Section 5- Solution key:

1. In the box below, write the most likely mode of inheritance of the following pedigree?

Autosomal recessive

Given each consistent mode of inheritance, if the couple in question decides to have a child, what is the probability of that child being affected? (Note: Use the uppercase or lowercase A to represent the alleles for the dominant and recessive traits).
The probability of individual 6 being a carrier is $2 / 3$ and person 7 is a carrier. If they are both carriers then the probability of their child being a carrier is $1 / 4$. So the overall probability of their child being a carrier is $\left(2 / 3 X^{1} X^{1 / 4}\right)=1 / 6$.
2. Consider the pedigree below showing the inheritance of two X-linked diseases, hemophilia A and hemophilia B. Hemophilia A is due to a lack of one clotting factor, and hemophilia B is due to a lack of a different clotting factor. Each clotting factor is a protein that is encoded by a specific gene located on the X chromosome. Note that no individual shown in this pedigree is affected with both hemophilia A and hemophila B.

a) Write the genotypes for the following individuals at both the hemophilia A and hemophilia B disease loci. Clearly define your genotype symbols.

Individual	Genotype
1	$X^{\mathrm{XB}} \mathrm{Y}$
2	$\mathrm{X}^{\mathrm{A}} \mathrm{X}^{\mathrm{AB}}$
3	$\mathrm{X}^{\mathrm{AB}} \mathrm{Y}$
4	$\mathrm{X}^{\mathrm{B}} \mathrm{X}^{\mathrm{Ab}}$
5	$\mathrm{X}^{\mathrm{AB}} \mathrm{Y}$

b) How do you account for individual 5 not being affected with either hemophilia A or hemophilia B? Individual \#5 is the product of a fusion of a sperm with an egg from individual 4that had undergone recombination between the A and the B genes during meiosis 1 .

MIT OpenCourseWare
http://ocw.mit.edu

7.013 Introductory Biology

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

