting disease phenotype in cardinals. You wish to PCR amplify and sequence sokS from both wild type and diseased cardinals. The sokS gene is shown below. Exons are represented by numbered boxes and the terminal sequences are depicted in bold.

a) For PCR amplification, the primers should be identical to which of the following sequences? (Circle one.) 3 pts

1 and 3
2 and 4
1 and 4
2 and 3
b) Which primer(s) should you use in one sequencing reaction to obtain sequence that looks most similar to the mRNA (the coding strand)? 2 pts
1
2
3
4

You use the dideoxy sequencing method to sequence your PCR products. You see the following pattern in the sequencing gel representing the sequence spanning the end of the first intron and the beginning of exon 2.

c) These gels correspond to which WT and diseased sequences respectively? (WT, D) (Circle i, ii, iii, or iv.) 4 pts
i) 5'-ACTGGAAC-3', 5'-ACTTGAAC-3' ii) 5'-TGACCTTG-3', 5'-TGAACTTG-3'
iv) 5'-GTTCCAGT-3', 5'-5'-GTTCAAGT-3'

Name: \qquad TA: \qquad

To determine how this mutated sequence might affect the mRNA and the protein product, you obtain two cDNA libraries: one derived from wild type cardinal RNA and one derived from diseased cardinal RNA.
d) You choose to use a radioactively labeled DNA probe to screen these cDNA libraries for clones containing sokS. Which region of sokS would make the best probe for screening the available cDNA libraries? (Circle either Region A, Region B, or Region C.) 4 pts

Distances in base pairs
Your probe hybridizes to cDNA clones in both cDNA libraries. You purify the plasmids from single clones and cut them with the restriction enzyme used for cloning to verify insert size. The gel is shown below.

e) Based on all evidence above, what is the most likely explanation for the difference in restriction enzyme digestion patterns of the sokS cDNA clones? 3 pts
i) A mutation in the sokS cDNA from the diseased cardinal cDNA library gives rise to an additional restriction enzyme site.
ii) The mRNA encoded by the sokS gene from the diseased cardinal is incorrectly spliced.
iii) There is likely a problem with the gel and it should be rerun.
iv) The sokS gene from the diseased cardinal acquired a spontaneous insertion.
v) The mRNA encoded by the sokS gene from the diseased cardinal has no poly A tail.

Question 3

a) Match the following. Choose only one answer for each blank below. 10 pts
A. Unwinds DNA
B. Where Okazaki fragments are synthesized
C. Where DNA can be replicated continuously
D. Synthesizes RNA primers on DNA
E. Synthesizes DNA primers on RNA
F. Catalyzes the addition of dNTPs to lipids
G. Relieves tension in DNA caused by unwinding
H. 5' to 3' proofreading activity
I. 3' to 5' proofreading activity
b) Where in the eukaryotic cell does the following processes of the central dogma occur? One word answer for each, and please write legibly. 6 pts

Process 1 \qquad nucleus \qquad

Process 2 \qquad nucleus \qquad

Process 3 \qquad cytoplasm \qquad

Name: \qquad TA: \qquad
c) Below are schematics of transcription, splicing and translation. Match the numbered boxes with the following terms. Use each number only once. It's okay to leave blanks.

m7-G-p-p-p-GUCGGAUGUGCCGUAGUCAUUCUAGUCCAAGUCCCGGAAGAUCGCGAUCCUGGACGAUUCAAAAAAAAAA3'

d) In the box below, write the sequence that would be in box 7 above. Designate the 5^{\prime} and 3 ' orientations. 3 pts

$$
5^{\prime}-A C G-3^{\prime}
$$

e) Circle the specific name of the structure that is in box 6 above. 3 pts.
Alanine Arginine Cysteine Cytosine Cyanide Methionine Threonine Uracil

Question 4

Below is a diagram of a transmembrane protein called Soxwin.

Normally Soxwin is found embedded in the plasma membrane. You obtain a mutant in which Soxwin is mislocalized. The mutation resides in the DNA that encodes the transmembrane domain.

coding sequence in mutant:

a) What type of mutation occurred in the soxwin gene? Circle your answer(s). 2pts
deletion frameshift insertion missense nonsense silent
b) How has this mutation changed the chemical property of the transmembrane domain? Fill in each blank with one word. 2pts

From __hydrophobic, non-polar_ in WT to _hydrophilic, polar, or charged__ in mutant
c) Where do you expect the majority of the mutant Soxwin to accumulate? Circle your answer. 3 pts

| cytoplasmendoplasmic reticulum golgi apparatus
 mitochondria nucleus | outside the cell |
| :---: | :---: | :---: |

peroxisomes
plasma membrane
ribosomes

Name: \qquad TA: \qquad
d) There's another soxwin mutant in which a missense mutation abolishes the function of the signal sequence. Where would you expect the majority of this mutant Soxwin protein to accumulate? Circle your answer. 3 pts

cytoplasm endoplasmic reticulum | mitochondria |
| :---: |
| peroxisomes | nucleus

e) Match the following. (Multiple answers may be chosen for each blank.)

