Diploid Genetics and Chromosomal Inheritance

A. Diploid Genetics

For each set of data below, determine the genotype of the parents in cross 1. Where it applies, indicate which phenotypes are dominant and which are recessive.

1. Mice I

a) cross 1: red-eyed mouse \qquad X white-eyed mouse \qquad gives F_{1} : all red-eyed
cross 2: red-eyed $\mathrm{F}_{1} \mathbf{X}$ red-eyed F_{1}
gives F_{2} : $\quad 36$ red-eyed
13 white-eyed
b) cross 1: long-eared mouse \qquad X short-eared mouse \qquad
gives F_{1} : 12 long-eared
10 short-eared
cross 2: long-eared $\mathrm{F}_{1} \mathrm{X}$ long-eared F_{1}
gives F_{2} : 36 long-eared
13 short-eared
2. Flowers
cross 1: blue-flowered plant \qquad X white-flowered plant \qquad gives F_{1} : all pale-blue-flowered
cross 2: pale-blue $\mathrm{F}_{1} \mathrm{X}$ pale-blue F_{1}
gives F_{2} : $\quad 27$ blue
49 pale-blue
24 white
3. Blood Type
a) cross 1: person, type A blood \qquad X person with type B \qquad
gives F_{1} : all type $A B$ blood
cross 2: type $A B F_{1} X$ type $A B F_{1}$
gives F_{2} : $\quad 2$ type A
4 type AB
1 type B
b) cross 1: type A blood \qquad X type B \qquad gives F_{1} : $\quad 2$ type A blood

3 type AB blood
1 type B blood
2 type O blood

4. Mice II

cross 1: tailless mouse \qquad X normal mouse \qquad gives F_{1} : 10 tailless

9 normal
cross 2: tailless $\mathrm{F}_{1} \mathrm{X}$ tailless F_{1}
gives F_{2} : 10 normal
21 tailless
9 dead

B. Chromosomes and Recombination

1. What is the physical basis of the genetic inheritance?
2. Why is sexual reproduction a powerful source of variation?
3. Why was it evolutionarily advantageous to develop the ability to recombine chromosomes?

Think about the following question for next time (we will talk about it in Section 16):
Recombination can occur anywhere along the length of the chromosome. However, we have been relying on the fact that genes are inherited as discreet units. How do we reconcile these two things? (Hint: think about what usually is the difference between two alleles of the same gene.)