7 pts
Destinations of proteins
Molecular events
__C__ cytoplasm
A. co-translational transport
-
B, C__ mitochondria
B. post-translational transport
__B,C_nucleus
C. entire protein synthesized on a free ribosome
__ A, D __ extracellular space
D. signal sequence recognized by SRP

Question 5

a) A plasmid is a... (Circle your answer(s).) 2pts
bacterium cell multipurpose enzyme petriplate piece of DNA vesicle
b) Match each vector feature with its function. Not all answers need be used. 8 pts
\qquad B___Restriction site
A) Required for expression of insert
B) Allows for insertion of DNA into vector
_____Origin of replication
C) Encodes an enzyme to cut DNA
D) Enables selectability for strain that has taken up the vector
\qquad Promoter
E) Required for duplication of vector
F) Required for SRP to bind
G) Site for ribosome to bind
c) To obtain the gene that rescues a tryptophan biosynthesis E.coli mutant strain named, NY-trp-Zup, you construct a genomic library from wild-type E.coli by cutting the genome with BamHI and inserting the fragments into $p G o S O X!$, a plasmid which has been very successful in the lab. pGoSox! contains the genes for tetracycline and kanamycin resistances and has a unique Bam HI restriction site that maps to the kanamycin resistance gene. You transform the library into NY-trp-Zup and plate the transformants onto rich agar medium. You replica plate the colonies onto different media shown below.

Below are the plates shown in the same orientation after colonies form.

i) Which colony (ies) contain the original pGoSOX!? 3 pts $1 @$

None	1	2	3	4	5

ii) Which colony (ies) carry pGoSOX! containing an insert? 4 pts 2@
None
1
2
3
4
5
6
iii) Which colony (ies) would you choose to further study the gene encoding the tryptophan biosynthetic enzyme that is deficient in NY-trp-Zup? 3 pts 3@
None
[1]
2
3
4
5
6
\qquad

STRUCTURES OF AMINO ACIDS at pH 7.0

ALANINE (ala)

ARGININE (arg)

ASPARAGINE (asn)

ASPARTIC ACID (asp)

CYSTEINE (cys)

GLUTAMIC ACID (glu)

GLUTAMINE (gln)

GLYCINE (gly)

HISTIDINE (his)

ISOLEUCINE (ile)

LEUCINE (leu)

LYSINE
(lys)

METHIONINE (met)

PHENYLALANINE (phe)

PROLINE (pro)

SERINE (ser)

THREONINE (thr)

(trp)

TYROSINE (tyr)

(val)

The Genetic Code

	\cup	c	A	G	
U	UUU phe (F)	UCU ser (S)	UAU tyr (Y)	UGU cys (C)	U
	UUC phe (F)	UCC ser (S)	UAC tyr (Y)	UGC cys (C)	C
	UUA leu (L)	UCA ser (S)	UAA STOP	UGA STOP	A
	UUG leu (L)	UCG ser (S)	UAG STOP	UGG trp (W)	G
c	CUU leu (L)	CCU pro (P)	CAU his (H)	CGU $\arg (\mathrm{R})$	U
	CUC leu (L)	CCC pro (P)	CAC his (H)	CGC arg (R)	C
	CUA leu (L)	CCA pro (P)	CAA gin (Q)	CGA arg (R)	A
	CUG leu (L)	CCG pro (P)	CAG gin (Q)	CGG $\arg (R)$	G
A	AUU ile (I)	ACU thr (T)	AAU asn (N)	AGU $\operatorname{ser}(S)$	U
	AUC ile (I)	ACC thr (T)	$A A C$ asn (N)	$A G C \operatorname{ser}(S)$	C
	AUA ile (I)	ACA thr (T)	AAA lys (K)	$A G A \arg (\mathrm{R})$	A
	AUG met (M)	ACG thr (T)	AAG lys (K)	$A G G \arg (R)$	G
G	GUU val (V)	GCU ala (A)	GAU asp (D)	GGU gly (G)	U
	GUC val (V)	GCC ala (A)	GAC asp (D)	$G G C$ gly (G)	C
	GUA val (V)	GCA ala (A)	GAA glu (E)	GGA gly (G)	A
	GUG val (V)	GCG ala (A)	GAG glu (E)	GGG gly (G)	G

